Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 63 - 72, 30.06.2018
https://doi.org/10.29002/asujse.374128

Öz

Kaynakça

  • [1] A.F. Horadam, Complex Fibonacci Numbers and Fibonacci Quaternions. American Math. Monthly 70 (1963) 289-291.
  • [2] G. Berzsenyi, Gaussian Fibonacci Numbers. Fibonacci Quarterly 15(3) (1977) 233-236.
  • [3] J.H. Jordan, Gaussian Fibonacci and Lucas Numbers. Fibonacci Quarterly 3 (1965) 315-318.
  • [4] J.J. Good, Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio. Fibonacci Quaterly 31(1) (1981) 7-20.
  • [5] C.J. Harman, Complex Fibonacci Numbers. Fibonacci Quaterly 19(1) (1981) 82-86.
  • [6] S. Pethe, A.F. Horadam, Generalized Gaussian Fibonacci Numbers. Bull. Austral. Math. Soc. 33(1) (1986) 37-48.
  • [7] S. Halıcı, S. Öz, On Some Gaussian Pell and Pell-Lucas Numbers. Ordu Univ. Science and Technology Journal 6(1) (2016) 8-18.
  • [8] A. F. Horadam, J. M. Mahon, Pell and Pell-Lucas polynomials. Fibonacci Quarterly 23(1) (1985) 7-20.
  • [9] S. Halıcı, S. Öz, On Gaussian Pell Polynomials and Their Some Properties. Palestine Journal of Mathematics 7(1) (2018) 251-256.

Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence

Yıl 2018, , 63 - 72, 30.06.2018
https://doi.org/10.29002/asujse.374128

Öz

In this
paper, we first define the Gaussian modified Pell sequence
, for n ≥ 2, by the relation  = 2 +  with initial conditions  = 1 ─ i and  = 1 + i. Then
we give the definition of
the
Gaussian modified Pell polynomial sequence
, for n ≥ 2, by the relation  = 2 +  with initial conditions  = 1─ xi and  = x + i. We
give Binet’s formulas, generating functions and summation formulas of these sequences.
We also obtain some well-known identities such as Catalan’s identities,
Cassini’s identities and
d’Ocagne’s
identities
involving the
Gaussian modified Pell sequence and Gaussian modified Pell polynomial sequence.

Kaynakça

  • [1] A.F. Horadam, Complex Fibonacci Numbers and Fibonacci Quaternions. American Math. Monthly 70 (1963) 289-291.
  • [2] G. Berzsenyi, Gaussian Fibonacci Numbers. Fibonacci Quarterly 15(3) (1977) 233-236.
  • [3] J.H. Jordan, Gaussian Fibonacci and Lucas Numbers. Fibonacci Quarterly 3 (1965) 315-318.
  • [4] J.J. Good, Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio. Fibonacci Quaterly 31(1) (1981) 7-20.
  • [5] C.J. Harman, Complex Fibonacci Numbers. Fibonacci Quaterly 19(1) (1981) 82-86.
  • [6] S. Pethe, A.F. Horadam, Generalized Gaussian Fibonacci Numbers. Bull. Austral. Math. Soc. 33(1) (1986) 37-48.
  • [7] S. Halıcı, S. Öz, On Some Gaussian Pell and Pell-Lucas Numbers. Ordu Univ. Science and Technology Journal 6(1) (2016) 8-18.
  • [8] A. F. Horadam, J. M. Mahon, Pell and Pell-Lucas polynomials. Fibonacci Quarterly 23(1) (1985) 7-20.
  • [9] S. Halıcı, S. Öz, On Gaussian Pell Polynomials and Their Some Properties. Palestine Journal of Mathematics 7(1) (2018) 251-256.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Tulay Yagmur

Nusret Karaaslan

Yayımlanma Tarihi 30 Haziran 2018
Gönderilme Tarihi 3 Ocak 2018
Kabul Tarihi 10 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Yagmur, T., & Karaaslan, N. (2018). Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence. Aksaray University Journal of Science and Engineering, 2(1), 63-72. https://doi.org/10.29002/asujse.374128
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr