Derleme
BibTex RIS Kaynak Göster

Denizel Doğal Süngerlerden Elde Edilen Biyosilikanın Doku Mühendisliğinde Kullanımı

Yıl 2023, , 62 - 66, 30.12.2023
https://doi.org/10.29002/asujse.1314603

Öz

Geleneksel olarak kullanılan malzemelerin, toksik olması, düşük biyouyumluluğu ve yüksek maliyetinden dolayı biyolojik temelli materyallerin kemik doku uygulamaları için kullanımı son yıllarda oldukça rağbet görmektedir. Özellikle biyosilika bu malzemelerin en bilinenidir. Dünya genelinde 31 omurgasız canlı türü vardır ve Porifera (Süngerler) yapısında yüksek miktarda biyosilika içeren omurgasız canlılardan biridir. Bu çalışmada denizel süngerlerin kemik doku hasarı tedavisi amaçlı kullanımı üzerine son yıllarda gerçekleştirilmiş çalışmalar özetlenmiştir. Sonuç olarak, biyolojik temelli olan silikanın doku hasarını giderimi için doğal 3 boyutlu iskele yapısı, hidroksiapatit oluşumu, minarelleşme ve proliferasyonu arttırıcı özelliklerinden dolayı yakın zamanda biyomedikal alanda yaygın olarak kullanılacağı öngörülmektedir.

Kaynakça

  • [1] van Soest, R.W., Hooper, J.N. (Eds.) (2002). Systema Porifera: A Guide to theClassification of Sponges, New York: Kluwer Academic/PlenumPublishers.
  • [2] Savage-Elliott, I., Ross, K.A., Smyth, N.A., Murawski, C.D., Kennedy, J.G. (2014). Osteochondral lesions of the talus: a current concepts review and evidence-based treatment paradigm, Foot & ankle specialist, 7(5), 414-422.
  • [3] Qiao, Z., Lian, M., Han, Y., Sun, B., Zhang, X., Jiang, W., Li, H., Hao, Y., Dai, K. (2021). Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration, Biomaterials, 266, 120385.
  • [4] Mandl, L. (2019). Osteoarthritis year in review 2018: clinical, Osteoarthritis and cartilage, 27(3), 359-364.
  • [5] Tamaddon, M., Gilja, H., Wang, L., Oliveira, J.M., Sun, X., Tan, R., Liu, C. (2020). Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: from bench to clinic, Biomaterials Translational, 1(1), 3-17.
  • [6] Hiligsmann, M., Reginster, J. (2013). The economic weight of osteoarthritis in Europe, Medicographia, 35(1), 197-202.
  • [7] Pareek, A., Sanders, T.L., Wu, I.T., Larson, D.R., Saris, D.B., Krych, A.J. (2017). Incidence of symptomatic osteochondritis dissecans lesions of the knee: a population-based study in Olmsted County, Osteoarthritis and Cartilage, 25(10), 1663-1671.
  • [8] Kon, E., Filardo, G., Di Martino, A., Marcacci, M. (2012). ACI and MACI, The Journal of Knee Surgery, 25(1), 17-22.
  • [9] Thorp, H., Kim, K., Kondo, M., Maak, T., Grainger, D.W., Okano, T. (2021). Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage, Cells, 10(3), 643.
  • [10] Krych, A.J., Harnly, H.W., Rodeo, S.A., Williams III, R.J. (2012). Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative study, JBJS, 94(11), 971-978.
  • [11] Gobbi, A., Lane, J.G., Dallo, I. (2020). Editorial Commentary: Cartilage Restoration—What Is Currently Available?, Arthroscopy, The Journal of Arthroscopic & Related Surgery, 36(6), 1625-1628.
  • [12] Grayson, W.L., Chao, P.-H.G., Marolt, D., Kaplan, D.L., Vunjak-Novakovic, G. (2008). Engineering custom-designed osteochondral tissue grafts, Trends in Biotechnology, 26(4), 181-189.
  • [13] Harris, J.D., Siston, R., Brophy, R., Lattermann, C., Carey, J., Flanigan, D. (2011). Failures, re-operations, and complications after autologous chondrocyte implantation–a systematic review, Osteoarthritis and Cartilage, 19(7), 779-791.
  • [14] Gobbi, A., Whyte, G.P. (2019). Long-term clinical outcomes of one-stage cartilage repair in the knee with hyaluronic acid–based scaffold embedded with mesenchymal stem cells sourced from bone marrow aspirate concentrate, The American Journal of Sports Medicine, 47(7), 1621-1628.
  • [15] McNickle, A.G., Provencher, M.T., Cole, B.J. (2008). Overview of existing cartilage repair technology, Sports Medicine and Arthroscopy Review, 16(4), 196-201.
  • [16] Ding, H., Cheng, Y., Niu, X., Hu, Y. (2020). Application of Electrospun Nanofibers in Bone, Cartilage and Osteochondral Tissue Engineering, Journal of Biomaterials Science, Polymer Edition, 32(4), 536-561.
  • [17] Sripanyakorn, S., Jugdaohsingh, R., Thompson, R.P., Powell, J.J. (2005). Dietary silicon and bone health, Nutrition Bulletin, 30(3), 222-230.
  • [18] Müller, W.E., Boreiko, A., Wang, X., Krasko, A., Geurtsen, W., Custódio, M.R., Winkler, T., Lukić-Bilela, L., Link, T., Schröder, H.C. (2007). Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells, Calcified tissue International, 81(5), 382-393.
  • [19] Tamburaci, S., Tihminlioglu, F. (2018). Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications, Materials Science and Engineering: C, 91, 274-291.
  • [20] Schröder, H.C., Boreiko, O., Krasko, A., Reiber, A., Schwertner, H. and Müller, W.E. (2005). Mineralization of SaOS‐2 cells on enzymatically (silicatein) modified bioactive osteoblast‐stimulating surfaces, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 75(2), 387-392.
  • [21] Shkarina, S., Shkarin, R., Weinhardt, V., Melnik, E., Vacun, G., Kluger, P.J., Loza, K., Epple, M., Ivlev, S.I., Baumbach, T. (2018). 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: High-resolution tomography and in vitro study, Scientific Reports, 8(1), 8907.
  • [22] Naruphontjirakul, P., Tsigkou, O., Li, S., Porter, A.E., Jones, J.R. (2019). Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles, Acta Biomaterialia, 90, 373-392.
  • [23] Shi, X., Nommeots-Nomm, A., Todd, N.M., Devlin-Mullin, A., Geng, H., Lee, P.D., Mitchell, C.A., Jones, J.R. (2020). Bioactive glass scaffold architectures regulate patterning of bone regeneration in vivo, Applied Materials Today, 20, 100770.
  • [24] Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., Lee, P.D., McPhail, D.S., Hanna, J.V., Jones, J.R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration, Journal of Materials Chemistry B, 3(38), 7560-7576.
  • [25] Quintero, F., Pou, J., Comesaña, R., Lusquiños, F., Riveiro, A., Mann, A.B., Hill, R.G., Wu, Z.Y., Jones, J.R. (2009). Laser spinning of bioactive glass nanofibers, Advanced Functional Materials, 19(19), 3084-3090.
  • [26] Riveiro, A., Amorim, S., Solanki, A., Costa, D.S., Pires, R.A., Quintero, F., del Val, J., Comesaña, R., Badaoui, A., Lusquiños, F. (2021). Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro-and nanofibres doped with lithium, Materials Science and Engineering: C, 126, 112124.
  • [27] Clarke, J. (2003). The occurrence and significance of biogenic opal in the regolith, Earth-Science Reviews, 60(3-4), 175-194.
  • [28] Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., Fratzl, P. (2005). Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale, Science, 309(5732), 275-278.
  • [29] Martins, E., Rapp, H.T., Xavier, J.R., Diogo, G.S., Reis, R.L., Silva, T.H. (2021). Macro and microstructural characteristics of north Atlantic deep-sea sponges as bioinspired models for tissue engineering scaffolding, Frontiers in Marine Science, 7, 613647.
  • [30] Granito, R.N., Custodio, M.R., Rennó, A.C.M. (2017). Natural marine sponges for bone tissue engineering: The state of art and future perspectives, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(6), 1717-1727.
  • [31] Kaya, M., Bilican, I., Mujtaba, M., Sargin, I., Haskoylu, M.E., Oner, E.T., Zheng, K., Boccaccini, A.R., Cansaran-Duman, D., Onses, M.S. (2021). Sponge-derived natural bioactive glass microspheres with self-assembled surface channel arrays opening into a hollow core for bone tissue and controlled drug release applications, Chemical Engineering Journal, 407, 126667.
  • [32] Murillo, F.J., Muñoz, P.D., Cristobo, J., Ríos, P., Gonzalez, C., Kenchington, E., Serrano, A. (2012). Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): distribution and species composition, Marine Biology Research, 8(9), 842-854.
  • [33] Schubert, M., Binnewerg, B., Voronkina, A., Muzychka, L., Wysokowski, M., Petrenko, I., Kovalchuk, V., Tsurkan, M., Martinovic, R., Bechmann, N. (2019). Naturally prefabricated marine biomaterials: isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida), International Journal of Molecular Sciences, 20(20), 5105.
  • [34] Boccardi, E., Belova, I., Murch, G., Boccaccini, A., Fiedler, T. (2015). Oxygen diffusion in marine-derived tissue engineering scaffolds, Journal of Materials Science: Materials in Medicine, 26, 1-9.
  • [35] Clarke, S., Choi, S., McKechnie, M., Burke, G., Dunne, N., Walker, G., Cunningham, E., Buchanan, F. (2016). Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges, Journal of Materials Science: Materials in Medicine, 27(2), 22.

Usage of Biosilica Derived from Marine Natural Sponges for Tissue Engineering

Yıl 2023, , 62 - 66, 30.12.2023
https://doi.org/10.29002/asujse.1314603

Öz

Due to the toxicity, low biocompatibility, and high cost of traditionally used materials, using bio-based materials for bone tissue applications has been very popular in recent years. In particular, biosilica is the most well-known of these materials. There are 31 invertebrate species around the World, and Porifera (Sponges) is one of the invertebrates that contain a high amount of biosilica in its structure. In this study, recent studies on the use of marine sponges for the treatment of bone tissue damage are summarized. As a result, it is predicted that bio-based silica will be widely used for tissue damage and repair in the biomedical field soon due to its natural 3D scaffold structure, hydroxyapatite formation, mineralization, and proliferation-enhancing properties.

Kaynakça

  • [1] van Soest, R.W., Hooper, J.N. (Eds.) (2002). Systema Porifera: A Guide to theClassification of Sponges, New York: Kluwer Academic/PlenumPublishers.
  • [2] Savage-Elliott, I., Ross, K.A., Smyth, N.A., Murawski, C.D., Kennedy, J.G. (2014). Osteochondral lesions of the talus: a current concepts review and evidence-based treatment paradigm, Foot & ankle specialist, 7(5), 414-422.
  • [3] Qiao, Z., Lian, M., Han, Y., Sun, B., Zhang, X., Jiang, W., Li, H., Hao, Y., Dai, K. (2021). Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration, Biomaterials, 266, 120385.
  • [4] Mandl, L. (2019). Osteoarthritis year in review 2018: clinical, Osteoarthritis and cartilage, 27(3), 359-364.
  • [5] Tamaddon, M., Gilja, H., Wang, L., Oliveira, J.M., Sun, X., Tan, R., Liu, C. (2020). Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: from bench to clinic, Biomaterials Translational, 1(1), 3-17.
  • [6] Hiligsmann, M., Reginster, J. (2013). The economic weight of osteoarthritis in Europe, Medicographia, 35(1), 197-202.
  • [7] Pareek, A., Sanders, T.L., Wu, I.T., Larson, D.R., Saris, D.B., Krych, A.J. (2017). Incidence of symptomatic osteochondritis dissecans lesions of the knee: a population-based study in Olmsted County, Osteoarthritis and Cartilage, 25(10), 1663-1671.
  • [8] Kon, E., Filardo, G., Di Martino, A., Marcacci, M. (2012). ACI and MACI, The Journal of Knee Surgery, 25(1), 17-22.
  • [9] Thorp, H., Kim, K., Kondo, M., Maak, T., Grainger, D.W., Okano, T. (2021). Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage, Cells, 10(3), 643.
  • [10] Krych, A.J., Harnly, H.W., Rodeo, S.A., Williams III, R.J. (2012). Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative study, JBJS, 94(11), 971-978.
  • [11] Gobbi, A., Lane, J.G., Dallo, I. (2020). Editorial Commentary: Cartilage Restoration—What Is Currently Available?, Arthroscopy, The Journal of Arthroscopic & Related Surgery, 36(6), 1625-1628.
  • [12] Grayson, W.L., Chao, P.-H.G., Marolt, D., Kaplan, D.L., Vunjak-Novakovic, G. (2008). Engineering custom-designed osteochondral tissue grafts, Trends in Biotechnology, 26(4), 181-189.
  • [13] Harris, J.D., Siston, R., Brophy, R., Lattermann, C., Carey, J., Flanigan, D. (2011). Failures, re-operations, and complications after autologous chondrocyte implantation–a systematic review, Osteoarthritis and Cartilage, 19(7), 779-791.
  • [14] Gobbi, A., Whyte, G.P. (2019). Long-term clinical outcomes of one-stage cartilage repair in the knee with hyaluronic acid–based scaffold embedded with mesenchymal stem cells sourced from bone marrow aspirate concentrate, The American Journal of Sports Medicine, 47(7), 1621-1628.
  • [15] McNickle, A.G., Provencher, M.T., Cole, B.J. (2008). Overview of existing cartilage repair technology, Sports Medicine and Arthroscopy Review, 16(4), 196-201.
  • [16] Ding, H., Cheng, Y., Niu, X., Hu, Y. (2020). Application of Electrospun Nanofibers in Bone, Cartilage and Osteochondral Tissue Engineering, Journal of Biomaterials Science, Polymer Edition, 32(4), 536-561.
  • [17] Sripanyakorn, S., Jugdaohsingh, R., Thompson, R.P., Powell, J.J. (2005). Dietary silicon and bone health, Nutrition Bulletin, 30(3), 222-230.
  • [18] Müller, W.E., Boreiko, A., Wang, X., Krasko, A., Geurtsen, W., Custódio, M.R., Winkler, T., Lukić-Bilela, L., Link, T., Schröder, H.C. (2007). Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells, Calcified tissue International, 81(5), 382-393.
  • [19] Tamburaci, S., Tihminlioglu, F. (2018). Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications, Materials Science and Engineering: C, 91, 274-291.
  • [20] Schröder, H.C., Boreiko, O., Krasko, A., Reiber, A., Schwertner, H. and Müller, W.E. (2005). Mineralization of SaOS‐2 cells on enzymatically (silicatein) modified bioactive osteoblast‐stimulating surfaces, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 75(2), 387-392.
  • [21] Shkarina, S., Shkarin, R., Weinhardt, V., Melnik, E., Vacun, G., Kluger, P.J., Loza, K., Epple, M., Ivlev, S.I., Baumbach, T. (2018). 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: High-resolution tomography and in vitro study, Scientific Reports, 8(1), 8907.
  • [22] Naruphontjirakul, P., Tsigkou, O., Li, S., Porter, A.E., Jones, J.R. (2019). Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles, Acta Biomaterialia, 90, 373-392.
  • [23] Shi, X., Nommeots-Nomm, A., Todd, N.M., Devlin-Mullin, A., Geng, H., Lee, P.D., Mitchell, C.A., Jones, J.R. (2020). Bioactive glass scaffold architectures regulate patterning of bone regeneration in vivo, Applied Materials Today, 20, 100770.
  • [24] Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., Lee, P.D., McPhail, D.S., Hanna, J.V., Jones, J.R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration, Journal of Materials Chemistry B, 3(38), 7560-7576.
  • [25] Quintero, F., Pou, J., Comesaña, R., Lusquiños, F., Riveiro, A., Mann, A.B., Hill, R.G., Wu, Z.Y., Jones, J.R. (2009). Laser spinning of bioactive glass nanofibers, Advanced Functional Materials, 19(19), 3084-3090.
  • [26] Riveiro, A., Amorim, S., Solanki, A., Costa, D.S., Pires, R.A., Quintero, F., del Val, J., Comesaña, R., Badaoui, A., Lusquiños, F. (2021). Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro-and nanofibres doped with lithium, Materials Science and Engineering: C, 126, 112124.
  • [27] Clarke, J. (2003). The occurrence and significance of biogenic opal in the regolith, Earth-Science Reviews, 60(3-4), 175-194.
  • [28] Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., Fratzl, P. (2005). Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale, Science, 309(5732), 275-278.
  • [29] Martins, E., Rapp, H.T., Xavier, J.R., Diogo, G.S., Reis, R.L., Silva, T.H. (2021). Macro and microstructural characteristics of north Atlantic deep-sea sponges as bioinspired models for tissue engineering scaffolding, Frontiers in Marine Science, 7, 613647.
  • [30] Granito, R.N., Custodio, M.R., Rennó, A.C.M. (2017). Natural marine sponges for bone tissue engineering: The state of art and future perspectives, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(6), 1717-1727.
  • [31] Kaya, M., Bilican, I., Mujtaba, M., Sargin, I., Haskoylu, M.E., Oner, E.T., Zheng, K., Boccaccini, A.R., Cansaran-Duman, D., Onses, M.S. (2021). Sponge-derived natural bioactive glass microspheres with self-assembled surface channel arrays opening into a hollow core for bone tissue and controlled drug release applications, Chemical Engineering Journal, 407, 126667.
  • [32] Murillo, F.J., Muñoz, P.D., Cristobo, J., Ríos, P., Gonzalez, C., Kenchington, E., Serrano, A. (2012). Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): distribution and species composition, Marine Biology Research, 8(9), 842-854.
  • [33] Schubert, M., Binnewerg, B., Voronkina, A., Muzychka, L., Wysokowski, M., Petrenko, I., Kovalchuk, V., Tsurkan, M., Martinovic, R., Bechmann, N. (2019). Naturally prefabricated marine biomaterials: isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida), International Journal of Molecular Sciences, 20(20), 5105.
  • [34] Boccardi, E., Belova, I., Murch, G., Boccaccini, A., Fiedler, T. (2015). Oxygen diffusion in marine-derived tissue engineering scaffolds, Journal of Materials Science: Materials in Medicine, 26, 1-9.
  • [35] Clarke, S., Choi, S., McKechnie, M., Burke, G., Dunne, N., Walker, G., Cunningham, E., Buchanan, F. (2016). Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges, Journal of Materials Science: Materials in Medicine, 27(2), 22.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Doku Mühendisliği, Biyomateryaller
Bölüm Derleme
Yazarlar

Bahar Akyüz Yılmaz 0000-0001-9760-9856

Murat Kaya 0000-0001-6954-2703

Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 14 Haziran 2023
Kabul Tarihi 21 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Akyüz Yılmaz, B., & Kaya, M. (2023). Denizel Doğal Süngerlerden Elde Edilen Biyosilikanın Doku Mühendisliğinde Kullanımı. Aksaray University Journal of Science and Engineering, 7(2), 62-66. https://doi.org/10.29002/asujse.1314603

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License