Research Article
BibTex RIS Cite

Range Determination of the Influence of Carrier Concentration on Lattice Thermal Conductivity for Bulk Si and Nanowires

Year 2020, Volume: 4 Issue: 1, 30 - 42, 30.06.2020
https://doi.org/10.29002/asujse.657837

Abstract

Mathematical modeling has been extended to simulate some physical systems to calculate some parameters that may need a sophisticated cost or may have some obstacles to be measured directly with an experimental method. In this study, the Modified Callaway Model has been used to calculate size dependence lattice thermal conductivity (LTC), and the influence of carrier concentration for bulk Si and its nanowires (NWs) with diameters of 22, 37, 56, and 115 nm has been investigated. Calculations were performed from 3K to 1600K for all cases. The effects of carrier concentration on LTC has found to begin from (1016 cm-1) for the bulk state and that increased to (1024 cm-1) for the NW with a diameter of 22 nm. The temperature that the maximum effect of carrier concentration can occur, has found to be at (10 K) for the bulk, and that increased to (340 K) for the (22 nm) Si NW.

Supporting Institution

Salahaddin-Erbil University

Project Number

7/29/2359-2472017

References

  • [1] M. Omar, Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles, Int J Thermophys 37(1) (2016) 11. doi:10.1007/s10765-015-2026-9.
  • [2] I. N. Qader, M. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires, Bull Mater Sci 40(3) (2017) 599-607. doi:10.1007/s12034-017-1393-1.
  • [3] N.-W. Park, W.-Y. Lee, J.-A. Kim, K. Song, H. Lim, W.-D. Kim et al., Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness, Nanoscale research letters 9(1) (2014) 96. doi:10.1186/1556-276X-9-96.
  • [4] I. N. Qader, B. J. Abdullah, H. H. Karim, Lattice Thermal Conductivity of Wurtzite Bulk and Zinc Blende CdSe Nanowires and Nanoplayer, Eurasian Journal of Science & Engineering 3(1) (2017) 9-26. doi:10.23918/eajse.v3i1sip9.
  • [5] J. Kang, J. W. Roh, W. Shim, J. Ham, J. S. Noh, W. Lee, Reduction of Lattice Thermal Conductivity in Single Bi‐Te Core/Shell Nanowires with Rough Interface, Adv Mater 23(30) (2011) 3414-9. doi:10.1002/adma.201101460.
  • [6] M. Omar, H. Taha, Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire, Sadhana 35(2) (2010) 177-93. doi:10.1007/s12046-010-0019-8.
  • [7] J. Vandersande, C. Wood, The thermal conductivity of insulators and semiconductors, Contemporary Physics 27(2) (1986) 117-44.
  • [8] B. K. Agrawal, G. Verma, Lattice thermal conductivity at low temperatures, Phys Rev 126(1) (1962) 24. doi:10.1103/PhysRev.126.24.
  • [9] S. M. Mamand, M. S. Omar, A. J. Muhammad, Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires, Materials Research Bulletin 47(5) (2012) 1264-72.
  • [10] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires, Appl Phys Lett 83(14) (2003) 2934-6. doi:10.1063/1.1616981.
  • [11] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175) (2008) 163-7. doi:10.1038/nature06381.
  • [12] S. Mamand, M. Omar, A. Muhammad, Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires, Mater Res Bull 47(5) (2012) 1264-72. doi:10.1016/j.materresbull.2011.12.025.
  • [13] B. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani, G. Chen, Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: A first-principles study, Physical review letters 114(11) (2015) 115901.
  • [14] J. Zou, Lattice thermal conductivity of freestanding gallium nitride nanowires, Journal of Applied Physics 108(3) (2010) 034324.
  • [15] J. Callaway, Model for lattice thermal conductivity at low temperatures, Physical Review 113(4) (1959) 1046.
  • [16] M.-J. Huang, W.-Y. Chong, T.-M. Chang, The lattice thermal conductivity of a semiconductor nanowire, Journal of applied physics 99(11) (2006) 114318.
  • [17] T. M. Tritt. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media; 2005.
  • [18] A. Balandin, K. L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well, Physical Review B 58(3) (1998) 1544.
  • [19] A. Khitun, A. Balandin, K. Wang, Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons, Superlattices and microstructures 26(3) (1999) 181-93.
  • [20] D. Morelli, J. Heremans, G. Slack, Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors, Physical Review B 66(19) (2002) 195304.
  • [21] M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. Zhernov, A. Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, Thermal conductivity of germanium crystals with different isotopic compositions, Physical Review B 56(15) (1997) 9431.
  • [22] M. S. Omar, H. T. Taha, Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire, Sadhana 35(2) (2010) 177-93.
  • [23] I. N. Qader, B. J. Abdullah, M. A. Hassan, P. H. Mahmood, Influence of the Size Reduction on the Thermal Conductivity of Bismuth Nanowires, Eurasian Journal of Science & Engineering 4(3) (2019) 55-65. doi:10.23918/eajse.v4i3sip55.
  • [24] P. Klemens, The scattering of low-frequency lattice waves by static imperfections, Proceedings of the Physical Society Section A 68(12) (1955) 1113.
  • [25] J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire, Journal of Applied Physics 89(5) (2001) 2932-8.
  • [26] B. J. Abdullah, Q. Jiang, M. S. Omar, Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures, Bulletin of Materials Science 39(5) (2016) 1295-302.
  • [27] B. J. Abdullah, M. S. Omar, Q. Jiang, Size dependence of the bulk modulus of Si nanocrystals, Sādhanā 43(11) (2018) 174.
  • [28] L. Liang, B. Li, Size-dependent thermal conductivity of nanoscale semiconducting systems, Physical Review B 73(15) (2006) 153303.
  • [29] J. Dash, History of the search for continuous melting, Reviews of Modern Physics 71(5) (1999) 1737.
  • [30] M. S. Omar, Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials, Materials Research Bulletin 47(11) (2012) 3518-22.
  • [31] B. J. Abdullah, M. S. Omar, Q. Jiang, Size effects on cohesive energy, Debye temperature and lattice heat capacity from first-principles calculations of Sn nanoparticles, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 88(4) (2018) 629-32.
  • [32] M. S. Omar, Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles, International Journal of Thermophysics 37(1) (2016) 11.
  • [33] M. S. Omar, Lattice thermal expansion for normal tetrahedral compound semiconductors, Materials research bulletin 42(2) (2007) 319-26.
  • [34] V. Pudalov, M. Gershenson, H. Kojima, N. Butch, E. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Low-density spin susceptibility and effective mass of mobile electrons in Si inversion layers, Physical Review Letters 88(19) (2002) 196404.
Year 2020, Volume: 4 Issue: 1, 30 - 42, 30.06.2020
https://doi.org/10.29002/asujse.657837

Abstract

Project Number

7/29/2359-2472017

References

  • [1] M. Omar, Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles, Int J Thermophys 37(1) (2016) 11. doi:10.1007/s10765-015-2026-9.
  • [2] I. N. Qader, M. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires, Bull Mater Sci 40(3) (2017) 599-607. doi:10.1007/s12034-017-1393-1.
  • [3] N.-W. Park, W.-Y. Lee, J.-A. Kim, K. Song, H. Lim, W.-D. Kim et al., Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness, Nanoscale research letters 9(1) (2014) 96. doi:10.1186/1556-276X-9-96.
  • [4] I. N. Qader, B. J. Abdullah, H. H. Karim, Lattice Thermal Conductivity of Wurtzite Bulk and Zinc Blende CdSe Nanowires and Nanoplayer, Eurasian Journal of Science & Engineering 3(1) (2017) 9-26. doi:10.23918/eajse.v3i1sip9.
  • [5] J. Kang, J. W. Roh, W. Shim, J. Ham, J. S. Noh, W. Lee, Reduction of Lattice Thermal Conductivity in Single Bi‐Te Core/Shell Nanowires with Rough Interface, Adv Mater 23(30) (2011) 3414-9. doi:10.1002/adma.201101460.
  • [6] M. Omar, H. Taha, Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire, Sadhana 35(2) (2010) 177-93. doi:10.1007/s12046-010-0019-8.
  • [7] J. Vandersande, C. Wood, The thermal conductivity of insulators and semiconductors, Contemporary Physics 27(2) (1986) 117-44.
  • [8] B. K. Agrawal, G. Verma, Lattice thermal conductivity at low temperatures, Phys Rev 126(1) (1962) 24. doi:10.1103/PhysRev.126.24.
  • [9] S. M. Mamand, M. S. Omar, A. J. Muhammad, Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires, Materials Research Bulletin 47(5) (2012) 1264-72.
  • [10] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires, Appl Phys Lett 83(14) (2003) 2934-6. doi:10.1063/1.1616981.
  • [11] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175) (2008) 163-7. doi:10.1038/nature06381.
  • [12] S. Mamand, M. Omar, A. Muhammad, Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires, Mater Res Bull 47(5) (2012) 1264-72. doi:10.1016/j.materresbull.2011.12.025.
  • [13] B. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani, G. Chen, Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: A first-principles study, Physical review letters 114(11) (2015) 115901.
  • [14] J. Zou, Lattice thermal conductivity of freestanding gallium nitride nanowires, Journal of Applied Physics 108(3) (2010) 034324.
  • [15] J. Callaway, Model for lattice thermal conductivity at low temperatures, Physical Review 113(4) (1959) 1046.
  • [16] M.-J. Huang, W.-Y. Chong, T.-M. Chang, The lattice thermal conductivity of a semiconductor nanowire, Journal of applied physics 99(11) (2006) 114318.
  • [17] T. M. Tritt. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media; 2005.
  • [18] A. Balandin, K. L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well, Physical Review B 58(3) (1998) 1544.
  • [19] A. Khitun, A. Balandin, K. Wang, Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons, Superlattices and microstructures 26(3) (1999) 181-93.
  • [20] D. Morelli, J. Heremans, G. Slack, Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors, Physical Review B 66(19) (2002) 195304.
  • [21] M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. Zhernov, A. Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, Thermal conductivity of germanium crystals with different isotopic compositions, Physical Review B 56(15) (1997) 9431.
  • [22] M. S. Omar, H. T. Taha, Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire, Sadhana 35(2) (2010) 177-93.
  • [23] I. N. Qader, B. J. Abdullah, M. A. Hassan, P. H. Mahmood, Influence of the Size Reduction on the Thermal Conductivity of Bismuth Nanowires, Eurasian Journal of Science & Engineering 4(3) (2019) 55-65. doi:10.23918/eajse.v4i3sip55.
  • [24] P. Klemens, The scattering of low-frequency lattice waves by static imperfections, Proceedings of the Physical Society Section A 68(12) (1955) 1113.
  • [25] J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire, Journal of Applied Physics 89(5) (2001) 2932-8.
  • [26] B. J. Abdullah, Q. Jiang, M. S. Omar, Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures, Bulletin of Materials Science 39(5) (2016) 1295-302.
  • [27] B. J. Abdullah, M. S. Omar, Q. Jiang, Size dependence of the bulk modulus of Si nanocrystals, Sādhanā 43(11) (2018) 174.
  • [28] L. Liang, B. Li, Size-dependent thermal conductivity of nanoscale semiconducting systems, Physical Review B 73(15) (2006) 153303.
  • [29] J. Dash, History of the search for continuous melting, Reviews of Modern Physics 71(5) (1999) 1737.
  • [30] M. S. Omar, Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials, Materials Research Bulletin 47(11) (2012) 3518-22.
  • [31] B. J. Abdullah, M. S. Omar, Q. Jiang, Size effects on cohesive energy, Debye temperature and lattice heat capacity from first-principles calculations of Sn nanoparticles, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 88(4) (2018) 629-32.
  • [32] M. S. Omar, Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles, International Journal of Thermophysics 37(1) (2016) 11.
  • [33] M. S. Omar, Lattice thermal expansion for normal tetrahedral compound semiconductors, Materials research bulletin 42(2) (2007) 319-26.
  • [34] V. Pudalov, M. Gershenson, H. Kojima, N. Butch, E. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Low-density spin susceptibility and effective mass of mobile electrons in Si inversion layers, Physical Review Letters 88(19) (2002) 196404.
There are 34 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ibrahim Nazem Qader

Botan Abdullah

Mustafa Omar

Project Number 7/29/2359-2472017
Publication Date June 30, 2020
Submission Date December 10, 2019
Acceptance Date May 5, 2020
Published in Issue Year 2020Volume: 4 Issue: 1

Cite

APA Qader, I. N., Abdullah, B., & Omar, M. (2020). Range Determination of the Influence of Carrier Concentration on Lattice Thermal Conductivity for Bulk Si and Nanowires. Aksaray University Journal of Science and Engineering, 4(1), 30-42. https://doi.org/10.29002/asujse.657837

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License