Araştırma Makalesi
BibTex RIS Kaynak Göster

Kocaeli-Dilovası için Hava Kirleticilerinin Muhtemel Etkilerinin Belirlenmesi

Yıl 2017, Cilt: 1 Sayı: 2, 121 - 133, 30.12.2017
https://doi.org/10.29002/asujse.310026

Öz

Çalışmada,
sanayinin yoğunlaştığı Kocaeli-Dilovası’nda hava kirleticilerinin (CO, SO2,
NO, NO2, O3) muhtemel etkilerinin ALOHA yazılımı ile
belirlenmesi amaçlanmıştır. Modelleme çalışmalarında, Çevre ve Şehircilik
Bakanlığı tarafından oluşturulan Ulusal Hava Kalitesi İzleme Ağı, 2010 ve 2017
yıllarına ait hava kirletici konsantrasyon verileri kullanılmıştır. Doğrudan
kaynak ve anlık boşalma senaryosu üzerinden modelleme çalışmaları yürütülmüştür.
Tüm hava kirleticileri için toksik etkiler belirlenmiş ve en geniş etki
mesafeleri toksik bölge için bulunmuştur. NO ve NO2 için her iki
yılda kırmızı (>20 ppm, PAC-3), turuncu (>12 ppm, PAC-2) ve sarı (0.5
ppm, PAC-1) bölgede >10 km etki mesafesi belirlenmiştir. Atmosferik F
kararlılık sınıfı seçimi ile en kötü durum senaryosu dikkate alınmıştır. CO
hava kirleticisi için toksik etkiler yanında yanma ve patlama etkileri
belirlenmiştir. Yanabilir bölgede 2010 yılı için, kırmızı (>75000 ppm, %60
LEL) =2.2 km ve sarı (>12500 ppm, %60 LEL) =4.7 km etki mesafeleri elde
edilmiştir. Detonasyon kaynaklı patlama etkilerinin daha geniş etki mesafeleri
(<3 km) verdiği ve bina yıkılması (>8 psi), ciddi yaralanma olasılığı (>3.5
psi), cam kırılması (>1.0 psi) basınç etkilerinin tamamını gösterdiği
belirlenmiştir. 2017 yılında CO ve O3 hava kirleticileri için
konsantrasyonların düştüğü buna bağlı olarak tüm etki mesafesi değerlerinin
azaldığı tespit edilmiştir. Çevresel düzenlemelerin hava kirleticilerinin
muhtemel etkilerinin kantitatif olarak değerlendirilerek yapılmasının, daha
etkili sonuçlar verebileceği ön görülmüştür
.

Kaynakça

  • [1] N. Künzli, R. Kaiser, S. Medina, M. Studnicka, O. Chanel, P. Filliger, M. Herry, F. Horak Jr, V. Puybonnieux-Texier, P. Quénel, J. Schneider, R. Seethaler, J.C. Vergnaud, H. Sommer, Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356 (2000) 795-801.
  • [2] P.D. Hien, P.D. Loc, N.V. Dao, Air pollution episodes associated with East Asian winter monsoons. Sci. Total Environ. 409 (2011) 5063-5068.
  • [3] S.M. Serbula, J.S. Milosavljevic, A.A. Radojevic, J.V. Kalinovic, T.S. Kalinovic, Extreme air pollution with contaminants originating from the mining–metallurgical processes. Sci. Total Environ. 586 (2017) 1066-1075.
  • [4] H. Zhang, Y. Wang, T.W. Park, Y. Deng, Quantifying the relationship between extreme air pollution events and extreme weather events. Atmos. Res. 188 (2017) 64-79.
  • [5] V.S. Bachtiar, S. Raharjo, Y. Ruslinda, F. Hayati, D.R. Komala, Mapping of ozone gas (O3) concentrations in Padang City. Procedia Eng. 125 (2015) 291-297.
  • [6] R. Weber, S. Orsino, N. Lalllemant, A.D. Verlaan, Combustion of natural gas with high-temperature air and large quantities of flue gas. Proceedings of the Combustion Institute, 28 (2000) 1315-1321.
  • [7] I. Bagayev, J. Lochard, EU air pollution regulation: A breath of fresh air for Eastern European polluting industries? J. Environ. Econ. and Manage. 83 (2017) 145-163.
  • [8] P. Thunis, A. Miranda, J.M. Baldasano, N. Blond, J. Douros, A. Graff, S. Janssen, K. Juda-Rezlerh, N. Karvosenoja, G. Maffeis, A. Martilli, M. Rasoloharimahefa, E. Real, P. Viaene, M. Volta, L. White, Overview of current regional and local scale air quality modelling practices: Assessment and planning tools in the EU. Environ. Sci. Policy. 65 (2016) 13-21.
  • [9] M. Guevara, C. Tena, A. Soret, K. Serradell, D. Guzmán, A. Retama, P. Camacho, M. Jaimes-Palomera, A. Mediavilla, An emission processing system for air quality modelling in the Mexico City metropolitan area: Evaluation and comparison of the MOBILE6.2-Mexico and MOVES-Mexico traffic emissions. Sci. Total Environ. 584-585 (2017) 882-900.
  • [10] T.F. Chen, K.H. Chang, C.Y. Tsai, Modeling approach for emissions reduction of primary PM2.5 and secondary PM2.5 precursors to achieve the air quality target. Atmos. Res. 192 (2017) 11-18.
  • [11] S.S. Jensen, M. Ketzel, T. Becker, J. Christensen, J. Brandt, M. Plejdrup, M. Winther, O.K. Nielsen, O. Hertel, T. Ellermann, High resolution multi-scale air quality modelling for all streets in Denmark. Transport. Res. D. 52 (2017) 322-339.
  • [12] C. Zhang, H. Lin, M. Chen, X. Zheng, R. Li, Y. Ding, A modelling system with adjustable emission inventories for cross-boundary air quality management in Hong Kong and the Pearl River Delta, China. Comput. Environ. Urban Syst. 62 (2017) 222-232.
  • [13] O. Taylan, Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmos. Environ. 150 (2017) 356-365.
  • [14] http://www.havaizleme.gov.tr (20.04.2017)
  • [15] https://www3.epa.gov/airnow/aqi_brochure_02_14.pdf (28.04.2017)
  • [16] S. Çetinyokuş, Sonuç analizi ile belirlenen etki mesafeleri üzerine atmosferik seçimlerin etkisi (ALOHA yazılımı). Afyon Kocatepe Üniv. Fen ve Müh. Bil. Der. 17(1) (2017) 209-217.
  • [17] D.R. Stull, Monograph Series.10. A.I. Chem. E., 73 (1977).
  • [18] P. Urben, L. Bretherick, (London: Butterworths, ISBN 978-0-12-372563-9, 1979).
  • [19] S. Çetinyokuş, M.A. Alkan, Endüstri tesisleri için koruma alanlarının belirlenmesi. III. Tehlikeli Kimyasalların Yönetimi Sempozyumu ve Sergisi, pp. 105-118, Mayıs 2015, Ankara, Türkiye.

Determination of Possible Effects of Air Pollutants for the Kocaeli-Dilovasi

Yıl 2017, Cilt: 1 Sayı: 2, 121 - 133, 30.12.2017
https://doi.org/10.29002/asujse.310026

Öz

In the study, it is aimed to determine the possible
effects of air pollutants (CO, SO2, NO, NO2, O3)
in the Kocaeli-Dilovasi region where the industry is concentrated with ALOHA
software. In the modeling studies, air pollutant concentration data for the
years 2010 and 2017 of the National Air Quality Monitoring Network established
by the Ministry of Environment and Urban Planning was used.
Modeling studies were conducted through direct source
and instant release scenarios.
Toxic effects were
identified for all air pollutants and the largest impact areas were identified
for the toxic zone. For NO and NO2, the effect distance was
determined to be 10km in red (>20 ppm, PAC-3), orange (>12 ppm, PAC-2)
and yellow (0.5 ppm, PAC-1) every two years. The worst-case scenario was
considered with the selection of the atmospheric F stability class.
Toxicity as well as combustion and explosion effects
were determined for CO air pollutant. For the year 2010, the flammable region,
red (>75000 ppm, 60% LEL) = 2.2 km and yellow (>12500 ppm, 60% LEL) =distance
of 4.7km effects were obtained. It was determined that the detonation explosion
effects gave larger impact distances (<3km) and showed all explosion effects
of the destructions of buildings (>8 psi), serious injury likely (>3.5
psi), and shatters glass (>1.0 psi). It was indicated that concentrations
for CO and O3 air pollutants declined in 2017 and so resulted in a
decrease in all impact values.
It has been predicted
that environmental regulations could be more effective if quantitative
assessments of the possible effects of air pollutants were made.

Kaynakça

  • [1] N. Künzli, R. Kaiser, S. Medina, M. Studnicka, O. Chanel, P. Filliger, M. Herry, F. Horak Jr, V. Puybonnieux-Texier, P. Quénel, J. Schneider, R. Seethaler, J.C. Vergnaud, H. Sommer, Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356 (2000) 795-801.
  • [2] P.D. Hien, P.D. Loc, N.V. Dao, Air pollution episodes associated with East Asian winter monsoons. Sci. Total Environ. 409 (2011) 5063-5068.
  • [3] S.M. Serbula, J.S. Milosavljevic, A.A. Radojevic, J.V. Kalinovic, T.S. Kalinovic, Extreme air pollution with contaminants originating from the mining–metallurgical processes. Sci. Total Environ. 586 (2017) 1066-1075.
  • [4] H. Zhang, Y. Wang, T.W. Park, Y. Deng, Quantifying the relationship between extreme air pollution events and extreme weather events. Atmos. Res. 188 (2017) 64-79.
  • [5] V.S. Bachtiar, S. Raharjo, Y. Ruslinda, F. Hayati, D.R. Komala, Mapping of ozone gas (O3) concentrations in Padang City. Procedia Eng. 125 (2015) 291-297.
  • [6] R. Weber, S. Orsino, N. Lalllemant, A.D. Verlaan, Combustion of natural gas with high-temperature air and large quantities of flue gas. Proceedings of the Combustion Institute, 28 (2000) 1315-1321.
  • [7] I. Bagayev, J. Lochard, EU air pollution regulation: A breath of fresh air for Eastern European polluting industries? J. Environ. Econ. and Manage. 83 (2017) 145-163.
  • [8] P. Thunis, A. Miranda, J.M. Baldasano, N. Blond, J. Douros, A. Graff, S. Janssen, K. Juda-Rezlerh, N. Karvosenoja, G. Maffeis, A. Martilli, M. Rasoloharimahefa, E. Real, P. Viaene, M. Volta, L. White, Overview of current regional and local scale air quality modelling practices: Assessment and planning tools in the EU. Environ. Sci. Policy. 65 (2016) 13-21.
  • [9] M. Guevara, C. Tena, A. Soret, K. Serradell, D. Guzmán, A. Retama, P. Camacho, M. Jaimes-Palomera, A. Mediavilla, An emission processing system for air quality modelling in the Mexico City metropolitan area: Evaluation and comparison of the MOBILE6.2-Mexico and MOVES-Mexico traffic emissions. Sci. Total Environ. 584-585 (2017) 882-900.
  • [10] T.F. Chen, K.H. Chang, C.Y. Tsai, Modeling approach for emissions reduction of primary PM2.5 and secondary PM2.5 precursors to achieve the air quality target. Atmos. Res. 192 (2017) 11-18.
  • [11] S.S. Jensen, M. Ketzel, T. Becker, J. Christensen, J. Brandt, M. Plejdrup, M. Winther, O.K. Nielsen, O. Hertel, T. Ellermann, High resolution multi-scale air quality modelling for all streets in Denmark. Transport. Res. D. 52 (2017) 322-339.
  • [12] C. Zhang, H. Lin, M. Chen, X. Zheng, R. Li, Y. Ding, A modelling system with adjustable emission inventories for cross-boundary air quality management in Hong Kong and the Pearl River Delta, China. Comput. Environ. Urban Syst. 62 (2017) 222-232.
  • [13] O. Taylan, Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmos. Environ. 150 (2017) 356-365.
  • [14] http://www.havaizleme.gov.tr (20.04.2017)
  • [15] https://www3.epa.gov/airnow/aqi_brochure_02_14.pdf (28.04.2017)
  • [16] S. Çetinyokuş, Sonuç analizi ile belirlenen etki mesafeleri üzerine atmosferik seçimlerin etkisi (ALOHA yazılımı). Afyon Kocatepe Üniv. Fen ve Müh. Bil. Der. 17(1) (2017) 209-217.
  • [17] D.R. Stull, Monograph Series.10. A.I. Chem. E., 73 (1977).
  • [18] P. Urben, L. Bretherick, (London: Butterworths, ISBN 978-0-12-372563-9, 1979).
  • [19] S. Çetinyokuş, M.A. Alkan, Endüstri tesisleri için koruma alanlarının belirlenmesi. III. Tehlikeli Kimyasalların Yönetimi Sempozyumu ve Sergisi, pp. 105-118, Mayıs 2015, Ankara, Türkiye.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Saliha Cetinyokus

Yayımlanma Tarihi 30 Aralık 2017
Gönderilme Tarihi 2 Mayıs 2017
Kabul Tarihi 5 Temmuz 2017
Yayımlandığı Sayı Yıl 2017Cilt: 1 Sayı: 2

Kaynak Göster

APA Cetinyokus, S. (2017). Determination of Possible Effects of Air Pollutants for the Kocaeli-Dilovasi. Aksaray University Journal of Science and Engineering, 1(2), 121-133. https://doi.org/10.29002/asujse.310026
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr