Araştırma Makalesi
BibTex RIS Kaynak Göster

Statistical Convergence in Function Spaces with Semi-Uniform Topologies

Yıl 2025, Cilt: 9 Sayı: 2, 78 - 83
https://doi.org/10.29002/asujse.1682667

Öz

In this work, we focus on investigating statistical convergence in function spaces equipped with semi-uniform convergence topologies. We provide a comparative analysis of pointwise and uniform statistical convergence under these topological structures and investigate the conditions that allow transitions between these types of convergence.

Kaynakça

  • [1] Kelley, J. L. (1975). General Topology, Springer, New York–Berlin.
  • [2] Bourbaki, N. (1989). General Topology, Springer, Berlin.
  • [3] Husek, M. (1964). Generalized proximity and uniform spaces I, Comment. Math. Univ. Carolinae, 5, 247–266.
  • [4] Husek, M. (1965). Generalized proximity and uniform spaces II, Comment. Math. Univ. Carolinae, 6, 119–139.
  • [5] Čech, E. (1966). Topological Spaces (revised by Z. Frolík and M. Katětov), Academia Publishing House of the Czechoslovak Academy of Sciences, Prague.
  • [6] Page, W. (1989). Topological Uniform Structures, Dover Publications Inc., New York.
  • [7] Fast, H. (1951). Sur la convergence statistique, Colloq. Math. 2, 241–244.
  • [8] Steinhaus, H. (1951). Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73–74.
  • [9] Zygmund, A. (1979). Trigonometric Series (2nd ed.), Cambridge University Press, Cambridge.
  • [10] Balcerzak, M., Dems, K., Komisarski, A. (2007). Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328(1), 715–729. DOI: 10.1016/j.jmaa.2006.05.040
  • [11] Caserta, A., Maio, G. Di., Kočinac, L. D. R. (2011). Statistical convergence in function spaces, Abstr. Appl. Anal., Art. ID 420419, 11 pp. DOI: 10.1155/2011/420419
  • [12] Megaritis, A. C. (2017). Ideal convergence of nets of functions with values in uniform spaces, Filomat 31(20), 6281– 6292. DOI: 10.2298/FIL1720281M
  • [13] Osmanoğlu, İ. (2025). Statistical and Uniformly Statistical Convergence of Sequences of Functions, Filomat 39(30), Article in Press.
  • [14] Georgiou, D. N., Megaritis, A. C., Özçağ, S. (2018). Statistical convergence of sequences of functions with values in semi-uniform spaces, Comment. Math. Univ. Carolin. 59(1), 103–117. DOI: 10.14712/1213-7243.2015.231
  • [15] Maio, G. Di, Kočinac, L. D. R. (2008). Statistical convergence in topology, Topology Appl. 156, 28–45. DOI: 10.1016/j.topol.2008.01.015
  • [16] Williams, J. (1972). Locally uniform spaces, Trans. Amer. Math. Soc. 168, 435–469. DOI: 10.1090/S0002-9947-1972-0296891-5

Yarı Düzgün Topolojili Fonksiyon Uzaylarında İstatistiksel Yakınsama

Yıl 2025, Cilt: 9 Sayı: 2, 78 - 83
https://doi.org/10.29002/asujse.1682667

Öz

Bu çalışmada, yarı düzgün yakınsaklık topolojileri ile donatılmış fonksiyon uzaylarında istatistiksel yakınsaklığı incelemeye odaklanıyoruz. Bu topolojik yapılar altında noktasal ve düzgün istatistiksel yakınsamanın karşılaştırmalı bir analizini sağlıyor ve bu yakınsama türleri arasında geçişlere izin veren koşulları araştırıyoruz.

Kaynakça

  • [1] Kelley, J. L. (1975). General Topology, Springer, New York–Berlin.
  • [2] Bourbaki, N. (1989). General Topology, Springer, Berlin.
  • [3] Husek, M. (1964). Generalized proximity and uniform spaces I, Comment. Math. Univ. Carolinae, 5, 247–266.
  • [4] Husek, M. (1965). Generalized proximity and uniform spaces II, Comment. Math. Univ. Carolinae, 6, 119–139.
  • [5] Čech, E. (1966). Topological Spaces (revised by Z. Frolík and M. Katětov), Academia Publishing House of the Czechoslovak Academy of Sciences, Prague.
  • [6] Page, W. (1989). Topological Uniform Structures, Dover Publications Inc., New York.
  • [7] Fast, H. (1951). Sur la convergence statistique, Colloq. Math. 2, 241–244.
  • [8] Steinhaus, H. (1951). Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73–74.
  • [9] Zygmund, A. (1979). Trigonometric Series (2nd ed.), Cambridge University Press, Cambridge.
  • [10] Balcerzak, M., Dems, K., Komisarski, A. (2007). Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328(1), 715–729. DOI: 10.1016/j.jmaa.2006.05.040
  • [11] Caserta, A., Maio, G. Di., Kočinac, L. D. R. (2011). Statistical convergence in function spaces, Abstr. Appl. Anal., Art. ID 420419, 11 pp. DOI: 10.1155/2011/420419
  • [12] Megaritis, A. C. (2017). Ideal convergence of nets of functions with values in uniform spaces, Filomat 31(20), 6281– 6292. DOI: 10.2298/FIL1720281M
  • [13] Osmanoğlu, İ. (2025). Statistical and Uniformly Statistical Convergence of Sequences of Functions, Filomat 39(30), Article in Press.
  • [14] Georgiou, D. N., Megaritis, A. C., Özçağ, S. (2018). Statistical convergence of sequences of functions with values in semi-uniform spaces, Comment. Math. Univ. Carolin. 59(1), 103–117. DOI: 10.14712/1213-7243.2015.231
  • [15] Maio, G. Di, Kočinac, L. D. R. (2008). Statistical convergence in topology, Topology Appl. 156, 28–45. DOI: 10.1016/j.topol.2008.01.015
  • [16] Williams, J. (1972). Locally uniform spaces, Trans. Amer. Math. Soc. 168, 435–469. DOI: 10.1090/S0002-9947-1972-0296891-5
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deneysel Analiz
Bölüm Araştırma Makalesi
Yazarlar

İsmail Osmanoğlu 0000-0002-1005-4075

Serdar Minaz 0009-0009-1293-6977

Yayımlanma Tarihi 19 Kasım 2025
Gönderilme Tarihi 24 Nisan 2025
Kabul Tarihi 27 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Osmanoğlu, İ., & Minaz, S. (t.y.). Statistical Convergence in Function Spaces with Semi-Uniform Topologies. Aksaray University Journal of Science and Engineering, 9(2), 78-83. https://doi.org/10.29002/asujse.1682667
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr