Derleme
BibTex RIS Kaynak Göster

Carbon Nano-Onions in Biological Applications: Recent Progress and Future Directions

Yıl 2025, Cilt: 9 Sayı: 1, 1 - 9
https://doi.org/10.29002/asujse.1618704

Öz

Carbon nano-onions (CNOs), together with graphene and its derivatives, are one of the most interesting carbon nanostructures due to their peculiar chemical and physical properties. Made of a number of concentric fullerene layers, carbon-based structures have a peculiar design and assume the appearance of onion-like cages. Due to their excellent biocompatibility and safety, CNOs have low toxicity, high water dispersibility (due to surface functionalization), and high pharmacological efficacy. These properties render them highly appealing for applications such as drug delivery, sensing, imaging, tissue engineering, and therapeutic agents. While CNOs were discovered almost at the same time as other carbon nanomaterials (CNMs), their potential in biological applications remains largely unexplored. On the other hand, similar to other CNMs and fullerenes, CNOs play a crucial role as they represent carbon's ability to form diverse nanostructures with exceptional properties. This review aims to summarize recent studies on CNOs for biological applications, underlining the current achievements, possible opportunities, and challenges toward future development.

Kaynakça

  • [1] Yang M, Flavin K, Kopf I, et al. (2013). Functionalization of Carbon Nanoparticles Modulates Inflammatory Cell Recruitment and NLRP3 Inflammasome Activation. Small, 9:4194–4206. DOI: 10.1002/SMLL.201300481
  • [2] Ghalkhani M, Khosrowshahi EM, Sohouli E. (2021). Carbon nano-onions: Synthesis, characterization, and application. Handbook of Carbon-Based Nanomaterials, 159–207. DOI: 10.1016/B978-0-12-821996-6.00006-3
  • [3] Pech D, Brunet M, Durou H, et al. (2010). Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology, 5:651–654. DOI: 10.1038/nnano.2010.162
  • [4] Shaibani M, Smith SJD, Banerjee PC, et al. (2017). Framework-mediated synthesis of highly microporous onion-like carbon: energy enhancement in supercapacitors without compromising power. J Mater Chem A Mater, 5:2519–2529. DOI: 10.1039/C6TA07098A
  • [5] Luszczyn J, Plonska-Brzezinska ME, Palkar A, et al. (2010). Small Noncytotoxic Carbon Nano-Onions: First Covalent Functionalization with Biomolecules. Chemistry – A European Journal, 16:4870–4880. DOI: 10.1002/CHEM.200903277
  • [6] Bethune DS, Klang CH, De Vries MS, et al. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363:605–607. DOI: 10.1038/363605a0
  • [7] Iijima S, Ichihashi T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363:603–605. DOI: 10.1038/363603a0
  • [8] Mykhailiv O, Zubyk H, Plonska-Brzezinska ME. (2017). Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chim Acta, 468:49–66. DOI: 10.1016/J.ICA.2017.07.021
  • [9] Georgakilas V, Perman JA, Tucek J, Zboril R. (2015). Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem Rev, 115:4744–4822. DOI: 10.1021/CR500304F
  • [10] Frasconi M, Marotta R, Markey L, et al. (2015). Multi-Functionalized Carbon Nano-onions as Imaging Probes for Cancer Cells. Chemistry – A European Journal, 21:19071–19080. DOI: 10.1002/CHEM.201503166
  • [11] Plonska-Brzezinska ME. (2019). Carbon Nano-Onions: A Review of Recent Progress in Synthesis and Applications. ChemNanoMat, 5:568–580. DOI: 10.1002/CNMA.201800583
  • [12] Ahlawat J, Masoudi Asil S, Guillama Barroso G, et al. (2021). Application of Carbon Nano Onions in the Biomedical Field: Recent Advances and Challenges. Biomater Sci, 9:626–644. DOI: 10.1039/D0BM01476A
  • [13] Tomita S, Sakurai T, Ohta H, et al. (2001). Structure and electronic properties of carbon onions. J Chem Phys, 114:7477–7482. DOI: 10.1063/1.1360197
  • [14] Kuznetsov VL, Chuvilin AL, Moroz EM, et al. (1994). Effect of explosion conditions on the structure of detonation soots: Ultradisperse diamond and onion carbon. Carbon N Y, 32:873–882. DOI: 10.1016/0008-6223(94)90044-2
  • [15] Zeiger M, Jäckel N, Vadym Mochalin SN, et al. (2016). Review: carbon onions for electrochemical energy storage. J Mater Chem A Mater, 4:3172–3196. DOI: 10.1039/C5TA08295A
  • [16] Sano N, Wang H, Alexandrou I, et al. (2002). Properties of carbon onions produced by an arc discharge in water. J Appl Phys, 92:2783–2788. DOI: 10.1063/1.1498884
  • [17] Kuznetsov VL, Chuvilin AL, Butenko Y V., et al. (1994). Onion-like carbon from ultra-disperse diamond. Chem Phys Lett, 222:343–348. DOI: 10.1016/0009-2614(94)87072-1
  • [18] Alexandrou I, Wang H, Sano N, Amaratunga GAJ. (2004). Structure of carbon onions and nanotubes formed by arc in liquids. J Chem Phys, 120:1055–1058. DOI: 10.1063/1.1629274
  • [19] Choi M, Altman IS, Kim YJ, et al. (2004). Formation of Shell-Shaped Carbon Nanoparticles Above a Critical Laser Power in Irradiated Acetylene. Advanced Materials, 16:1721–1725. DOI: 10.1002/ADMA.200400179
  • [20] Iijima S. (1991). Helical microtubules of graphitic carbon. Nature, 354:56–58. DOI: 10.1038/354056a0
  • [21] Ugarte D. (1992). Curling and closure of graphitic networks under electron-beam irradiation. Nature, 359:707–709. DOI: 10.1038/359707a0
  • [22] de Heer WA, Ugarte D. (1993). Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett, 207:480–486. DOI: 10.1016/0009-2614(93)89033-E
  • [23] Bobrowska DM, Czyrko J, Brzezinski K, et al. (2017). Carbon nano-onion composites: Physicochemical characteristics and biological activity. Fullerenes, Nanotubes and Carbon Nanostructures, 25:185–192. DOI: 10.1080/1536383X.2016.1248758
  • [24] Sawant SY, Somani RS, Panda AB, Bajaj HC. (2013). Formation and characterization of onions shaped carbon soot from plastic wastes. Mater Lett, 94:132–135. DOI: 10.1016/J.MATLET.2012.12.035
  • [25] Garcia-Martin T, Rincon-Arevalo P, Campos-Martin G. (2013). Method to obtain carbon nano-onions by pyrolisys of propane. Central European Journal of Physics, 11:1548–1558. DOI: 10.2478/S11534-013-0294-1
  • [26] Tripathi KM, Bhati A, Singh A, et al. (2016). From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Adv, 6:37319–37329. DOI: 10.1039/C6RA04030F
  • [27] Singh V. (2018). Natural source derived carbon nano-onions as electrode material for sensing applications. Diam Relat Mater, 87:202–207. DOI: 10.1016/J.DIAMOND.2018.06.007
  • [28] Dalal C, Saini D, Garg AK, Sonkar SK. (2021). Fluorescent Carbon Nano-onion as Bioimaging Probe. ACS Appl Bio Mater, 4:252–266. DOI: 10.1021/ACSABM.0C01192
  • [29] Xu B, Yang X, Wang X, et al. (2006). A novel catalyst support for DMFC: Onion-like fullerenes. J Power Sources, 162:160–164. DOI: 10.1016/J.JPOWSOUR.2006.06.063
  • [30] Ghosh M, Sonkar SK, Saxena M, Sarkar S. (2011). Carbon Nano-onions for Imaging the Life Cycle of Drosophila Melanogaster. Small, 7:3170–3177. DOI: 10.1002/SMLL.201101158
  • [31] Dubey P, Tripathi KM, Sonkar SK. (2014). Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Adv, 4:5838–5844. DOI: 10.1039/C3RA45261A
  • [32] Tripathi KM, Bhati A, Singh A, et al. (2016). From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Adv, 6:37319–37329. DOI: 10.1039/C6RA04030F
  • [33] Bartelmess J, Frasconi M, Balakrishnan PB, et al. (2015). Non-covalent functionalization of carbon nano-onions with pyrene–BODIPY dyads for biological imaging. RSC Adv, 5:50253–50258. DOI: 10.1039/C5RA07683H
  • [34] Frasconi M, Marotta R, Markey L, et al. (2015). Multi-Functionalized Carbon Nano-onions as Imaging Probes for Cancer Cells. Chemistry – A European Journal, 21:19071–19080. DOI: 10.1002/CHEM.201503166
  • [35] Dalal C, Saini D, Garg AK, Sonkar SK. (2021). Fluorescent Carbon Nano-onion as Bioimaging Probe. ACS Appl Bio Mater, 4:252–266. DOI: 10.1021/ACSABM.0C01192
  • [36] Revuri V, Cherukula K, Nafiujjaman M, et al. (2018). White-Light-Emitting Carbon Nano-Onions: A Tunable Multichannel Fluorescent Nanoprobe for Glutathione-Responsive Bioimaging. ACS Appl Nano Mater, 1:662–674. DOI: 10.1021/ACSANM.7B00143
  • [37] D’Amora M, Rodio M, Bartelmess J, et al. (2016). Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Scientific Reports, 6:1–9. DOI: 10.1038/srep33923
  • [38] Tovar CDG, Castro JI, Valencia CH, et al. (2020). Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 25:1203. DOI: 10.3390/MOLECULES25051203
  • [39] Tovar CDG, Castro JI, Valencia CH, et al. (2019). Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications. Biomolecules, 9:684. DOI: 10.3390/BIOM9110684
  • [40] Mamidi N, Zuníga AE, Villela-Castrejón J. (2020). Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. Materials Science and Engineering: C, 112:110928. DOI: 10.1016/J.MSEC.2020.110928
  • [41] Mamidi N, Delgadillo RMV, Ortiz AG, Barrera EV. (2020). Carbon Nano-Onions Reinforced Multilayered Thin Film System for Stimuli-Responsive Drug Release. Pharmaceutics, 12:1208. DOI: 10.3390/PHARMACEUTICS12121208
  • [42] Wang H, Liang Y, Yin Y, et al. (2021). Carbon nano-onion-mediated dual targeting of P-selectin and P-glycoprotein to overcome cancer drug resistance. Nat Commun, 12:3992. DOI: 10.1038/S41467-020-20588-0
  • [43] Majumder R, Karmakar S, Mishra S, et al. (2024). Functionalized Carbon Nano-Onions as a Smart Drug Delivery System for the Poorly Soluble Drug Carmustine for the Management of Glioblastoma. ACS Appl Bio Mater, 7:154–167. DOI: 10.1021/ACSABM.3C00688
  • [44] Zuaznabar-Gardona JC, Fragoso A. (2018). A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes. Sens Actuators B Chem, 273:664–671. DOI: 10.1016/J.SNB.2018.06.103
  • [45] Pickup JC, Hussain F, Evans ND, et al. (2005). Fluorescence-based glucose sensors. Biosens Bioelectron, 20:2555–2565. DOI: 10.1016/J.BIOS.2004.10.002
  • [46] Bartolome JP, Echegoyen L, Fragoso A. (2015). Reactive Carbon Nano-Onion Modified Glassy Carbon Surfaces as DNA Sensors for Human Papillomavirus Oncogene Detection with Enhanced Sensitivity. Anal Chem, 87:6744–6751. DOI: 10.1021/ACS.ANALCHEM.5B00924
  • [47] Sok V, Fragoso A. (2021). Carbon Nano-Onion Peroxidase Composite Biosensor for Electrochemical Detection of 2,4-D and 2,4,5-T. Applied Sciences, 11:6889. DOI: 10.3390/APP11156889
  • [48] Zou J, Qiao Y, Zhao J, et al. (2023). Hybrid Pressure Sensor Based on Carbon Nano-Onions and Hierarchical Microstructures with Synergistic Enhancement Mechanism for Multi-Parameter Sleep Monitoring. Nanomaterials, 13:2692. DOI: 10.3390/NANO13192692
  • [49] Gunture, Dalal C, Kaushik J, et al. (2020). Pollutant-Soot-Based Nontoxic Water-Soluble Onion-like Nanocarbons for Cell Imaging and Selective Sensing of Toxic Cr(VI). ACS Appl Bio Mater, 3:3906–3913. DOI: 10.1021/ACSABM.0C00456
  • [50] Kaymaz SV, Nobar HM, Sarıgül H, et al. (2023). Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci, 322:103035. DOI: 10.1016/J.CIS.2023.103035

Biyolojik Uygulamalarda Karbon Nano-Onionlar: Güncel Gelişmeler ve Gelecek Perspektifleri

Yıl 2025, Cilt: 9 Sayı: 1, 1 - 9
https://doi.org/10.29002/asujse.1618704

Öz

Karbon nano-soğanlar (CNO'lar), grafen ve türevleriyle birlikte, benzersiz kimyasal ve fiziksel özellikleri nedeniyle en ilgi çekici karbon nanoyapılarından biridir. Bir dizi konsantrik fuleren katmanından oluşan bu karbon bazlı yapılar, soğan benzeri kafesler şeklinde tasarlanmıştır. Yüksek biyouyumlulukları ve güvenlikleri sayesinde CNO'lar, düşük toksisite, yüzey fonksiyonelleştirme ile sağlanan iyi su dağılabilirliği ve yüksek farmakolojik etkinlik gibi özelliklere sahiptir. Bu özellikler, onları ilaç taşıma, algılama, görüntüleme, doku mühendisliği ve terapötik ajanlar gibi uygulamalar için son derece cazip kılmaktadır. CNO'lar, diğer karbon nanomalzemelerle (CNM'ler) hemen hemen aynı dönemde keşfedilmiş olmasına rağmen, biyolojik uygulamalardaki potansiyelleri büyük ölçüde keşfedilmemiştir. Öte yandan, diğer CNM'ler ve fulerenler gibi, CNO'lar da karbonun olağanüstü özelliklere sahip çeşitli nanoyapılar oluşturma yeteneğini temsil ettikleri için önemli bir yere sahiptir. Bu derleme, CNO'ların biyolojik uygulamalarına yönelik son çalışmaları özetlemeyi, mevcut başarıları, olası fırsatları ve gelecekteki gelişmelere yönelik zorlukları vurgulamayı amaçlamaktadır.

Kaynakça

  • [1] Yang M, Flavin K, Kopf I, et al. (2013). Functionalization of Carbon Nanoparticles Modulates Inflammatory Cell Recruitment and NLRP3 Inflammasome Activation. Small, 9:4194–4206. DOI: 10.1002/SMLL.201300481
  • [2] Ghalkhani M, Khosrowshahi EM, Sohouli E. (2021). Carbon nano-onions: Synthesis, characterization, and application. Handbook of Carbon-Based Nanomaterials, 159–207. DOI: 10.1016/B978-0-12-821996-6.00006-3
  • [3] Pech D, Brunet M, Durou H, et al. (2010). Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology, 5:651–654. DOI: 10.1038/nnano.2010.162
  • [4] Shaibani M, Smith SJD, Banerjee PC, et al. (2017). Framework-mediated synthesis of highly microporous onion-like carbon: energy enhancement in supercapacitors without compromising power. J Mater Chem A Mater, 5:2519–2529. DOI: 10.1039/C6TA07098A
  • [5] Luszczyn J, Plonska-Brzezinska ME, Palkar A, et al. (2010). Small Noncytotoxic Carbon Nano-Onions: First Covalent Functionalization with Biomolecules. Chemistry – A European Journal, 16:4870–4880. DOI: 10.1002/CHEM.200903277
  • [6] Bethune DS, Klang CH, De Vries MS, et al. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363:605–607. DOI: 10.1038/363605a0
  • [7] Iijima S, Ichihashi T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363:603–605. DOI: 10.1038/363603a0
  • [8] Mykhailiv O, Zubyk H, Plonska-Brzezinska ME. (2017). Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chim Acta, 468:49–66. DOI: 10.1016/J.ICA.2017.07.021
  • [9] Georgakilas V, Perman JA, Tucek J, Zboril R. (2015). Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem Rev, 115:4744–4822. DOI: 10.1021/CR500304F
  • [10] Frasconi M, Marotta R, Markey L, et al. (2015). Multi-Functionalized Carbon Nano-onions as Imaging Probes for Cancer Cells. Chemistry – A European Journal, 21:19071–19080. DOI: 10.1002/CHEM.201503166
  • [11] Plonska-Brzezinska ME. (2019). Carbon Nano-Onions: A Review of Recent Progress in Synthesis and Applications. ChemNanoMat, 5:568–580. DOI: 10.1002/CNMA.201800583
  • [12] Ahlawat J, Masoudi Asil S, Guillama Barroso G, et al. (2021). Application of Carbon Nano Onions in the Biomedical Field: Recent Advances and Challenges. Biomater Sci, 9:626–644. DOI: 10.1039/D0BM01476A
  • [13] Tomita S, Sakurai T, Ohta H, et al. (2001). Structure and electronic properties of carbon onions. J Chem Phys, 114:7477–7482. DOI: 10.1063/1.1360197
  • [14] Kuznetsov VL, Chuvilin AL, Moroz EM, et al. (1994). Effect of explosion conditions on the structure of detonation soots: Ultradisperse diamond and onion carbon. Carbon N Y, 32:873–882. DOI: 10.1016/0008-6223(94)90044-2
  • [15] Zeiger M, Jäckel N, Vadym Mochalin SN, et al. (2016). Review: carbon onions for electrochemical energy storage. J Mater Chem A Mater, 4:3172–3196. DOI: 10.1039/C5TA08295A
  • [16] Sano N, Wang H, Alexandrou I, et al. (2002). Properties of carbon onions produced by an arc discharge in water. J Appl Phys, 92:2783–2788. DOI: 10.1063/1.1498884
  • [17] Kuznetsov VL, Chuvilin AL, Butenko Y V., et al. (1994). Onion-like carbon from ultra-disperse diamond. Chem Phys Lett, 222:343–348. DOI: 10.1016/0009-2614(94)87072-1
  • [18] Alexandrou I, Wang H, Sano N, Amaratunga GAJ. (2004). Structure of carbon onions and nanotubes formed by arc in liquids. J Chem Phys, 120:1055–1058. DOI: 10.1063/1.1629274
  • [19] Choi M, Altman IS, Kim YJ, et al. (2004). Formation of Shell-Shaped Carbon Nanoparticles Above a Critical Laser Power in Irradiated Acetylene. Advanced Materials, 16:1721–1725. DOI: 10.1002/ADMA.200400179
  • [20] Iijima S. (1991). Helical microtubules of graphitic carbon. Nature, 354:56–58. DOI: 10.1038/354056a0
  • [21] Ugarte D. (1992). Curling and closure of graphitic networks under electron-beam irradiation. Nature, 359:707–709. DOI: 10.1038/359707a0
  • [22] de Heer WA, Ugarte D. (1993). Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett, 207:480–486. DOI: 10.1016/0009-2614(93)89033-E
  • [23] Bobrowska DM, Czyrko J, Brzezinski K, et al. (2017). Carbon nano-onion composites: Physicochemical characteristics and biological activity. Fullerenes, Nanotubes and Carbon Nanostructures, 25:185–192. DOI: 10.1080/1536383X.2016.1248758
  • [24] Sawant SY, Somani RS, Panda AB, Bajaj HC. (2013). Formation and characterization of onions shaped carbon soot from plastic wastes. Mater Lett, 94:132–135. DOI: 10.1016/J.MATLET.2012.12.035
  • [25] Garcia-Martin T, Rincon-Arevalo P, Campos-Martin G. (2013). Method to obtain carbon nano-onions by pyrolisys of propane. Central European Journal of Physics, 11:1548–1558. DOI: 10.2478/S11534-013-0294-1
  • [26] Tripathi KM, Bhati A, Singh A, et al. (2016). From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Adv, 6:37319–37329. DOI: 10.1039/C6RA04030F
  • [27] Singh V. (2018). Natural source derived carbon nano-onions as electrode material for sensing applications. Diam Relat Mater, 87:202–207. DOI: 10.1016/J.DIAMOND.2018.06.007
  • [28] Dalal C, Saini D, Garg AK, Sonkar SK. (2021). Fluorescent Carbon Nano-onion as Bioimaging Probe. ACS Appl Bio Mater, 4:252–266. DOI: 10.1021/ACSABM.0C01192
  • [29] Xu B, Yang X, Wang X, et al. (2006). A novel catalyst support for DMFC: Onion-like fullerenes. J Power Sources, 162:160–164. DOI: 10.1016/J.JPOWSOUR.2006.06.063
  • [30] Ghosh M, Sonkar SK, Saxena M, Sarkar S. (2011). Carbon Nano-onions for Imaging the Life Cycle of Drosophila Melanogaster. Small, 7:3170–3177. DOI: 10.1002/SMLL.201101158
  • [31] Dubey P, Tripathi KM, Sonkar SK. (2014). Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Adv, 4:5838–5844. DOI: 10.1039/C3RA45261A
  • [32] Tripathi KM, Bhati A, Singh A, et al. (2016). From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Adv, 6:37319–37329. DOI: 10.1039/C6RA04030F
  • [33] Bartelmess J, Frasconi M, Balakrishnan PB, et al. (2015). Non-covalent functionalization of carbon nano-onions with pyrene–BODIPY dyads for biological imaging. RSC Adv, 5:50253–50258. DOI: 10.1039/C5RA07683H
  • [34] Frasconi M, Marotta R, Markey L, et al. (2015). Multi-Functionalized Carbon Nano-onions as Imaging Probes for Cancer Cells. Chemistry – A European Journal, 21:19071–19080. DOI: 10.1002/CHEM.201503166
  • [35] Dalal C, Saini D, Garg AK, Sonkar SK. (2021). Fluorescent Carbon Nano-onion as Bioimaging Probe. ACS Appl Bio Mater, 4:252–266. DOI: 10.1021/ACSABM.0C01192
  • [36] Revuri V, Cherukula K, Nafiujjaman M, et al. (2018). White-Light-Emitting Carbon Nano-Onions: A Tunable Multichannel Fluorescent Nanoprobe for Glutathione-Responsive Bioimaging. ACS Appl Nano Mater, 1:662–674. DOI: 10.1021/ACSANM.7B00143
  • [37] D’Amora M, Rodio M, Bartelmess J, et al. (2016). Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Scientific Reports, 6:1–9. DOI: 10.1038/srep33923
  • [38] Tovar CDG, Castro JI, Valencia CH, et al. (2020). Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 25:1203. DOI: 10.3390/MOLECULES25051203
  • [39] Tovar CDG, Castro JI, Valencia CH, et al. (2019). Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications. Biomolecules, 9:684. DOI: 10.3390/BIOM9110684
  • [40] Mamidi N, Zuníga AE, Villela-Castrejón J. (2020). Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. Materials Science and Engineering: C, 112:110928. DOI: 10.1016/J.MSEC.2020.110928
  • [41] Mamidi N, Delgadillo RMV, Ortiz AG, Barrera EV. (2020). Carbon Nano-Onions Reinforced Multilayered Thin Film System for Stimuli-Responsive Drug Release. Pharmaceutics, 12:1208. DOI: 10.3390/PHARMACEUTICS12121208
  • [42] Wang H, Liang Y, Yin Y, et al. (2021). Carbon nano-onion-mediated dual targeting of P-selectin and P-glycoprotein to overcome cancer drug resistance. Nat Commun, 12:3992. DOI: 10.1038/S41467-020-20588-0
  • [43] Majumder R, Karmakar S, Mishra S, et al. (2024). Functionalized Carbon Nano-Onions as a Smart Drug Delivery System for the Poorly Soluble Drug Carmustine for the Management of Glioblastoma. ACS Appl Bio Mater, 7:154–167. DOI: 10.1021/ACSABM.3C00688
  • [44] Zuaznabar-Gardona JC, Fragoso A. (2018). A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes. Sens Actuators B Chem, 273:664–671. DOI: 10.1016/J.SNB.2018.06.103
  • [45] Pickup JC, Hussain F, Evans ND, et al. (2005). Fluorescence-based glucose sensors. Biosens Bioelectron, 20:2555–2565. DOI: 10.1016/J.BIOS.2004.10.002
  • [46] Bartolome JP, Echegoyen L, Fragoso A. (2015). Reactive Carbon Nano-Onion Modified Glassy Carbon Surfaces as DNA Sensors for Human Papillomavirus Oncogene Detection with Enhanced Sensitivity. Anal Chem, 87:6744–6751. DOI: 10.1021/ACS.ANALCHEM.5B00924
  • [47] Sok V, Fragoso A. (2021). Carbon Nano-Onion Peroxidase Composite Biosensor for Electrochemical Detection of 2,4-D and 2,4,5-T. Applied Sciences, 11:6889. DOI: 10.3390/APP11156889
  • [48] Zou J, Qiao Y, Zhao J, et al. (2023). Hybrid Pressure Sensor Based on Carbon Nano-Onions and Hierarchical Microstructures with Synergistic Enhancement Mechanism for Multi-Parameter Sleep Monitoring. Nanomaterials, 13:2692. DOI: 10.3390/NANO13192692
  • [49] Gunture, Dalal C, Kaushik J, et al. (2020). Pollutant-Soot-Based Nontoxic Water-Soluble Onion-like Nanocarbons for Cell Imaging and Selective Sensing of Toxic Cr(VI). ACS Appl Bio Mater, 3:3906–3913. DOI: 10.1021/ACSABM.0C00456
  • [50] Kaymaz SV, Nobar HM, Sarıgül H, et al. (2023). Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci, 322:103035. DOI: 10.1016/J.CIS.2023.103035
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomedikal Görüntüleme, Biyomateryaller, Nanomalzemeler
Bölüm Derleme
Yazarlar

Caner Soylukan 0000-0001-8784-9223

Tugce Karaduman Yesıldal 0000-0003-0728-0968

Lalehan Akyüz 0000-0001-8548-3037

Erken Görünüm Tarihi 10 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 14 Ocak 2025
Kabul Tarihi 18 Şubat 2025
Yayımlandığı Sayı Yıl 2025Cilt: 9 Sayı: 1

Kaynak Göster

APA Soylukan, C., Karaduman Yesıldal, T., & Akyüz, L. (2025). Carbon Nano-Onions in Biological Applications: Recent Progress and Future Directions. Aksaray University Journal of Science and Engineering, 9(1), 1-9. https://doi.org/10.29002/asujse.1618704
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr