Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 29 - 42, 30.06.2019
https://doi.org/10.29002/asujse.527882

Öz

Kaynakça

  • [1] N. Pomerantz, Y.H. Ma, Journal of Membrane Science, 370 (2011) 97-108.
  • [2] A.M. Tarditi, F. Braun, M.İ. Cornaglia, Applied Surface Science, 257 (2011) 6626-6635.
  • [3] A. Goldbach, L. Yuan, H. Xu, Seperation and Purification Technology, 73 (2010) 65-70.
  • [4] A.D. Fontana, N. Sirini, L.M. Cornaglia, A.M. Tarditi, Journal of Membrane Science 563 (2018) 351–359.
  • [5] J. Melendez, N. Nooijer, K. Coenen, E. Fernandez, J.L. Viviente, M.S. Annaland, P.L. Arias, D.A.P. Tanaka, F. Gallucci, Journal of Membrane Science, 542 (2017) 329–341.
  • [6] K. Lee, M. Yuan, J. Wilcox, The Journal of Physical Chemistry, 119 (2015) 19642-19653
  • [7] C.H. Kim, J.Y. Han, N.C. Kim, S.K. Ryi, D.W. Kim, Journal of Membrane Science, 502 (2016) 57-64.
  • [8] N.S. Patki, S.T.B. Lundin, J.D. Way, Separation and Purification Technology, 191 (2018) 370–374.
  • [9] I.P. Mardilovich, B. Castro-Dominguez, N.K. Kazantzis, T. Wu, Y.H. Ma, International Journal of Hydrogen Energy, 40 (2015) 6107-6117.
  • [10] H. Lu, L. Zhu, W. Wang, W. Yang, J. Tang, International Journal of Hydrogen Energy, 40 (2015) 3548-3556.
  • [11] H.W. Abu El Hawa, S.N. Paglieri, C.C. Morris, A. Harale, J.D. Way, Journal of Membrane Science, 466 (2014)151-160.
  • [12] V.N. Alimov, A.O. Busnyuk, M.E. Notkin, E.Y. Peredistov, A.I. Livshits, Journal of Membrane Science, 481 (2015) 54-62.
  • [13] V.N. Alimova, I.V. Bobylevb, A.O. Busnyuka, M.E. Notkina, E.Y. Peredistova, A.I. Livshitsa, Journal of Membrane Science, 549 (2018) 428–437.
  • [14] T.B. Flanagan, D. Wang, Journal of Alloys and Compounds, 767 (2018) 1264-1270.
  • [15] E. Yan, H. Huang, R. Min, P. Zhao, R. D.K. Misra, P. Huang, F. Xu, L. Sun, International Journal of Hydrogene Energy, 43 (2018) 14466- 14477.
  • [16] J.H. Lee, J.Y. Han, K.M. Kim, S.K. Ryi, D.W. Kim, Journal of Membrane Science, 492 (2015) 242-248.
  • [17] T.A. Peters, M. Stange, P. Veenstra, A. Nijmeijer, A. Bredesen, Journal of Membrane Science, 499 (2016) 105-115.
  • [18] R.J. Westerwaal, E.A. Bouman, W.G. Haije, H. Schreuders, S. Dutta, M.Y. Wu, C. Boelsma, P. Ngene, S. Basak, B. Dam, International Journal of Hydrogen Energy, 40 (2015) 3932 -3943.
  • [19] N.A. Al-Mufachi, N.V. Rees, R. Steinberger-Wilkens, Renewable and Sustainable Energy Reviews, 47 (2015) 540-551.
  • [20] S. Nayebossari, J. Speight, D. Book, Journal of Membrane Science, 451 (2014) 216-225.
  • [21] M.S. Islam, M.M. Rahman, S. Ilias, International Journal of Hydrogen Energy, 37 (2012) 3477-3490.
  • [22] H. Gao, Y.S. Lin, Y. Li, B. Zhang, Journal of Membrane Science, 265 (2005) 142-152.
  • [23] H. Lim, T.S. Oyama, Journal of Membrane Science, 378 (2011) 179-185.
  • [24] L. Yuan, A. Goldbach, H. Xu, Journal of Membrane Science, 322 (2008) 39-45.

Effects of Synthesis Conditions on the PdCu Membrane Structure

Yıl 2019, , 29 - 42, 30.06.2019
https://doi.org/10.29002/asujse.527882

Öz

In this study, it was aimed to plate PdCu alloy layer
on porous glass supports by using electroless plating technique. It was also
aimed to achieve coexistence of fcc (face-centered cubic) and bcc
(body-centered cubic) phases on the alloy membrane layer. The fcc and bcc
phases were seen together in the structures of the membranes synthesized at all
three bath temperatures (30 °C, 40 °C and 50 °C), but, it was shown that the
most suitable coating rate was achieved when the coating bath temperature was
40 °C. The appropriate composition of PdCu (74% Pd, 26% Cu) was achieved by
following a synthesis procedure as follows: Coating in Pd bath three times for
60 minutes each followed by coating in Cu bath at the low formaldehyde
concentration (5 mL/L) for 15 minutes. Hydrogen flux in the membrane was
measured as 1.9x10-6 mol/cm2s. After flux measurements,
it was determined that the membrane structure changed and the fcc (200)
structure, which did not previously exist in the structure, was formed.

Kaynakça

  • [1] N. Pomerantz, Y.H. Ma, Journal of Membrane Science, 370 (2011) 97-108.
  • [2] A.M. Tarditi, F. Braun, M.İ. Cornaglia, Applied Surface Science, 257 (2011) 6626-6635.
  • [3] A. Goldbach, L. Yuan, H. Xu, Seperation and Purification Technology, 73 (2010) 65-70.
  • [4] A.D. Fontana, N. Sirini, L.M. Cornaglia, A.M. Tarditi, Journal of Membrane Science 563 (2018) 351–359.
  • [5] J. Melendez, N. Nooijer, K. Coenen, E. Fernandez, J.L. Viviente, M.S. Annaland, P.L. Arias, D.A.P. Tanaka, F. Gallucci, Journal of Membrane Science, 542 (2017) 329–341.
  • [6] K. Lee, M. Yuan, J. Wilcox, The Journal of Physical Chemistry, 119 (2015) 19642-19653
  • [7] C.H. Kim, J.Y. Han, N.C. Kim, S.K. Ryi, D.W. Kim, Journal of Membrane Science, 502 (2016) 57-64.
  • [8] N.S. Patki, S.T.B. Lundin, J.D. Way, Separation and Purification Technology, 191 (2018) 370–374.
  • [9] I.P. Mardilovich, B. Castro-Dominguez, N.K. Kazantzis, T. Wu, Y.H. Ma, International Journal of Hydrogen Energy, 40 (2015) 6107-6117.
  • [10] H. Lu, L. Zhu, W. Wang, W. Yang, J. Tang, International Journal of Hydrogen Energy, 40 (2015) 3548-3556.
  • [11] H.W. Abu El Hawa, S.N. Paglieri, C.C. Morris, A. Harale, J.D. Way, Journal of Membrane Science, 466 (2014)151-160.
  • [12] V.N. Alimov, A.O. Busnyuk, M.E. Notkin, E.Y. Peredistov, A.I. Livshits, Journal of Membrane Science, 481 (2015) 54-62.
  • [13] V.N. Alimova, I.V. Bobylevb, A.O. Busnyuka, M.E. Notkina, E.Y. Peredistova, A.I. Livshitsa, Journal of Membrane Science, 549 (2018) 428–437.
  • [14] T.B. Flanagan, D. Wang, Journal of Alloys and Compounds, 767 (2018) 1264-1270.
  • [15] E. Yan, H. Huang, R. Min, P. Zhao, R. D.K. Misra, P. Huang, F. Xu, L. Sun, International Journal of Hydrogene Energy, 43 (2018) 14466- 14477.
  • [16] J.H. Lee, J.Y. Han, K.M. Kim, S.K. Ryi, D.W. Kim, Journal of Membrane Science, 492 (2015) 242-248.
  • [17] T.A. Peters, M. Stange, P. Veenstra, A. Nijmeijer, A. Bredesen, Journal of Membrane Science, 499 (2016) 105-115.
  • [18] R.J. Westerwaal, E.A. Bouman, W.G. Haije, H. Schreuders, S. Dutta, M.Y. Wu, C. Boelsma, P. Ngene, S. Basak, B. Dam, International Journal of Hydrogen Energy, 40 (2015) 3932 -3943.
  • [19] N.A. Al-Mufachi, N.V. Rees, R. Steinberger-Wilkens, Renewable and Sustainable Energy Reviews, 47 (2015) 540-551.
  • [20] S. Nayebossari, J. Speight, D. Book, Journal of Membrane Science, 451 (2014) 216-225.
  • [21] M.S. Islam, M.M. Rahman, S. Ilias, International Journal of Hydrogen Energy, 37 (2012) 3477-3490.
  • [22] H. Gao, Y.S. Lin, Y. Li, B. Zhang, Journal of Membrane Science, 265 (2005) 142-152.
  • [23] H. Lim, T.S. Oyama, Journal of Membrane Science, 378 (2011) 179-185.
  • [24] L. Yuan, A. Goldbach, H. Xu, Journal of Membrane Science, 322 (2008) 39-45.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Saliha Cetinyokus 0000-0001-9955-6428

Meltem Dogan

Nesli Kucuktepe

Yayımlanma Tarihi 30 Haziran 2019
Gönderilme Tarihi 15 Şubat 2019
Kabul Tarihi 27 Mayıs 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Cetinyokus, S., Dogan, M., & Kucuktepe, N. (2019). Effects of Synthesis Conditions on the PdCu Membrane Structure. Aksaray University Journal of Science and Engineering, 3(1), 29-42. https://doi.org/10.29002/asujse.527882

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License