Review
BibTex RIS Cite

Bitki Morfolojisi, Süperhidrofilikten Süperhidrofobiye Kadar Değişen Islatma Özelliklerine Sahip Yüzeylerin Biyo-İlhamlı Tasarımı

Year 2024, Volume: 8 Issue: 1, 24 - 30, 30.06.2024
https://doi.org/10.29002/asujse.1392277

Abstract

Bitki yüzeyleri, yaklaşık 460 milyon yıl boyunca pek çok yapıyı geliştirerek, çok çeşitli yüksek derecede uyarlanabilir özellikler ortaya çıkarmıştır. Bunlar arasında, hidrofilikten son derece su itici veya süperhidrofobikliğe kadar değişen derecelerde yüzey hidrasyonu sergileyen bitki kütikülleri vardır. Bu makale, süperhidrofobik yüzeylere sahip bitkilerin temel mimarisini sunarak, bu benzersiz özelliklerin biyolojik işlevlerini araştırmaktadır. Bu tür bitkiler suyu etkili bir şekilde itebilir ve sudan "hoşlanmadıkları" izlenimini verebilir. Hücresel gravürler ve epidermal hücre kıvrımları veya epikutiküler mumlar gibi mikroskobik yüzey detayları gibi özellikler, hidrasyon seviyelerinin kontrolünde önemli bir rol oynamaktadır. Ayrıca bitki yüzeyi hidrofobikliğine katkıda bulunan hiyerarşik ve diğer yapısal adaptasyonlara genel bir bakış sunuyoruz. Bu bitkilerden ilham alan biyomimetik mühendislik, benzer su itici özelliklere sahip malzemelerin oluşturulmasına olanak sağlayabilir. Bu anlayış, tarım sektöründe hastalığa dayanıklı mahsullerin geliştirilmesinin önünü açmaktadır. Makalede ayrıca kendi kendini temizleme yetenekleri, azaltılmış hidrodinamik sürtünme, kılcal bazlı sıvı taşınması ve diğer biyo-ilhamlı malzemeler dahil olmak üzere süperhidrofobik yüzeylerin mevcut ve olası uygulamaları tartışılmaktadır.

References

  • [1] Koch, K. and Ensikat, H. J. (2008). The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity, and molecular self-assembly, Micron, 39(7), 759-772.
  • [2] J. D. Barnes and J. Cardoso-Vilhena, (1996). Interactions between electromagnetic radiation and the plant cuticle, Plant cuticles: an integrated functional approach. 157, 170.
  • [3] Koch, K. and Barthlott, W. (2009). Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1893), 1487-1509.
  • [4] Nosonovsky, M. and Bhushan, B. (2007). Lotus effect: roughness-induced superhydrophobicity, In Applied Scanning Probe Methods VII: Biomimetics and Industrial Applications (pp. 1-40), Heidelberg: Springer Berlin Heidelberg.
  • [5] Neinhuis, C. and Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, 79(6), 667-677.
  • [6] Fürstner, R., Barthlott, W., Neinhuis, C., and Walzel, P. (2005). Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 21(3), 956-961.
  • [7] Torres, L., Jenson, R., and Weislogel, M. (2020). Capillary Hydroponic Plant Watering System for Spacecraft, 2020 International Conference on Environmental Systems. ICES-2020-172, https://hdl.handle.net/2346/8634
  • [8] Kim, M., Yoo, S., Jeong, H. E. and Kwak, M. K. (2022). Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering, Nature Communications, 13(1), 5181.
  • [9] Pan, Z., Cheng, F., Zhao, B. (2017). Bio-inspired polymeric structures with special wettability and their applications: An overview, Polymers, 9(12), 725.
  • [10] Koch, K., Blecher, I. C., König, G., Kehraus, S., and Barthlott, W. (2009). The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. Functional Plant Biology, 36(4), 339-350.
  • [11] Zhang, L., Zhao, N., and Xu, J. (2014). Fabrication and application of superhydrophilic surfaces: a review, Journal of Adhesion Science and Technology, 28(8-9), 769-790.
  • [12] Prakash, C. J., Raj, C. C., and Prasanth, R. (2017). Fabrication of zero contact angle ultra-super hydrophilic surfaces, Journal of colloid and interface science, 496, 300-310.
  • [13] Cao, Z., Wang, W. Y. Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing. Applied Surface Science, 557, 149842.
  • [14] Tsougeni, K., Vourdas, A., Tserepi, N., Gogolides, E., and Cardinaud, C. (2009). Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to superhydrophobic surfaces, Langmuir, 25,19, 11748-11759.
  • [15] Zeiger, C., da Silva, I. C. R., Mail, M., Kavalenka, M. N., Barthlott, W., Hölscher, H. (2016). Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials, Bioinspiration and biomimetics, 11(5), 056003.
  • [16] Michailidou, G., Koukaras, E. N., Bikiaris, D. N. (2021). Vanillin chitosan miscible hydrogel blends and their prospects for 3D printing biomedical applications, International Journal of Biological Macromolecules, 192, 1266-1275.
  • [17] Smith, T. (1980). The hydrophilic nature of a clean gold surface, Journal of Colloid and Interface Science, 75(1), 51-55.
  • [18] Cho, J. S., Beag, Y. W., Han, S., Kim, K. H., Cho, J., Koh, S. K. (2000). Hydrophilic surface formation on materials and its applications, Surface and Coatings Technology, 128, 66-70.
  • [19] Wang, T., Si, Y., Luo, S., Dong, Z., Jiang, L. (2019). Wettability manipulation of overflow behavior via vesicle surfactant for waterproof surface cleaning, Materials Horizons, 6, 2, 294-301.
  • [20] Wang, G., Wang, J., Wu, W., Tony To, S. S., Zhao, H., Wang, J. (2015). Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs, Expert opinion on drug delivery, 12, 9, 1475-1499.
  • [21] Zhao, J., Wang, X., Liu, L., Yu, J., Ding, B. (2018). Human skin-like, robust, waterproof, and highly breathable fibrous membranes with short perfluorobutyl chains for eco-friendly protective textiles, ACS applied materials & interfaces, 10, 36, 30887-30894.
  • [22] Glenn, D. M., Puterka, G. J., Vanderzwet, T., Byers, R. E., Feldhake, C. (1999). Hydrophobic particle films: a new paradigm for suppression of arthropod pests and plant diseases, Journal of Economic Entomology, 92, 4, 759-771.
  • [23] Lee, S. M. and Kwon, T. H. (2006). Mass-producible replication of highly hydrophobic surfaces from plant leaves, Nanotechnology, 17, 13, 3189.
  • [24] Lee, S. M., Lee, H. S., Kim, D. S., Kwon, T. H. (2006). Fabrication of hydrophobic films replicated from plant leaves in nature, Surface and Coatings Technology, 201,(3-4), 553-559.
  • [25] Dalawai, S. P., Aly, M. A. S., Latthe, S. S., Xing, R., Sutar, R. S., Nagappan, S., Liu, S. (2020). Recent advances in the durability of superhydrophobic self-cleaning technology: a critical review, Progress in Organic Coatings, 138, 105381.
  • [26] Wang, M., Zi, Y., Zhu, J., Huang, W., Zhang, Z, Zhang, H. (2021). Construction of super-hydrophobic PDMS@ MOF@ Cu mesh for reduced drag, anti-fouling, and self-cleaning towards marine vehicle applications, Chemical Engineering Journal, 417, 129265.
  • [27] Piscitelli, F., Tescione, F., Mazzola, L., Bruno, G., Lavorgna, M. (2019). On a simplified method to produce hydrophobic coatings for aeronautical applications, Applied Surface Science, 472, 71-81.
  • [28] Yang, C., Jing, X., Wang, F., Ehmann, K. F., Tian, Y., Pu, Z. (2019). Fabrication of controllable wettability of crystalline silicon surfaces by laser surface texturing and silanization, Applied Surface Science, 497, 143805.
  • [29] Guo, Z. Liu, W. (2007). Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure, Plant Science, 172, 6, 1103-1112.
  • [30] Shirtcliffe, N. J., McHale, G., and Newton, M. I. (2009). Learning from superhydrophobic plants: The use of hydrophilic areas on superhydrophobic surfaces for droplet control, Langmuir, 25, 24, 14121-14128.
  • [31] Barthlott, W., Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1, 1-8.
  • [32] Bhushan, B., Jung, Y. C. (2011). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning. low adhesion, and drag reduction, Progress in Materials Science, 56, 1, 1-108.
  • [33] Koch, K., Bohn, H. F., Barthlott, W. (2009). Hierarchically sculptured plant surfaces and superhydrophobicity, Langmuir, 25, 24, 14116-14120.
  • [34] Webb, H. K., Crawford, R. J., Ivanova, E. P. (2014). Wettability of natural superhydrophobic surfaces, Advances in colloid and interface science, 210, 58-64.
  • [35] Sam, E. K., Sam, D. K., Lv, X., Liu, B., Xiao, X., Gong, S., Liu, J. (2019). Recent development in the fabrication of self-healing superhydrophobic surfaces, Chemical Engineering Journal, 373, 531-546.
  • [36] Zeiger, C., da Silva, I. C. R., Mail, M., Kavalenka, M. N., Barthlott, W., Hölscher, H. (2016). Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials, Bioinspiration and biomimetics, 11, 5, 056003.
  • [37] Wang, G., Guo, Z., Liu, W. (2014). Interfacial effects of superhydrophobic plant surfaces: A review, Journal of Bionic Engineering, 11, 3, 325-345.
  • [38] Grewal, H. S., Cho, I. J., Yoon, E. S. (2015). The role of bio-inspired hierarchical structures in wetting, Bioinspiration and Biomimetics, 10, 2, 026009.
  • [39] Vazirinasab, E., Jafari, R., Momen, G. (2018). Application of superhydrophobic coatings as a corrosion barrier: A review, Surface and Coatings Technology, 341, 40-56.

Plant Morphology Bio-Inspires The Design of Surfaces With Varying Wetting Properties, From Superhydrophilic to Superhydrophobic

Year 2024, Volume: 8 Issue: 1, 24 - 30, 30.06.2024
https://doi.org/10.29002/asujse.1392277

Abstract

Plant surfaces have evolved many structures over approximately 460 million years, resulting in a wide range of highly adaptive features. Among these are plant cuticles that exhibit varying degrees of surface hydration—from hydrophilic to extremely water-repellent or superhydrophobic. This paper provides the fundamental architecture of plants with superhydrophobic surfaces, exploring the biological functions of these unique characteristics. Such plants can effectively repel water, making it look like they "dislike" water. Features like cellular etchings and microscopic surface details, such as epidermal cell folds or epicuticular waxes, play a significant role in controlling hydration levels. We also present an overview of the hierarchical and other structural adaptations contributing to plant surface hydrophobicity. Inspired by these plants, biomimetic engineering could lead to the creation of materials with similar water-repellent properties. This understanding could pave the way for developing disease-resistant crops in the agricultural sector. The paper also discusses the current and prospective applications of superhydrophobic surfaces, including self-cleaning capabilities, reduced hydrodynamic drag, capillary-based fluid transport, and other bio-inspired materials.

References

  • [1] Koch, K. and Ensikat, H. J. (2008). The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity, and molecular self-assembly, Micron, 39(7), 759-772.
  • [2] J. D. Barnes and J. Cardoso-Vilhena, (1996). Interactions between electromagnetic radiation and the plant cuticle, Plant cuticles: an integrated functional approach. 157, 170.
  • [3] Koch, K. and Barthlott, W. (2009). Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1893), 1487-1509.
  • [4] Nosonovsky, M. and Bhushan, B. (2007). Lotus effect: roughness-induced superhydrophobicity, In Applied Scanning Probe Methods VII: Biomimetics and Industrial Applications (pp. 1-40), Heidelberg: Springer Berlin Heidelberg.
  • [5] Neinhuis, C. and Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, 79(6), 667-677.
  • [6] Fürstner, R., Barthlott, W., Neinhuis, C., and Walzel, P. (2005). Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 21(3), 956-961.
  • [7] Torres, L., Jenson, R., and Weislogel, M. (2020). Capillary Hydroponic Plant Watering System for Spacecraft, 2020 International Conference on Environmental Systems. ICES-2020-172, https://hdl.handle.net/2346/8634
  • [8] Kim, M., Yoo, S., Jeong, H. E. and Kwak, M. K. (2022). Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering, Nature Communications, 13(1), 5181.
  • [9] Pan, Z., Cheng, F., Zhao, B. (2017). Bio-inspired polymeric structures with special wettability and their applications: An overview, Polymers, 9(12), 725.
  • [10] Koch, K., Blecher, I. C., König, G., Kehraus, S., and Barthlott, W. (2009). The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. Functional Plant Biology, 36(4), 339-350.
  • [11] Zhang, L., Zhao, N., and Xu, J. (2014). Fabrication and application of superhydrophilic surfaces: a review, Journal of Adhesion Science and Technology, 28(8-9), 769-790.
  • [12] Prakash, C. J., Raj, C. C., and Prasanth, R. (2017). Fabrication of zero contact angle ultra-super hydrophilic surfaces, Journal of colloid and interface science, 496, 300-310.
  • [13] Cao, Z., Wang, W. Y. Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing. Applied Surface Science, 557, 149842.
  • [14] Tsougeni, K., Vourdas, A., Tserepi, N., Gogolides, E., and Cardinaud, C. (2009). Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to superhydrophobic surfaces, Langmuir, 25,19, 11748-11759.
  • [15] Zeiger, C., da Silva, I. C. R., Mail, M., Kavalenka, M. N., Barthlott, W., Hölscher, H. (2016). Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials, Bioinspiration and biomimetics, 11(5), 056003.
  • [16] Michailidou, G., Koukaras, E. N., Bikiaris, D. N. (2021). Vanillin chitosan miscible hydrogel blends and their prospects for 3D printing biomedical applications, International Journal of Biological Macromolecules, 192, 1266-1275.
  • [17] Smith, T. (1980). The hydrophilic nature of a clean gold surface, Journal of Colloid and Interface Science, 75(1), 51-55.
  • [18] Cho, J. S., Beag, Y. W., Han, S., Kim, K. H., Cho, J., Koh, S. K. (2000). Hydrophilic surface formation on materials and its applications, Surface and Coatings Technology, 128, 66-70.
  • [19] Wang, T., Si, Y., Luo, S., Dong, Z., Jiang, L. (2019). Wettability manipulation of overflow behavior via vesicle surfactant for waterproof surface cleaning, Materials Horizons, 6, 2, 294-301.
  • [20] Wang, G., Wang, J., Wu, W., Tony To, S. S., Zhao, H., Wang, J. (2015). Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs, Expert opinion on drug delivery, 12, 9, 1475-1499.
  • [21] Zhao, J., Wang, X., Liu, L., Yu, J., Ding, B. (2018). Human skin-like, robust, waterproof, and highly breathable fibrous membranes with short perfluorobutyl chains for eco-friendly protective textiles, ACS applied materials & interfaces, 10, 36, 30887-30894.
  • [22] Glenn, D. M., Puterka, G. J., Vanderzwet, T., Byers, R. E., Feldhake, C. (1999). Hydrophobic particle films: a new paradigm for suppression of arthropod pests and plant diseases, Journal of Economic Entomology, 92, 4, 759-771.
  • [23] Lee, S. M. and Kwon, T. H. (2006). Mass-producible replication of highly hydrophobic surfaces from plant leaves, Nanotechnology, 17, 13, 3189.
  • [24] Lee, S. M., Lee, H. S., Kim, D. S., Kwon, T. H. (2006). Fabrication of hydrophobic films replicated from plant leaves in nature, Surface and Coatings Technology, 201,(3-4), 553-559.
  • [25] Dalawai, S. P., Aly, M. A. S., Latthe, S. S., Xing, R., Sutar, R. S., Nagappan, S., Liu, S. (2020). Recent advances in the durability of superhydrophobic self-cleaning technology: a critical review, Progress in Organic Coatings, 138, 105381.
  • [26] Wang, M., Zi, Y., Zhu, J., Huang, W., Zhang, Z, Zhang, H. (2021). Construction of super-hydrophobic PDMS@ MOF@ Cu mesh for reduced drag, anti-fouling, and self-cleaning towards marine vehicle applications, Chemical Engineering Journal, 417, 129265.
  • [27] Piscitelli, F., Tescione, F., Mazzola, L., Bruno, G., Lavorgna, M. (2019). On a simplified method to produce hydrophobic coatings for aeronautical applications, Applied Surface Science, 472, 71-81.
  • [28] Yang, C., Jing, X., Wang, F., Ehmann, K. F., Tian, Y., Pu, Z. (2019). Fabrication of controllable wettability of crystalline silicon surfaces by laser surface texturing and silanization, Applied Surface Science, 497, 143805.
  • [29] Guo, Z. Liu, W. (2007). Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure, Plant Science, 172, 6, 1103-1112.
  • [30] Shirtcliffe, N. J., McHale, G., and Newton, M. I. (2009). Learning from superhydrophobic plants: The use of hydrophilic areas on superhydrophobic surfaces for droplet control, Langmuir, 25, 24, 14121-14128.
  • [31] Barthlott, W., Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1, 1-8.
  • [32] Bhushan, B., Jung, Y. C. (2011). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning. low adhesion, and drag reduction, Progress in Materials Science, 56, 1, 1-108.
  • [33] Koch, K., Bohn, H. F., Barthlott, W. (2009). Hierarchically sculptured plant surfaces and superhydrophobicity, Langmuir, 25, 24, 14116-14120.
  • [34] Webb, H. K., Crawford, R. J., Ivanova, E. P. (2014). Wettability of natural superhydrophobic surfaces, Advances in colloid and interface science, 210, 58-64.
  • [35] Sam, E. K., Sam, D. K., Lv, X., Liu, B., Xiao, X., Gong, S., Liu, J. (2019). Recent development in the fabrication of self-healing superhydrophobic surfaces, Chemical Engineering Journal, 373, 531-546.
  • [36] Zeiger, C., da Silva, I. C. R., Mail, M., Kavalenka, M. N., Barthlott, W., Hölscher, H. (2016). Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials, Bioinspiration and biomimetics, 11, 5, 056003.
  • [37] Wang, G., Guo, Z., Liu, W. (2014). Interfacial effects of superhydrophobic plant surfaces: A review, Journal of Bionic Engineering, 11, 3, 325-345.
  • [38] Grewal, H. S., Cho, I. J., Yoon, E. S. (2015). The role of bio-inspired hierarchical structures in wetting, Bioinspiration and Biomimetics, 10, 2, 026009.
  • [39] Vazirinasab, E., Jafari, R., Momen, G. (2018). Application of superhydrophobic coatings as a corrosion barrier: A review, Surface and Coatings Technology, 341, 40-56.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial
Journal Section Review
Authors

Ivan Al-jaf 0000-0001-8757-4362

Murat Kaya 0000-0001-6954-2703

Publication Date June 30, 2024
Submission Date November 17, 2023
Acceptance Date December 12, 2023
Published in Issue Year 2024Volume: 8 Issue: 1

Cite

APA Al-jaf, I., & Kaya, M. (2024). Bitki Morfolojisi, Süperhidrofilikten Süperhidrofobiye Kadar Değişen Islatma Özelliklerine Sahip Yüzeylerin Biyo-İlhamlı Tasarımı. Aksaray University Journal of Science and Engineering, 8(1), 24-30. https://doi.org/10.29002/asujse.1392277

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License