Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 16 - 23, 30.06.2024
https://doi.org/10.29002/asujse.1382667

Öz

Kaynakça

  • [1] Synowiecki, J., and Al-Khateeb, N. A. (2003). Production, properties, and some new applications of chitin and its derivatives, Critical Reviews in Food Science and Nutrition, 43, 2,145–171.
  • [2] Kaya, M., Baran, T., Asan-Ozusaglam, M., Cakmak, Y.S., Tozak, K.O., Mol, A., Mentes, A., Sezen, G. (2015). Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta), Biotechnology and Bioprocess Engineering, 20, 168-179.
  • [3] Abidin, N.A.Z., Kormin, F., Abidin, N.A.Z., Anuar, N.A.F.M., Bakar, M.F.A. (2020). The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources, International Journal of Molecular Sciences, 21, 14, 4978. https://doi.org/10.3390/ijms21144978
  • [4] Mohan, K., Ganesan, A. R., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., Chandirasekar , R., Revathi, N. (2020). Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects, Trends in food science & technology, 105, 17-42.
  • [5] Simionato, J.I., Villalobos, L.D.G., Bulla, M.K., Cor´o, F.A.G., Garcia, J. C. (2014). Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazol dyes, Acta Scientiarum. Technology, 36, 4, 693–698.
  • [6] Yang, J.K., Shih, L., Tzeng, Y.M., and Wang, S.L. (2000). Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes, Enzyme and Microbial Technology, 26, 5–6, 406–413.
  • [7] Wu, S.J., Pan, S.K., Wang, H. B., and Wu, J. H. (2013). Preparation of chitooligosaccharides from cicada slough and their antibacterial activity, International Journal of Biological Macromolecules, 62, 348–351.
  • [8] Xia, Z., Chen, J., and Wu, S. (2013). Hypolipidemic activity of the chitooligosaccharides from Clanis bilineata (Lepidoptera), an edible insect, International Journal of Biological Macromolecules, 59, 96–98.
  • [9] Luo, Q., Wang, Y., Han, Q., Ji, L., Zhang, H., Fei, Z., Wang, Y. (2019). Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects, Carbohydrate Polymers, 209, 266–275.
  • [10]Kaya, M., Akyuz, B., Bulut, E., Sargin, I., Eroglu, F., and Tan, G. (2016). Chitosan nanofiber production from Drosophila by electrospinning, International Journal of Biological Macromolecules, 92, 49–55.
  • [11] Kaya, M., Bulut, E., Mujtaba, M., Sivickis, K., Sargin, I., Akyuz, B., Erdogan S. (2016). Gender influences differentiation of chitin among body parts, Archives of Insect Biochemistry and Physiology, 93(2), 96–109.
  • [12] Kaya, M., Baran, T., Erdogan, S., Mentes, A., Ozusaglam, M.A., and Çakmak, Y.S. (2014). Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata), Materials Science and Engineering: C, 45, 72–81.
  • [13] Erdogan, S., and Kaya, M. (2016). High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper, International Journal of Biological Macromolecules, 89, 118–126.
  • [14] Ibitoye, E., Lokman, I., Hezmee, M., Goh, Y., Zuki, A., and Jimoh, A. (2018). Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket, Biomedical Materials, 13, 2, 02009.
  • [15] Kaya, M., Bagrıaçık, N., Seyyar, O., and Baran, T. (2015). Comparison of chitin structures derived from three common wasp species (Vespa crabro Linnaeus, 1758, Vespa orientalis Linnaeus, 1771 and Vespula germanica (Fabricius, 1793)), Archives of Insect Biochemistry and Physiology, 89, 4, 204–217.
  • [16] Kaya, M., Bitim, B., Mujtaba, M., and Koyuncu, T. (2015). Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora), International Journal of Biological Macromolecules, 81, 443–449.
  • [17] Kaya, M., Erdogan, S., Mol, A., and Baran, T. (2015). Comparison of chitin structures isolated from seven Orthoptera species, International Journal of Biological Macromolecules, 72, 797–805.
  • [18] Kaya, M., Sargin, I., Al-Jaf, I., Erdogan, S., and Arslan, G. (2016). Characteristics of corneal lens chitin in dragonfly compound eyes, International Journal of Biological Macromolecules, 89, 54–61.
  • [19] Kim, M.W., Han, Y.S., Jo, Y.H., Choi, M.H., Kang, S.H., Kim, S.A., Jung W.J. (2016). Extraction of chitin and chitosan from housefly, Musca domestica, pupa shells, Entomological Research, 46, 5, 324–328.
  • [20] Ai, H., Wang, F., Yang, Q., Zhu, F., and Lei, C. (2008). Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica, Carbohydrate Polymers, 72 (3), 419–423.
  • [21] Khayrova, A., Lopatin, S., and Varlamov, V. (2019). Black soldier fly Hermetia illucens as a novel source of chitin and chitosan, International Journal of Sciences, 8, 81–86.
  • [22] Caligiani, A., Marseglia, A., Leni, G., Baldassarre, S., Maistrello, L., Dossena, A., Sforza S. (2018). Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin, Food Research International, 105, 812–820.
  • [23] Kaya, M., Sargin, I., Sabeckis, I., Noreikaite, D., Erdonmez, D., Salaberria, A.M., Labid J., Baublys V., Tubelyte, V. (2017). Biological, mechanical, optical and physicochemical properties of natural chitin films obtained from the dorsal pronotum and the wing of cockroach, Carbohydrate Polymers, 163, 162–169.
  • [24] Basseri, H., Bakhtiyari, R., Hashemi, S. J., Baniardelani, M., Shahraki, H., and Hosainpour, L. (2019). Antibacterial/antifungal activity of extracted chitosan from American cockroach (Dictyoptera: Blattidae) and German cockroach (Blattodea: Blattellidae), Journal of Medical Entomology, 56(5), 1208–1214. https://doi.org/ 10.1093/jme/tjz082.
  • [25] Dai-Hung, N., and Se-Kwon K. (2014). Antioxidant effects of chitin, chitosan, and their derivatives, Advances in Food and Nutrition Research, 73, 15-31.
  • [26] Satitsri, S., and Muanprasat, C. (2020). Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications, Molecules, 25, 24, 5961.
  • [27] Jayakumar, R., Prabaharan, M., Nair, S. V., and Tamura, H. (2010). Novel chitin and chitosan nanofibers in biomedical applications, Biotechnology Advances, 28, 1, 142-150.
  • [28] Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., Minami, S., Okamoto, Y. (2015). Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials, Journal of Functional Biomaterials, 6, 1, 104-142. https://doi.org/10.3390/jfb6010104.
  • [29] Tan, G., Kaya, M., Tevlek, A., Sargin, I., and Baran, T. (2018). Antitumor activity of chitosan from mayfly with comparison to commercially available low, medium and high molecular weight chitosans, In Vitro Cellular & Developmental Biology-Animal, 54, 366-374.
  • [30] Kaya, M., Akyuz, B., Bulut, E., Sargin, I., Tan, G., Erdonmez, D., Maheta M., Satkauskas, S., Mickevičius, S. (2016). DNA interaction, antitumor and antimicrobial activities of three-dimensional chitosan ring produced from the body segments of a diplopod, Carbohydrate polymers, 146, 80-89.
  • [31] Park B. K., Kim M. M. (2010). Applications of Chitin and Its Derivatives in Biological Medicine, International Journal of Molecular Sciences, 11, 12, 5152-5164. https://doi.org/10.3390/ijms11125152.
  • [32] Jang, M.K., Kong, B.G., Jeong, Y.I., Lee, C H., and Nah, J.W. (2004). Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources, Journal of Polymer Science Part A: Polymer Chemistry, 42, 14, 3423-3432.
  • [33] Felse, P.A., and Panda, T. (1999). Studies on applications of chitin and its derivatives, Bioprocess Engineering, 20, 6, 505-512.
  • [34] Kaya, M., Baran, T., Mentes, A., Asaroglu, M., Sezen, G., and Tozak, K.O. (2014). Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates, Food Biophysics, 9, 145-157.
  • [35] Rinaudo, M. (2006). Chitin and chitosan: Properties and applications, Progress in Polymer Science, 31, 7, 603-632.
  • [36] Abdel-Moneim, A., El-Shahawy, A., Yousef, A. I., Abd El-Twab, S.M., Elden, Z.E., and Taha, M. (2020). Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: In silico, in vitro and in vivo approaches, International Journal of Biological Macromolecules, 154, 1496-1504.
  • [37] Varma, R., and Vasudevan, S. (2020). Extraction, Characterization, and Antimicrobial Activity of Chitosan from Horse Mussel Modiolus modiolus, ACS Omega, 5, 32, 20224-20230.
  • [38] Lucas, A.J.D.S., Oreste, E.Q., Costa, H.L.G., López, H.M., Saad, C.D.M., and Prentice, C. (2021). Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects, Food Chemistry, 343, 128550.
  • [39] Yen, M.T., Yang, J.H., and Mau, J.L. (2009). Physicochemical characterization of chitin and chitosan from crab shells, Carbohydrate Polymers, 75(1), 15-21.
  • [40] Muzzareli, R. A., Ferrero, A., and Pizzoli, M. (1972). Light-scattering, X-ray diffraction, elemental analysis and infrared spectro-photometry characterization of chitosan, a chelating polymer, Talanta, 19, 10, 1222-1226.

Characterization of intact chitosan obtained from Bradyporus sp. (Orthoptera, Insecta) and its cytotoxicity on human cell line (HEK293)

Yıl 2024, , 16 - 23, 30.06.2024
https://doi.org/10.29002/asujse.1382667

Öz

Intact chitosan film was produced from Bradyporus sp. (Orthoptera, Insecta) and
characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric
Analysis (TGA), X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM) and
elemental analysis. MTT test was performed to determine the cytotoxic effects of chitosan.
Chitosan administered at optimal and overdose intervals was applied to HEK293 cells for 24,
48 and 72 hours. In the MTT cytotoxicity test, the IC 50 dose of chitosan was 1427 µM at 24
hours, 808.9 µM at 48 hours, and 611.6 µM at 72 hours. Considering all the conducted
analyses and cytotoxic experiments, the obtained intact novel chitosan film from the insects
could find applications for biotechnological applications.

Kaynakça

  • [1] Synowiecki, J., and Al-Khateeb, N. A. (2003). Production, properties, and some new applications of chitin and its derivatives, Critical Reviews in Food Science and Nutrition, 43, 2,145–171.
  • [2] Kaya, M., Baran, T., Asan-Ozusaglam, M., Cakmak, Y.S., Tozak, K.O., Mol, A., Mentes, A., Sezen, G. (2015). Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta), Biotechnology and Bioprocess Engineering, 20, 168-179.
  • [3] Abidin, N.A.Z., Kormin, F., Abidin, N.A.Z., Anuar, N.A.F.M., Bakar, M.F.A. (2020). The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources, International Journal of Molecular Sciences, 21, 14, 4978. https://doi.org/10.3390/ijms21144978
  • [4] Mohan, K., Ganesan, A. R., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., Chandirasekar , R., Revathi, N. (2020). Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects, Trends in food science & technology, 105, 17-42.
  • [5] Simionato, J.I., Villalobos, L.D.G., Bulla, M.K., Cor´o, F.A.G., Garcia, J. C. (2014). Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazol dyes, Acta Scientiarum. Technology, 36, 4, 693–698.
  • [6] Yang, J.K., Shih, L., Tzeng, Y.M., and Wang, S.L. (2000). Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes, Enzyme and Microbial Technology, 26, 5–6, 406–413.
  • [7] Wu, S.J., Pan, S.K., Wang, H. B., and Wu, J. H. (2013). Preparation of chitooligosaccharides from cicada slough and their antibacterial activity, International Journal of Biological Macromolecules, 62, 348–351.
  • [8] Xia, Z., Chen, J., and Wu, S. (2013). Hypolipidemic activity of the chitooligosaccharides from Clanis bilineata (Lepidoptera), an edible insect, International Journal of Biological Macromolecules, 59, 96–98.
  • [9] Luo, Q., Wang, Y., Han, Q., Ji, L., Zhang, H., Fei, Z., Wang, Y. (2019). Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects, Carbohydrate Polymers, 209, 266–275.
  • [10]Kaya, M., Akyuz, B., Bulut, E., Sargin, I., Eroglu, F., and Tan, G. (2016). Chitosan nanofiber production from Drosophila by electrospinning, International Journal of Biological Macromolecules, 92, 49–55.
  • [11] Kaya, M., Bulut, E., Mujtaba, M., Sivickis, K., Sargin, I., Akyuz, B., Erdogan S. (2016). Gender influences differentiation of chitin among body parts, Archives of Insect Biochemistry and Physiology, 93(2), 96–109.
  • [12] Kaya, M., Baran, T., Erdogan, S., Mentes, A., Ozusaglam, M.A., and Çakmak, Y.S. (2014). Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata), Materials Science and Engineering: C, 45, 72–81.
  • [13] Erdogan, S., and Kaya, M. (2016). High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper, International Journal of Biological Macromolecules, 89, 118–126.
  • [14] Ibitoye, E., Lokman, I., Hezmee, M., Goh, Y., Zuki, A., and Jimoh, A. (2018). Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket, Biomedical Materials, 13, 2, 02009.
  • [15] Kaya, M., Bagrıaçık, N., Seyyar, O., and Baran, T. (2015). Comparison of chitin structures derived from three common wasp species (Vespa crabro Linnaeus, 1758, Vespa orientalis Linnaeus, 1771 and Vespula germanica (Fabricius, 1793)), Archives of Insect Biochemistry and Physiology, 89, 4, 204–217.
  • [16] Kaya, M., Bitim, B., Mujtaba, M., and Koyuncu, T. (2015). Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora), International Journal of Biological Macromolecules, 81, 443–449.
  • [17] Kaya, M., Erdogan, S., Mol, A., and Baran, T. (2015). Comparison of chitin structures isolated from seven Orthoptera species, International Journal of Biological Macromolecules, 72, 797–805.
  • [18] Kaya, M., Sargin, I., Al-Jaf, I., Erdogan, S., and Arslan, G. (2016). Characteristics of corneal lens chitin in dragonfly compound eyes, International Journal of Biological Macromolecules, 89, 54–61.
  • [19] Kim, M.W., Han, Y.S., Jo, Y.H., Choi, M.H., Kang, S.H., Kim, S.A., Jung W.J. (2016). Extraction of chitin and chitosan from housefly, Musca domestica, pupa shells, Entomological Research, 46, 5, 324–328.
  • [20] Ai, H., Wang, F., Yang, Q., Zhu, F., and Lei, C. (2008). Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica, Carbohydrate Polymers, 72 (3), 419–423.
  • [21] Khayrova, A., Lopatin, S., and Varlamov, V. (2019). Black soldier fly Hermetia illucens as a novel source of chitin and chitosan, International Journal of Sciences, 8, 81–86.
  • [22] Caligiani, A., Marseglia, A., Leni, G., Baldassarre, S., Maistrello, L., Dossena, A., Sforza S. (2018). Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin, Food Research International, 105, 812–820.
  • [23] Kaya, M., Sargin, I., Sabeckis, I., Noreikaite, D., Erdonmez, D., Salaberria, A.M., Labid J., Baublys V., Tubelyte, V. (2017). Biological, mechanical, optical and physicochemical properties of natural chitin films obtained from the dorsal pronotum and the wing of cockroach, Carbohydrate Polymers, 163, 162–169.
  • [24] Basseri, H., Bakhtiyari, R., Hashemi, S. J., Baniardelani, M., Shahraki, H., and Hosainpour, L. (2019). Antibacterial/antifungal activity of extracted chitosan from American cockroach (Dictyoptera: Blattidae) and German cockroach (Blattodea: Blattellidae), Journal of Medical Entomology, 56(5), 1208–1214. https://doi.org/ 10.1093/jme/tjz082.
  • [25] Dai-Hung, N., and Se-Kwon K. (2014). Antioxidant effects of chitin, chitosan, and their derivatives, Advances in Food and Nutrition Research, 73, 15-31.
  • [26] Satitsri, S., and Muanprasat, C. (2020). Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications, Molecules, 25, 24, 5961.
  • [27] Jayakumar, R., Prabaharan, M., Nair, S. V., and Tamura, H. (2010). Novel chitin and chitosan nanofibers in biomedical applications, Biotechnology Advances, 28, 1, 142-150.
  • [28] Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., Minami, S., Okamoto, Y. (2015). Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials, Journal of Functional Biomaterials, 6, 1, 104-142. https://doi.org/10.3390/jfb6010104.
  • [29] Tan, G., Kaya, M., Tevlek, A., Sargin, I., and Baran, T. (2018). Antitumor activity of chitosan from mayfly with comparison to commercially available low, medium and high molecular weight chitosans, In Vitro Cellular & Developmental Biology-Animal, 54, 366-374.
  • [30] Kaya, M., Akyuz, B., Bulut, E., Sargin, I., Tan, G., Erdonmez, D., Maheta M., Satkauskas, S., Mickevičius, S. (2016). DNA interaction, antitumor and antimicrobial activities of three-dimensional chitosan ring produced from the body segments of a diplopod, Carbohydrate polymers, 146, 80-89.
  • [31] Park B. K., Kim M. M. (2010). Applications of Chitin and Its Derivatives in Biological Medicine, International Journal of Molecular Sciences, 11, 12, 5152-5164. https://doi.org/10.3390/ijms11125152.
  • [32] Jang, M.K., Kong, B.G., Jeong, Y.I., Lee, C H., and Nah, J.W. (2004). Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources, Journal of Polymer Science Part A: Polymer Chemistry, 42, 14, 3423-3432.
  • [33] Felse, P.A., and Panda, T. (1999). Studies on applications of chitin and its derivatives, Bioprocess Engineering, 20, 6, 505-512.
  • [34] Kaya, M., Baran, T., Mentes, A., Asaroglu, M., Sezen, G., and Tozak, K.O. (2014). Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates, Food Biophysics, 9, 145-157.
  • [35] Rinaudo, M. (2006). Chitin and chitosan: Properties and applications, Progress in Polymer Science, 31, 7, 603-632.
  • [36] Abdel-Moneim, A., El-Shahawy, A., Yousef, A. I., Abd El-Twab, S.M., Elden, Z.E., and Taha, M. (2020). Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: In silico, in vitro and in vivo approaches, International Journal of Biological Macromolecules, 154, 1496-1504.
  • [37] Varma, R., and Vasudevan, S. (2020). Extraction, Characterization, and Antimicrobial Activity of Chitosan from Horse Mussel Modiolus modiolus, ACS Omega, 5, 32, 20224-20230.
  • [38] Lucas, A.J.D.S., Oreste, E.Q., Costa, H.L.G., López, H.M., Saad, C.D.M., and Prentice, C. (2021). Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects, Food Chemistry, 343, 128550.
  • [39] Yen, M.T., Yang, J.H., and Mau, J.L. (2009). Physicochemical characterization of chitin and chitosan from crab shells, Carbohydrate Polymers, 75(1), 15-21.
  • [40] Muzzareli, R. A., Ferrero, A., and Pizzoli, M. (1972). Light-scattering, X-ray diffraction, elemental analysis and infrared spectro-photometry characterization of chitosan, a chelating polymer, Talanta, 19, 10, 1222-1226.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Araştırma Makalesi
Yazarlar

Rajaa Umran 0000-0003-1716-5509

Abbas Mol 0000-0003-0660-967X

Amal Umran Mosa 0000-0003-0395-1509

Murat Kaya 0000-0001-6954-2703

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 28 Ekim 2023
Kabul Tarihi 11 Aralık 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Umran, R., Mol, A., Mosa, A. U., Kaya, M. (2024). Characterization of intact chitosan obtained from Bradyporus sp. (Orthoptera, Insecta) and its cytotoxicity on human cell line (HEK293). Aksaray University Journal of Science and Engineering, 8(1), 16-23. https://doi.org/10.29002/asujse.1382667
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr