Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of The Potential Using in The Treatment of Common Chronic Diseases of Anchusa Azurea Kurdica Roots Different Extract

Yıl 2024, Cilt: 8 Sayı: 1, 1 - 15, 30.06.2024
https://doi.org/10.29002/asujse.1369488

Öz

Today, some common chronic diseases still have no known treatment. For this reason, studies on method and drug development for the treatment of these diseases continue. Even if synthetic drugs are used successful in treatment, it is becoming increasingly common to prefer natural products in these drug development studies due to they have some side effects. This study focused on determining the antioxidant and enzyme inhibition activities of Anchusa azurea var. kurdica roots and revealing the plant's potential to be used in the treatment of diseases such as diabetes, Alzheimer's and cancer. Herein, antioxidant activities of extracts obtained from root parts with different solvents were determined by free radical scavenging activity (DPPH, ABTS), FRAP, CUPRAC, phosphomolybdate and metal chelation activity tests. Enzyme inhibition activities were investigated for cholinesterase (acetyl and butyryl), α-amylase, α-glucosidase and tyrosinase enzymes. In addition, the total phenolic and flavonoid contents of the extracts were determined as well as their phenolic compounds. In antioxidant activity tests, methanol extract generally showed higher activity compared the others, while ethyl acetate extract was found to be more active in enzyme inhibition. While the total phenolic content in the methanol extract was found at 22.12 mg GAE/g extract, the flavonoid content was found at very low levels in all extracts. Quercetin and rosmarinic acid were high amounts components in the phenolic compositions of the extracts. According to the obtained datas, A. azurea var. kurdica root extracts showed a good antioxidant and enzyme inhibition activities. The results showed that the plant has a high potential to be used as raw material for drug development studies for the treatment of chronic diseases.

Teşekkür

Bu çalışma doktora bir kısmını içermektedir. Çalışmada kullanılan bitkilerin teşhisinde destek aldığımız Selçuk Üniversitesi Fen Fakültesi Biyoteknoloji Bölümü Öğretim Üyesi Prof. Dr. Evren YILDIZTUGAY’a teşekkür ederiz.

Kaynakça

  • [1] Aktumsek, A., Zengin, G., Guler, G. O., Cakmak, Y. S., ve Duran, A. (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species, Food and Chemical Toxicology, 55, 290-296.
  • [2] Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M. R., Wang, X., ve Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action, Food Chemistry, 353, 129488.
  • [3] Pham-Huy, L. A., He, H. ve Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health, International Journal of Biomedical Science, 4, 2, 89-96.
  • [4] Di Meo, S., ve Venditti, P. (2020). Evolution of the knowledge of free radicals and other oxidants, Oxidative Medicine and Cellular Longevity, 2020, 1-32.
  • [5] Rekatsina, M., Paladini, A., Piroli, A., Zis, P., Pergolizzi, J. V. ve Varrassi, G. (2020). Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: a narrative review, Advances in Therapy, 37, 1, 113-139.
  • [6] Akbari, B., Baghaei‐Yazdi, N., Bahmaie, M., ve Mahdavi Abhari, F. (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress, BioFactors, 48, 3, 611-633.
  • [7] Lopa, S. S., Al-Amin, M., Hasan, M., Ahammed, M., Islam, K. M., Alam, A. H. M. ve Sadik, M. (2021). Phytochemical analysis and cholinesterase inhibitory and antioxidant activities of Enhydra fluctuans relevant in the management of Alzheimer’s disease, International Journal of Food Science, 8862025.
  • [8] Li, Y., Zhang, W., Zhao, R. ve Zhang, X. (2022). Advances in oral peptide drug nanoparticles for diabetes mellitus treatment, Bioactive Materials, 15, 392-408.
  • [9] Robinson, P. K. (2015). Enzymes: principles and biotechnological applications, Essays in Biochemistry, 59, 1-41.
  • [10] Isah, T. (2019). Stress and defense responses in plant secondary metabolites production, Biological Research, 52.
  • [11] Tiwari, R., ve Rana, C. S. (2015). Plant secondary metabolites: a review, International Journal of Engineering Research and General Science, 3, 5, 661-670.
  • [12] Hussain, F. H. S., Ahamad, J., ve Osw, P. S. (2019). A Comprehensive Review on Pharmacognostical and Pharmacological Characters of Anchusa Azurea, Advances in Medical, Dental and Health Sciences, 3, 33-37.
  • [13] Petersen, M., & Simmonds, M. S. (2003). Rosmarinic acid, Phytochemistry, 62, 2, 121-125.
  • [14] Lau, C. H., Chua, L. S., Lee, C. T., & Aziz, R. (2015). Fractionation of rosmarinic acid from crude extract of Orthosiphon stamineus by solid phase extraction. Journal of Engineering Science and Technology, 10, 104-112.
  • [15] Amoah, S. K., Sandjo, L. P., Kratz, J. M., & Biavatti, M. W. (2016). Rosmarinic acid–pharmaceutical and clinical aspects. Planta Medica, 82, 05, 388-406.
  • [16] Juranović Cindrić, I., Kunštić, M., Zeiner, M., Stingeder, G., ve Rusak, G. (2011). Sample preparation methods for the determination of the antioxidative capacity of apple juices, Croatica chemica Acta, 84, 3, 435-438.82.
  • [17] Agbor, G. A., Vinson, J. A., ve Donnelly, P. E. (2014). Folin-Ciocalteau Reagent for Polyphenolic Assay, International Journal of Food Science, Nutrition and Dietetics, 3, 8, 147-156.
  • [18] Arvouet-Grand, A., Vennat, B., Pourrat, A., ve Legret, P. (1994). Standardization of a propolis extract and identification of the main constituents, Journal de Pharmacie de Belgique, 49, 6, 462-468.
  • [19] Sarikurkcu, C., Tepe, B., Daferera, D., Polissiou, M., ve Harmandar, M. (2008). Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (Lamiaceae) by three different chemical assays, Bioresource Technology, 99, 10, 4239-4246.
  • [20] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. ve Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine, 26, 9-10, 1231-1237.
  • [21] Aktumsek, A., Zengin, G., Guler, G. O., Cakmak, Y. S., ve Duran, A. (2013). Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey, Food Chemistry, 141, 1, 91-97.
  • [22] Apak, R., Guclu, K., Ozyurek, M., Karademir, S. E., ve Ercag, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, International Journal of Food Sciences and Nutrition, 57, 5/6, 292–304.
  • [23] Çakmak, Y. S., Aktumsek, A., ve Duran, A. (2012). Studies on antioxidant activity, volatile compound and fatty acid composition of different parts, Glycyrrhiza echinata L, EXCLI Journal, 11,178-187.
  • [24] Uysal, S., Zengin, G., Locatelli, M., Bahadori, M. B., Mocan, A., Bellagamba, G., De Luca, E., Mollica, A. ve Aktumsek, A. (2017). Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition, Frontiers in Pharmacology, 8, 290.
  • [25] Aktumsek, A., Zengin, G., Guler, G.O., Cakmak, Y.S., ve Duran, A. (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species, Food and Chemical Toxicology, 55, 290-296.
  • [26] Yang, X-W., Huang, M-Z., Jin, Y-S., Sun, L-N., Song, Y., ve Chen, H-S. (2012). Phenolics from Bidens bipinnata and their amylase inhibitory properties, Fitoterapia, 83, 7, 1169-1175.
  • [27] Palanisamy, U.D., Ling, L.T., Manaharan, T., ve Appleton, D. (2011). Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity, Food Chemistry, 127, 1, 21–27.
  • [28] Orhan, I. E., Senol, F.S., Gulpinar, A.R., Sekeroglu, N., Kartal, M., ve Sener, B. (2012). Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses, Food Chemistry, 130, 4, 882-888.
  • [29] Caponio F., Alloggio V., Gomes T. (1999). Phenolic compounds of virgin olive oil: Influence of paste preparation techniques, Food Chemistry 64: 203-209.
  • [30] Sabih Ozer, M., Sarikurkcu, C., Tepe, B., ve Can, S. (2010). Essential oil composition and antioxidant activities of alkanet (Alkanna tinctoria subsp. tinctoria), Food Science and Biotechnology, 19, 1177-1183.
  • [31] Alali, F. Q., Tawaha, K., El-Elimat, T., Syouf, M., El-Fayad, M., Abulaila, K., ve Oberlies, N. H. (2007). Antioxidant activity and total phenolic content of aqueous and methanolic extracts of Jordanian plants: an ICBG project, Natural Product Research, 21, 12, 1121-1131.
  • [32] Gharib, A., ve Godarzee, M. (2016). Determination of secondary metabolites and antioxidant activity of some boraginaceae species growing in Iran, Tropical Journal of Pharmaceutical Research, 15,11, 2459-2465.
  • [33] Danet, A. F. (2021). Antioxidants-Benefits, Sources, Mechanisms of Action, Waisundara, V. Y., Recent advances in antioxidant capacity assays, IntechOpen, London, UK.
  • [34] Seyhan, S. A. (2019). DPPH antioksidan analizinin yeniden değerlendirilmesi, Batman Üniversitesi Yaşam Bilimleri Dergisi, 9, 2, 125-135.
  • [35] Sarikurkcu, C., Zengin, G., Aktumsek, A., Ceylan, O., ve Uysal, S. (2015). Screening of possible in vitro neuroprotective, skin care, antihyperglycemic, and antioxidative effects of Anchusa undulata L. subsp. hybrida (Ten.) Coutinho from Turkey and its fatty acid profile, International Journal of Food Properties, 18, 7, 1491-1504.
  • [36] Tufa, T., Damianakos, H., Zengin, G., Graikou, K., ve Chinou, I. (2019). Antioxidant and enzyme inhibitory activities of disodium rabdosiin isolated from Alkanna sfikasiana Tan, Vold and Strid, South African Journal of Botany, 120, 157-162.
  • [37] Zengin, G., Ceylan, R., Katanić, J., Mollica, A., Aktumsek, A., Boroja, T., ve Mahomoodally, M. F. (2017). Combining in vitro, in vivo and in silico approaches to evaluate nutraceutical potentials and chemical fingerprints of Moltkia aurea and Moltkia coerulea, Food and Chemical Toxicology, 107, 540-553.
  • [38] Trifan, A., Zengin, G., Sinan, K. I., Wolfram, E., Skalicka-Woźniak, K., ve Luca, S. V. (2021). LC-HRMS/MS phytochemical profiling of Symphytum officinale L. and Anchusa ochroleuca M. Bieb.(Boraginaceae): Unveiling their multi-biological potential via an integrated approach, Journal of Pharmaceutical and Biomedical Analysis, 204, 114283.
  • [39] Marini, G., Graikou, K., Zengin, G., Karikas, G. A., Gupta, M. P., ve Chinou, I. (2018). Phytochemical analysis and biological evaluation of three selected Cordia species from Panama, Industrial Crops and Products, 120, 84-89.
  • [40] Apak, R., Özyürek, M., Güçlü, K., Bekdeşer, B. ve Bener, M. (2014). The CUPRAC methods of antioxidant measurement for beverages, In Processing and impact on antioxidants in beverages (pp. 235-244) Academic Press.
  • [41] Özyürek, M., Güçlü, K. ve Apak, R. (2011). The main and modified CUPRAC methods of antioxidant measurement, TrAC Trends in Analytical Chemistry, 30, 4, 652-664.
  • [42] Albayrak, S., Sağdıç, O. ve Aksoy, A., (2010). Bitkisel ürünlerin ve gıdaların antioksidan kapasitelerinin belirlenmesinde kullanılan yöntemler, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 26, 4, 401-409.
  • [43] Loizzo, M. R., Pugliese, A., Bonesi, M., Tenuta, M. C., Menichini, F., Xiao, J., ve Tundis, R. (2016). Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties, Journal of Agricultural and Food Chemistry, 64(12), 2467-2474.
  • [44] Menghini, L., Ferrante, C., Zengin, G., Mahomoodally, M. F., Leporini, L., Locatelli, M., ve Orlando, G. (2019). Multiple pharmacological approaches on hydroalcoholic extracts from different parts of Cynoglossum creticum Mill.(Boraginaceae), Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(5), 633-639.
  • [45] Varvouni, E. F., Zengin, G., Graikou, K., Ganos, C., Mroczek, T., ve Chinou, I. (2020). Phytochemical analysis and biological evaluation of the aerial parts from Symphytum anatolicum Boiss. and Cynoglottis barrelieri (All.) Vural & Kit Tan (Boraginaceae), Biochemical Systematics and Ecology, 92, 104128.
  • [46] Boğa, M., Hacıbekiroğlu, I., & Kolak, U. (2011). Antioxidant and anticholinesterase activities of eleven edible plants. Pharmaceutical Biology, 49(3), 290-295.
  • [47] Ahmed, D., Khan, M. M. ve Saeed, R. (2015). Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves, Antioxidants, 4, 2, 394-409.
  • [48] Zengin, G., Nithiyanantham, S., Locatelli, M., Ceylan, R., Uysal, S., Aktumsek, A., ve Maskovic, P. (2016). Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata, European Journal of Integrative Medicine, 8, 3, 286-292.
  • [49] Abdel-Aleem, E. R., Attia, E. Z., Farag, F. F., Samy, M. N., ve Desoukey, S. Y. (2019). Total phenolic and flavonoid contents and antioxidant, anti-inflammatory, analgesic, antipyretic and antidiabetic activities of Cordia myxa L. leaves, Clinical Phytoscience, 5, 1, 29.
  • [50] Boskovic, I., Đukić, D. A., Maskovic, P., Mandić, L., ve Perovic, S. (2018). Phytochemical composition and antimicrobial, antioxidant and cytotoxic activities of Anchusa officinalis L. extracts, Biologia, 73, 1035-1041.
  • [51] Ince, C. ve Çağındı, Ö. (2020). Effect of white mulberry (Morus alba) leaves and pulp on the antioxidant and antidiabetic activity of white and whole wheat bread, GIDA-Journal of Food, 45, 5, 977-988.
  • [52] Sarkar, R., Hazra, B. ve Mandal, N. (2012). Reducing power and iron chelating property of Terminalia chebula (Retz.) alleviates iron induced liver toxicity in mice, BMC Complementary and Alternative Medicine, 12, 144.
  • [53] Gulcin, İ. ve Alwasel, S. H. (2022). Metal ions, metal chelators and metal chelating assay as antioxidant method, Processes, 10, 1, 132.
  • [54] Taskin, T., ve Bitis, L. (2016). In vitro antioxidant activity of eight wild edible plants in Bursa province of Turkey, Medicine, 64, 5, 706-711.
  • [55] Ozntamar-Pouloglou, K. M., Cheilari, A., Zengin, G., Graikou, K., Ganos, C., Karikas, G. A., ve Chinou, I. (2023). Heliotropium procubens Mill: Taxonomic Significance and Characterization of Phenolic Compounds via UHPLC–HRMS-In Vitro Antioxidant and Enzyme Inhibitory Activities, Molecules, 28, 3, 1008.
  • [56] Zengin, G., Ceylan, R., Katanić, J., Aktumsek, A., Matić, S., Boroja, T., ve Mahomoodally, M. F. (2018). Exploring the therapeutic potential and phenolic composition of two Turkish ethnomedicinal plants–Ajuga orientalis L. and Arnebia densiflora (Nordm.) Ledeb, Industrial Crops and Products, 116, 240-248.
  • [57] Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M. ve Vasic, V. M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology, Current Neuropharmacology, 11, 3, 315-335.
  • [58] Ha, Z. Y., Mathew, S. ve Yeong, K. Y. (2020). Butyrylcholinesterase: a multifaceted pharmacological target and tool, Current Protein and Peptide Science, 21, 1, 99-109.
  • [59] Zhou, S. ve Huang, G., (2022). The biological activities of butyrylcholinesterase inhibitors, Biomedicine & Pharmacotherapy, 146, 112556.
  • [60] Gholamhoseinian, A., Moradi, M. N., ve Sharifi-Far, F. (2009). Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity, Research in Pharmaceutical Sciences, 4, 2, 105.
  • [61] Imran, M., Ullah, F., Ayaz, M., Sadiq, A., Shah, M. R., Jan, M. S., ve Ullah, F. (2017). Anticholinesterase and antioxidant potentials of Nonea micrantha Bioss. & Reut along with GC-MS analysis, BMC Complementary and Alternative Medicine, 17, 499.
  • [62] Istifli, E. S. (2021). Chemical composition, antioxidant and enzyme inhibitory activities of Onosma bourgaei and Onosma trachytricha and in silico molecular docking analysis of dominant compounds, Molecules, 26, 10, 2981.
  • [63] Di Petrillo, A., González-Paramás, A. M., Era, B., Medda, R., Pintus, F., Santos-Buelga, C. ve Fais, A. (2016). Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts, BMC Complementary and Alternative Medicine, 16, 453.
  • [64] Kaplan, A. (2021). Investigation of in vitro Enzyme Inhibitory Properties and Antioxidant Activity of Moltkia coerulea (Willd.) Lehm.(Boraginaceae) Growing in Raman Mountain-Batman, International Journal of Secondary Metabolite, 8(4), 312-320.
  • [65] Sarikurkcu, C., Sahinler, S. S., Ceylan, O., ve Tepe, B. (2020). Onosma ambigens: Phytochemical composition, antioxidant and enzyme inhibitory activity, Industrial Crops and Products, 154, 112651.
  • [66] Alqahtani, A. S., Hidayathulla, S., Rehman, M. T., ElGamal, A. A., Al-Massarani, S., Razmovski-Naumovski, V., ve AlAjmi, M. F. (2019). Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia, Biomolecules, 10, 1, 61.
  • [67] Saravanakumar, K., Sarikurkcu, C., Sarikurkcu, R. T., ve Wang, M. H. (2019). A comparative study on the phenolic composition, antioxidant and enzyme inhibition activities of two endemic Onosma species, Industrial Crops and Products, 142, 111878.
  • [68] Stanković, J. S. K., Ceylan, R., Zengin, G., Matić, S., Jurić, T., Diuzheva, A., ve Aktumsek, A. (2020). Multiple biological activities of two Onosma species (O. sericea and O. stenoloba) and HPLC-MS/MS characterization of their phytochemical composition, Industrial crops and products, 144, 112053.
  • [69] Varvouni, E. F., Zengin, G., Graikou, K., Ganos, C., Mroczek, T., ve Chinou, I. (2021). Chemical profile and biological properties of the endemic Turkish species Phyllocara aucheri, South African Journal of Botany, 137, 340-344.
  • [70] Sowa, I., Paduch, R., Strzemski, M., Zielińska, S., Rydzik-Strzemska, E., Sawicki, J., ve Wójciak-Kosior, M. (2018). Proliferative and antioxidant activity of Symphytum officinale root extract, Natural product research, 32, 5, 605-609.
  • [71] Paun, G., Neagu, E., Albu, C., Savin, S., ve Radu, G. L. (2020). In vitro evaluation of antidiabetic and anti-inflammatory activities of polyphenolic-rich extracts from Anchusa officinalis and Melilotus officinalis, ACS omega, 5, 22, 13014-13022.

Anchusa Azurea var. Kurdica Köklerinin Farklı Özütlerinin Yaygın Kronik Hastalıkların Tedavisinde Kullanım Potansiyellerinin Belirlenmesi

Yıl 2024, Cilt: 8 Sayı: 1, 1 - 15, 30.06.2024
https://doi.org/10.29002/asujse.1369488

Öz

Günümüzde yaygın olarak görülen bazı kronik hastalıkların hala bilinen bir tedavisi yoktur. Bu nedenle bu hastalıkların tedavisi için yöntem ve ilaç geliştirme çalışmaları devam etmektedir. Sentetik ilaçlar tedavide başarılı bir şekilde kullanılsa bile, bazı yan etkileri nedeniyle bu ilaç geliştirme çalışmalarında doğal ürünlerin tercih edilmesi giderek yaygınlaşmaktadır. Bu çalışma Anchusa azurea var. kurdica köklerinin antioksidan ve enzim inhibisyon aktivitelerinin belirlenerek bitkinin diyabet, Alzheimer ve kanser gibi hastalıkların tedavisinde kullanılabilme potansiyelinin ortaya konulmasına odaklanmıştır. Burada kök kısımlarından farklı çözücüler ile elde edilen özütlerinin antioksidan aktiviteleri serbest radikal giderme aktivitesi (DPPH, ABTS), FRAP, CUPRAC, fosfomolibdat ve metal şelatlama aktivite testleri ile belirlenmiştir. Enzim inhibisyon aktiviteleri kolinesteraz (asetil ve bütiril), α-amilaz, α-glukozidaz ve tirozinaz enzimleri için araştırılmıştır. Ayrıca özütlerin toplam fenolik ve flavonoid içerikleri yanında fenolik bileşimleri de belirlenmiştir. Antioksidan aktivite testlerinde genel olarak metanol özütü diğerlerine kıyasla yüksek aktivite gösterirken, enzim inhibisyonunda etil asetat özütü daha aktif bulunmuştur. Metanol ekstraktındaki toplam fenolik içerik 22,12 mg GAE/g ekstrakt olarak bulunurken, flavonoid içeriği tüm ekstraktlarda oldukça düşük seviyelerde bulunmuştur. Özütlerin fenolik bileşimlerinde kuersetin ve rosmarinik asit yüksek oranda bulunan fenolik bileşenler olmuştur. Elde edilen verilere göre A. azurea var. kurdica kök özütleri iyi düzeyde antioksidan ve enzim inhibisyon aktivitesi göstermiştir. Sonuçlar bitkinin kronik hastalıklarının tedavisine yönelik ilaç geliştirme çalışmalarında hammadde olarak kullanım potansiyelinin yüksek olduğunu göstermiştir.

Kaynakça

  • [1] Aktumsek, A., Zengin, G., Guler, G. O., Cakmak, Y. S., ve Duran, A. (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species, Food and Chemical Toxicology, 55, 290-296.
  • [2] Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M. R., Wang, X., ve Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action, Food Chemistry, 353, 129488.
  • [3] Pham-Huy, L. A., He, H. ve Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health, International Journal of Biomedical Science, 4, 2, 89-96.
  • [4] Di Meo, S., ve Venditti, P. (2020). Evolution of the knowledge of free radicals and other oxidants, Oxidative Medicine and Cellular Longevity, 2020, 1-32.
  • [5] Rekatsina, M., Paladini, A., Piroli, A., Zis, P., Pergolizzi, J. V. ve Varrassi, G. (2020). Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: a narrative review, Advances in Therapy, 37, 1, 113-139.
  • [6] Akbari, B., Baghaei‐Yazdi, N., Bahmaie, M., ve Mahdavi Abhari, F. (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress, BioFactors, 48, 3, 611-633.
  • [7] Lopa, S. S., Al-Amin, M., Hasan, M., Ahammed, M., Islam, K. M., Alam, A. H. M. ve Sadik, M. (2021). Phytochemical analysis and cholinesterase inhibitory and antioxidant activities of Enhydra fluctuans relevant in the management of Alzheimer’s disease, International Journal of Food Science, 8862025.
  • [8] Li, Y., Zhang, W., Zhao, R. ve Zhang, X. (2022). Advances in oral peptide drug nanoparticles for diabetes mellitus treatment, Bioactive Materials, 15, 392-408.
  • [9] Robinson, P. K. (2015). Enzymes: principles and biotechnological applications, Essays in Biochemistry, 59, 1-41.
  • [10] Isah, T. (2019). Stress and defense responses in plant secondary metabolites production, Biological Research, 52.
  • [11] Tiwari, R., ve Rana, C. S. (2015). Plant secondary metabolites: a review, International Journal of Engineering Research and General Science, 3, 5, 661-670.
  • [12] Hussain, F. H. S., Ahamad, J., ve Osw, P. S. (2019). A Comprehensive Review on Pharmacognostical and Pharmacological Characters of Anchusa Azurea, Advances in Medical, Dental and Health Sciences, 3, 33-37.
  • [13] Petersen, M., & Simmonds, M. S. (2003). Rosmarinic acid, Phytochemistry, 62, 2, 121-125.
  • [14] Lau, C. H., Chua, L. S., Lee, C. T., & Aziz, R. (2015). Fractionation of rosmarinic acid from crude extract of Orthosiphon stamineus by solid phase extraction. Journal of Engineering Science and Technology, 10, 104-112.
  • [15] Amoah, S. K., Sandjo, L. P., Kratz, J. M., & Biavatti, M. W. (2016). Rosmarinic acid–pharmaceutical and clinical aspects. Planta Medica, 82, 05, 388-406.
  • [16] Juranović Cindrić, I., Kunštić, M., Zeiner, M., Stingeder, G., ve Rusak, G. (2011). Sample preparation methods for the determination of the antioxidative capacity of apple juices, Croatica chemica Acta, 84, 3, 435-438.82.
  • [17] Agbor, G. A., Vinson, J. A., ve Donnelly, P. E. (2014). Folin-Ciocalteau Reagent for Polyphenolic Assay, International Journal of Food Science, Nutrition and Dietetics, 3, 8, 147-156.
  • [18] Arvouet-Grand, A., Vennat, B., Pourrat, A., ve Legret, P. (1994). Standardization of a propolis extract and identification of the main constituents, Journal de Pharmacie de Belgique, 49, 6, 462-468.
  • [19] Sarikurkcu, C., Tepe, B., Daferera, D., Polissiou, M., ve Harmandar, M. (2008). Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (Lamiaceae) by three different chemical assays, Bioresource Technology, 99, 10, 4239-4246.
  • [20] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. ve Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine, 26, 9-10, 1231-1237.
  • [21] Aktumsek, A., Zengin, G., Guler, G. O., Cakmak, Y. S., ve Duran, A. (2013). Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey, Food Chemistry, 141, 1, 91-97.
  • [22] Apak, R., Guclu, K., Ozyurek, M., Karademir, S. E., ve Ercag, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, International Journal of Food Sciences and Nutrition, 57, 5/6, 292–304.
  • [23] Çakmak, Y. S., Aktumsek, A., ve Duran, A. (2012). Studies on antioxidant activity, volatile compound and fatty acid composition of different parts, Glycyrrhiza echinata L, EXCLI Journal, 11,178-187.
  • [24] Uysal, S., Zengin, G., Locatelli, M., Bahadori, M. B., Mocan, A., Bellagamba, G., De Luca, E., Mollica, A. ve Aktumsek, A. (2017). Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition, Frontiers in Pharmacology, 8, 290.
  • [25] Aktumsek, A., Zengin, G., Guler, G.O., Cakmak, Y.S., ve Duran, A. (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species, Food and Chemical Toxicology, 55, 290-296.
  • [26] Yang, X-W., Huang, M-Z., Jin, Y-S., Sun, L-N., Song, Y., ve Chen, H-S. (2012). Phenolics from Bidens bipinnata and their amylase inhibitory properties, Fitoterapia, 83, 7, 1169-1175.
  • [27] Palanisamy, U.D., Ling, L.T., Manaharan, T., ve Appleton, D. (2011). Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity, Food Chemistry, 127, 1, 21–27.
  • [28] Orhan, I. E., Senol, F.S., Gulpinar, A.R., Sekeroglu, N., Kartal, M., ve Sener, B. (2012). Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses, Food Chemistry, 130, 4, 882-888.
  • [29] Caponio F., Alloggio V., Gomes T. (1999). Phenolic compounds of virgin olive oil: Influence of paste preparation techniques, Food Chemistry 64: 203-209.
  • [30] Sabih Ozer, M., Sarikurkcu, C., Tepe, B., ve Can, S. (2010). Essential oil composition and antioxidant activities of alkanet (Alkanna tinctoria subsp. tinctoria), Food Science and Biotechnology, 19, 1177-1183.
  • [31] Alali, F. Q., Tawaha, K., El-Elimat, T., Syouf, M., El-Fayad, M., Abulaila, K., ve Oberlies, N. H. (2007). Antioxidant activity and total phenolic content of aqueous and methanolic extracts of Jordanian plants: an ICBG project, Natural Product Research, 21, 12, 1121-1131.
  • [32] Gharib, A., ve Godarzee, M. (2016). Determination of secondary metabolites and antioxidant activity of some boraginaceae species growing in Iran, Tropical Journal of Pharmaceutical Research, 15,11, 2459-2465.
  • [33] Danet, A. F. (2021). Antioxidants-Benefits, Sources, Mechanisms of Action, Waisundara, V. Y., Recent advances in antioxidant capacity assays, IntechOpen, London, UK.
  • [34] Seyhan, S. A. (2019). DPPH antioksidan analizinin yeniden değerlendirilmesi, Batman Üniversitesi Yaşam Bilimleri Dergisi, 9, 2, 125-135.
  • [35] Sarikurkcu, C., Zengin, G., Aktumsek, A., Ceylan, O., ve Uysal, S. (2015). Screening of possible in vitro neuroprotective, skin care, antihyperglycemic, and antioxidative effects of Anchusa undulata L. subsp. hybrida (Ten.) Coutinho from Turkey and its fatty acid profile, International Journal of Food Properties, 18, 7, 1491-1504.
  • [36] Tufa, T., Damianakos, H., Zengin, G., Graikou, K., ve Chinou, I. (2019). Antioxidant and enzyme inhibitory activities of disodium rabdosiin isolated from Alkanna sfikasiana Tan, Vold and Strid, South African Journal of Botany, 120, 157-162.
  • [37] Zengin, G., Ceylan, R., Katanić, J., Mollica, A., Aktumsek, A., Boroja, T., ve Mahomoodally, M. F. (2017). Combining in vitro, in vivo and in silico approaches to evaluate nutraceutical potentials and chemical fingerprints of Moltkia aurea and Moltkia coerulea, Food and Chemical Toxicology, 107, 540-553.
  • [38] Trifan, A., Zengin, G., Sinan, K. I., Wolfram, E., Skalicka-Woźniak, K., ve Luca, S. V. (2021). LC-HRMS/MS phytochemical profiling of Symphytum officinale L. and Anchusa ochroleuca M. Bieb.(Boraginaceae): Unveiling their multi-biological potential via an integrated approach, Journal of Pharmaceutical and Biomedical Analysis, 204, 114283.
  • [39] Marini, G., Graikou, K., Zengin, G., Karikas, G. A., Gupta, M. P., ve Chinou, I. (2018). Phytochemical analysis and biological evaluation of three selected Cordia species from Panama, Industrial Crops and Products, 120, 84-89.
  • [40] Apak, R., Özyürek, M., Güçlü, K., Bekdeşer, B. ve Bener, M. (2014). The CUPRAC methods of antioxidant measurement for beverages, In Processing and impact on antioxidants in beverages (pp. 235-244) Academic Press.
  • [41] Özyürek, M., Güçlü, K. ve Apak, R. (2011). The main and modified CUPRAC methods of antioxidant measurement, TrAC Trends in Analytical Chemistry, 30, 4, 652-664.
  • [42] Albayrak, S., Sağdıç, O. ve Aksoy, A., (2010). Bitkisel ürünlerin ve gıdaların antioksidan kapasitelerinin belirlenmesinde kullanılan yöntemler, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 26, 4, 401-409.
  • [43] Loizzo, M. R., Pugliese, A., Bonesi, M., Tenuta, M. C., Menichini, F., Xiao, J., ve Tundis, R. (2016). Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties, Journal of Agricultural and Food Chemistry, 64(12), 2467-2474.
  • [44] Menghini, L., Ferrante, C., Zengin, G., Mahomoodally, M. F., Leporini, L., Locatelli, M., ve Orlando, G. (2019). Multiple pharmacological approaches on hydroalcoholic extracts from different parts of Cynoglossum creticum Mill.(Boraginaceae), Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(5), 633-639.
  • [45] Varvouni, E. F., Zengin, G., Graikou, K., Ganos, C., Mroczek, T., ve Chinou, I. (2020). Phytochemical analysis and biological evaluation of the aerial parts from Symphytum anatolicum Boiss. and Cynoglottis barrelieri (All.) Vural & Kit Tan (Boraginaceae), Biochemical Systematics and Ecology, 92, 104128.
  • [46] Boğa, M., Hacıbekiroğlu, I., & Kolak, U. (2011). Antioxidant and anticholinesterase activities of eleven edible plants. Pharmaceutical Biology, 49(3), 290-295.
  • [47] Ahmed, D., Khan, M. M. ve Saeed, R. (2015). Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves, Antioxidants, 4, 2, 394-409.
  • [48] Zengin, G., Nithiyanantham, S., Locatelli, M., Ceylan, R., Uysal, S., Aktumsek, A., ve Maskovic, P. (2016). Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata, European Journal of Integrative Medicine, 8, 3, 286-292.
  • [49] Abdel-Aleem, E. R., Attia, E. Z., Farag, F. F., Samy, M. N., ve Desoukey, S. Y. (2019). Total phenolic and flavonoid contents and antioxidant, anti-inflammatory, analgesic, antipyretic and antidiabetic activities of Cordia myxa L. leaves, Clinical Phytoscience, 5, 1, 29.
  • [50] Boskovic, I., Đukić, D. A., Maskovic, P., Mandić, L., ve Perovic, S. (2018). Phytochemical composition and antimicrobial, antioxidant and cytotoxic activities of Anchusa officinalis L. extracts, Biologia, 73, 1035-1041.
  • [51] Ince, C. ve Çağındı, Ö. (2020). Effect of white mulberry (Morus alba) leaves and pulp on the antioxidant and antidiabetic activity of white and whole wheat bread, GIDA-Journal of Food, 45, 5, 977-988.
  • [52] Sarkar, R., Hazra, B. ve Mandal, N. (2012). Reducing power and iron chelating property of Terminalia chebula (Retz.) alleviates iron induced liver toxicity in mice, BMC Complementary and Alternative Medicine, 12, 144.
  • [53] Gulcin, İ. ve Alwasel, S. H. (2022). Metal ions, metal chelators and metal chelating assay as antioxidant method, Processes, 10, 1, 132.
  • [54] Taskin, T., ve Bitis, L. (2016). In vitro antioxidant activity of eight wild edible plants in Bursa province of Turkey, Medicine, 64, 5, 706-711.
  • [55] Ozntamar-Pouloglou, K. M., Cheilari, A., Zengin, G., Graikou, K., Ganos, C., Karikas, G. A., ve Chinou, I. (2023). Heliotropium procubens Mill: Taxonomic Significance and Characterization of Phenolic Compounds via UHPLC–HRMS-In Vitro Antioxidant and Enzyme Inhibitory Activities, Molecules, 28, 3, 1008.
  • [56] Zengin, G., Ceylan, R., Katanić, J., Aktumsek, A., Matić, S., Boroja, T., ve Mahomoodally, M. F. (2018). Exploring the therapeutic potential and phenolic composition of two Turkish ethnomedicinal plants–Ajuga orientalis L. and Arnebia densiflora (Nordm.) Ledeb, Industrial Crops and Products, 116, 240-248.
  • [57] Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M. ve Vasic, V. M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology, Current Neuropharmacology, 11, 3, 315-335.
  • [58] Ha, Z. Y., Mathew, S. ve Yeong, K. Y. (2020). Butyrylcholinesterase: a multifaceted pharmacological target and tool, Current Protein and Peptide Science, 21, 1, 99-109.
  • [59] Zhou, S. ve Huang, G., (2022). The biological activities of butyrylcholinesterase inhibitors, Biomedicine & Pharmacotherapy, 146, 112556.
  • [60] Gholamhoseinian, A., Moradi, M. N., ve Sharifi-Far, F. (2009). Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity, Research in Pharmaceutical Sciences, 4, 2, 105.
  • [61] Imran, M., Ullah, F., Ayaz, M., Sadiq, A., Shah, M. R., Jan, M. S., ve Ullah, F. (2017). Anticholinesterase and antioxidant potentials of Nonea micrantha Bioss. & Reut along with GC-MS analysis, BMC Complementary and Alternative Medicine, 17, 499.
  • [62] Istifli, E. S. (2021). Chemical composition, antioxidant and enzyme inhibitory activities of Onosma bourgaei and Onosma trachytricha and in silico molecular docking analysis of dominant compounds, Molecules, 26, 10, 2981.
  • [63] Di Petrillo, A., González-Paramás, A. M., Era, B., Medda, R., Pintus, F., Santos-Buelga, C. ve Fais, A. (2016). Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts, BMC Complementary and Alternative Medicine, 16, 453.
  • [64] Kaplan, A. (2021). Investigation of in vitro Enzyme Inhibitory Properties and Antioxidant Activity of Moltkia coerulea (Willd.) Lehm.(Boraginaceae) Growing in Raman Mountain-Batman, International Journal of Secondary Metabolite, 8(4), 312-320.
  • [65] Sarikurkcu, C., Sahinler, S. S., Ceylan, O., ve Tepe, B. (2020). Onosma ambigens: Phytochemical composition, antioxidant and enzyme inhibitory activity, Industrial Crops and Products, 154, 112651.
  • [66] Alqahtani, A. S., Hidayathulla, S., Rehman, M. T., ElGamal, A. A., Al-Massarani, S., Razmovski-Naumovski, V., ve AlAjmi, M. F. (2019). Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia, Biomolecules, 10, 1, 61.
  • [67] Saravanakumar, K., Sarikurkcu, C., Sarikurkcu, R. T., ve Wang, M. H. (2019). A comparative study on the phenolic composition, antioxidant and enzyme inhibition activities of two endemic Onosma species, Industrial Crops and Products, 142, 111878.
  • [68] Stanković, J. S. K., Ceylan, R., Zengin, G., Matić, S., Jurić, T., Diuzheva, A., ve Aktumsek, A. (2020). Multiple biological activities of two Onosma species (O. sericea and O. stenoloba) and HPLC-MS/MS characterization of their phytochemical composition, Industrial crops and products, 144, 112053.
  • [69] Varvouni, E. F., Zengin, G., Graikou, K., Ganos, C., Mroczek, T., ve Chinou, I. (2021). Chemical profile and biological properties of the endemic Turkish species Phyllocara aucheri, South African Journal of Botany, 137, 340-344.
  • [70] Sowa, I., Paduch, R., Strzemski, M., Zielińska, S., Rydzik-Strzemska, E., Sawicki, J., ve Wójciak-Kosior, M. (2018). Proliferative and antioxidant activity of Symphytum officinale root extract, Natural product research, 32, 5, 605-609.
  • [71] Paun, G., Neagu, E., Albu, C., Savin, S., ve Radu, G. L. (2020). In vitro evaluation of antidiabetic and anti-inflammatory activities of polyphenolic-rich extracts from Anchusa officinalis and Melilotus officinalis, ACS omega, 5, 22, 13014-13022.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enzimler
Bölüm Araştırma Makalesi
Yazarlar

Ako Hamasaeed Abdulqadir 0000-0001-5404-0938

İsmail Şen 0000-0002-1285-659X

Gokhan Zengin 0000-0001-6548-7823

Yavuz Selim Cakmak 0000-0001-8954-5485

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 2 Ekim 2023
Kabul Tarihi 26 Ekim 2023
Yayımlandığı Sayı Yıl 2024Cilt: 8 Sayı: 1

Kaynak Göster

APA Abdulqadir, A. H., Şen, İ., Zengin, G., Cakmak, Y. S. (2024). Anchusa Azurea var. Kurdica Köklerinin Farklı Özütlerinin Yaygın Kronik Hastalıkların Tedavisinde Kullanım Potansiyellerinin Belirlenmesi. Aksaray University Journal of Science and Engineering, 8(1), 1-15. https://doi.org/10.29002/asujse.1369488
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr