Review
BibTex RIS Cite

Recent Advances in the Study of Bulk Crystals: Copper Chalcogenides

Year 2025, Volume: 9 Issue: 1, 10 - 22
https://doi.org/10.29002/asujse.1643708

Abstract

Solid crystalline materials play a crucial role in a range of technological applications, from photovoltaics to thermoelectrics. Increasing the performance of these materials is important in terms of application efficiency. This review provides an overview of recent developments in the field, with a focus on photovoltaic materials, defect chemistry, and thermoelectric properties. Copper sulfide and selenides have advantages such as environmental friendliness, low cost and improved thermoelectric efficiency that set them apart from the competition. Special emphasis is placed on copper sulfides (Cu₂S) and selenides (Cu₂Se) due to their unique structural and electronic properties, making them promising candidates for sustainable energy applications. The manifestation of these copper chalcogens occurs within a variety of crystal structures, contingent on the liquid-like motion of the Cu⁺ ion within the crystal. In this review, the defective, deficiency and regular structures identified in recent years were also discussed.

Supporting Institution

This work was supported by Scientific Research Projects Coordination Unit of Aksaray University, Project Number 2020-040.

References

  • [1] World Bank, Fossil Fuel Energy Consumption, Data, Energy Foss, Fuels Consum, 2016 < https://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS.
  • [2] Yilmaz, F. (2018). Thermodynamic performance evaluation of a novel solar energy based multigeneration system. Applied Thermal Engineering, 143, 429-437.DOI: 10.1016/j.applthermaleng.2018.07.125
  • [3] Zhang, Y., Li, Z., Long, Q., Chen, G. (2024). A strategy towards fabrication of thermoplastic-based composites with outstanding mechanical and thermoelectric performances. Journal of Colloid and Interface Science, 674, 695-701. DOI: 10.1016/j.jcis.2024.06.188
  • [4] Baskaran, P., Rajasekar, M. (2025). Recent progress in thermoelectric devices and applications. Chemical Engineering Journal, 506, 159929. DOI: 10.1016/j.cej.2025.159929
  • [5] Burnete, N.V., Mariasiu, F., Depcik, C., Barabas, I., Moldovanu, D. (2022). Review of thermoelectric generation for internal combustion engine waste heat recovery. Progress in Energy and Combustion Science, 91, 101009. DOI: 10.1016/j.pecs.2022.101009
  • [6] Mamur, H., Dilmaç, Ö.F., Begum, J., Bhuiyan, M.R.A. (2021). Thermoelectric generators act as renewable energy sources. Cleaner Materials, 2, 100030. DOI: 10.1016/j.clema.2021.100030
  • [7] Kong, S., Huang, Z., Hu, Y., Jiang, Y., Lu Y., Zhao, W., Xie Y. (2023). Tellurium-nanowire-doped thermoelectric hydrogel with high stretchability and seebeck coefficient for low-grade heat energy harvesting. Nano Energy, 115, 108708. DOI: 10.1016/j.nanoen.2023.108708
  • [8] Paul, M. (2020). Microwave Assisted Aqueous Synthesis of Nanostructured Bi₂Te₃ and Sb₂Te₃ Thermoelectric Materials. MSc thesis, KTH Royal Institute of Technology, Engineering Physics, Stockholm, Sweden.
  • [9] Witting, I.T., Chasapis, T.C., Ricci, F., Peters, M., Heinz, N.A., Hautier, G., Snyder, G.J. (2019). The thermoelectric properties of bismuth telluride. Advanced Electronic Materials, 5(6), 1800904. DOI: 10.1002/aelm.201800904.
  • [10] LaLonde, A.D., Pei, Y., Wang, H., Snyder, G.J. (2011). Lead telluride alloy thermoelectrics. Materials Today, 14(11), 526-532. DOI: 10.1016/S1369-7021(11)70278-4
  • [11] Bhandari, C.M., Rowe, D.M. (1980). Silicon–germanium alloys as high-temperature thermoelectric materials. Contemporary Physics, 21(3), 219-242. DOI: 10.1080/00107518008210957
  • [12] Yang, L., Chen, Z.G., Dargusch, M.S., Zou, J. (2018). High performance thermoelectric materials: progress and their applications. Advanced Energy Materials, 8(6), 1701797. DOI: 10.1002/aenm.201701797
  • [13] Huang, Z., Jiang, R., Li, P., Liu, X., Chen, G., Zhao, L., Wang, J. (2024). Size and surface-dependent phase transition temperature in Cu2Se nanobridges. Nano Today, 58, 102460. DOI: 10.1016/j.nantod.2024.102460
  • [14] Bölen, E., Deligoz, E., Ozisik, H. (2024). Intrinsically low lattice thermal conductivity and thermoelectric performance of 2D Cu2Te. Physica Scripta, 99(4), 045920. DOI: 10.1088/1402-4896/ad2e5f
  • [15] White, S.L., Banerjee, P., Jain, P.K. (2017). Liquid-like cationic sub-lattice in copper selenide clusters. Nature Communications, 8(1), 14514. DOI: 10.1038/ncomms14514
  • [16] Bhuiyan, M.R.A., Mamur, H., Üstüner, M.A., Dilmaç, Ö.F. (2022). Current and future trend opportunities of thermoelectric generator applications in waste heat recovery. Gazi University Journal of Science, 35(3), 896-915. DOI: 10.35378/gujs.934901
  • [17] Maier, J. (1993). Defect chemistry: composition, transport, and reactions in the solid state; part I: thermodynamics. Angewandte Chemie International Edition in English, 32(3), 313-335. DOI: doi.org/10.1002/anie.199303133
  • [18] Kittel, C., McEuen, P. (2018). Introduction to solid state physics. John Wiley & Sons.
  • [19] Nguyen, T.P. (2006). Defect analysis in organic semiconductors. Materials Science in Semiconductor Processing, 9(1-3), 198-203. DOI: doi.org/10.1016/j.mssp.2006.01.060
  • [20] Kroger, F.A. (1977). Defect chemistry in crystalline solids. Annual Review of Materials Science, 7(1), 449-475. DOI: 10.1146/annurev.ms.07.080177.002313
  • [21] Savaşkan, T. (2017). Malzeme bilimi ve malzeme muayenesi. Celpler Matbaacılık, 347-350.
  • [22] Danilkin, S.A., Skomorokhov, A.N., Hoser, A., Fuess, H., Rajevac, V., Bickulova, N.N. (2003). Crystal structure and lattice dynamics of superionic copper selenide Cu2− δSe. Journal of Alloys and Compounds, 361(1-2), 57-61. DOI: 10.1016/S0925-8388(03)00439-0
  • [23] Heyding, R.D., Murray, R.M. (1976). The crystal structures of Cu1• 8Se, Cu3Se2, α- and γCuSe, CuSe2, and CuSe2II. Canadian Journal of Chemistry, 54(6), 841-848. DOI: 10.1139/v76-122
  • [24] Lu, P., Liu, H., Yuan, X., Xu, F., Shi, X., Zhao, K., Chen, L. (2015). Multiformity and fluctuation of Cu ordering in Cu2Se thermoelectric materials. Journal of Materials Chemistry A, 3(13), 6901-6908. DOI: 10.1039/C4TA07100J
  • [25] Kumar, S., Gupta, M.K., Goel, P., Mittal, R., Delaire, O., Thamizhavel, A., Chaplot, S.L. (2022). Solidlike to liquidlike behavior of Cu diffusion in superionic Cu2X (X= S, Se): An inelastic neutron scattering and ab initio molecular dynamics investigation. Physical Review Materials, 6(5), 055403.
  • [26] Zhao, S., Chen, H., Zhao, X., Luo, J., Tang, Z., Zeng, G., Sun, Y. (2020). Excessive iodine addition leads to room-temperature superionic Cu2S with enhanced thermoelectric properties and improved thermal stability. Materials Today Physics, 15, 100271. DOI: 10.1016/j.mtphys.2020.100271
  • [27] Jo, I.R., Rajesh, J.A., Lee, Y.H., Park, J.H., Ahn, K.S. (2020). Enhanced electrocatalytic activity and electrochemical stability of Cu2S/PbS counter electrode for quantum-dot-sensitized solar cells. Applied Surface Science, 525, 146643. DOI: 10.1016/j.apsusc.2020.146643
  • [28] Nieroda, P., Kusior, A., Leszczyński, J., Rutkowski, P., Koleżyński A. (2021). Thermoelectric properties of Cu2Se synthesized by hydrothermal method and densified by SPS technique. Materials, 14(13), 3650. DOI: 10.3390/ma14133650
  • [29] Matsuzaki, K., Tsunoda, N., Kumagai, Y., Tang, Y., Nomura, K., Oba, F., Hosono, H. (2022). Hole-doping to a Cu (I)-based semiconductor with an isovalent cation: Utilizing a complex defect as a shallow acceptor. Journal of the American Chemical Society, 144(36), 16572-16578. DOI: 10.1021/jacs.2c06283
  • [30] Lukashev, P., Lambrecht, W.R., Kotani, T., Van Schilfgaarde, M. (2007). Electronic and crystal structure of Cu2-xS: full-potential electronic structure calculations. Physical Review B Condensed Matter and Materials Physics, 76(19), 195202. DOI: 10.1103/PhysRevB.76.195202
  • [31] Xu, Q., Huang, B., Zhao, Y., Yan, Y., Noufi, R., Wei, S.H. (2012). Crystal and electronic structures of CuxS solar cell absorbers. Applied Physics Letters, 100, 061906. DOI: 10.1063/1.3682503
  • [32] Zhao, K., Qiu, P., Shi, X., Chen, L. (2020). Recent advances in liquid‐like thermoelectric materials. Advanced Functional Materials, 30(8), 1903867. DOI: 10.1002/adfm.201903867
  • [33] Ioffe, A.F., Stil'Bans, L.S., Iordanishvili, E.K., Stavitskaya, T.S., Gelbtuch, A., Vineyard, G. (1959). Semiconductor thermoelements and thermoelectric cooling. Physics Today, 12(5), 42-42. DOI: 10.1063/1.3060810
  • [34] Fleurial, J.P. (2009). Thermoelectric power generation materials: Technology and application opportunities. Jom, 61(4), 79-85. DOI: 10.1007/s11837-009-0057-z
  • [35] Twaha, S., Zhu, J., Yan, Y., Li, B. (2016). A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews, 65, 698-726. DOI: 10.1016/j.rser.2016.07.034
  • [36] Rull-Bravo, M., Moure, A., Fernández, J.F., Martín-González, M. (2015). Skutterudites as thermoelectric materials: revisited. RSC Advances, 5(52), 41653-41667. DOI: 10.1039/C5RA03942H
  • [37] Snyder, G.J. (2008). Small thermoelectric generators. The Electrochemical Society Interface, 17(3), 54. DOI: 10.1149/2.F06083IF
  • [38] Shi, X.L., Zou, J., Chen, Z.G. (2020). Advanced thermoelectric design: from materials and structures to devices. Chemical Reviews, 120(15), 7399-7515. DOI: 10.1021/acs.chemrev.0c00026
  • [39] Zhu, T., Liu, Y., Fu, C., Heremans, J.P., Snyder, J.G., Zhao, X. (2017). Compromise and synergy in high‐efficiency thermoelectric materials. Advanced Materials, 29(14), 1605884. DOI: 10.1002/adma.201605884
  • [40] Coughlan, C., Ibanez, M., Dobrozhan, O., Singh, A., Cabot, A., Ryan, K.M. (2017). Compound copper chalcogenide nanocrystals. Chemical Reviews, 117(9), 5865-6109. DOI: 10.1021/acs.chemrev.6b00376
  • [41] Liu W. D., Yang L., Chen Z. G., Zou J. (2020). Promising and eco‐friendly Cu2X‐based thermoelectric materials: progress and applications. Advanced Materials, 32(8), 1905703. DOI: 10.1002/adma.201905703
  • [42] Wang, Q., Li, Z., Xue, Y., Gao, Z., Wang, A., Wang, J., Wang, S. (2024). Enhanced thermoelectric performance of Cu2Se thin film derived from potential barrier scattering by incorporating SnSe nano-dispersions. Applied Physics Letters, 124(19). DOI: 10.1063/5.0201400
  • [43] He, Y., Day, T., Zhang, T., Liu, H., Shi, X., Chen, L., Snyder, G. J. (2014). High thermoelectric performance in non‐toxic earth‐abundant copper sulfide. Advanced Materials, 23(26), 3974-3978. DOI: doi.org/10.1002/adma.201400515
  • [44] Zhao, K., Duan, H., Raghavendra, N., Qiu, P., Zeng, Y., Zhang, W., Chen, L. (2017). Solid‐state explosive reaction for nanoporous bulk thermoelectric materials. Advanced Materials, 29(42), 1701148. DOI: 10.1002/adma.201701148
  • [45] Li, M., Cortie, D.L., Liu, J., Yu, D., Islam, S.M.K.N., Zhao, L., Wang, X. (2018). Ultra-high thermoelectric performance in graphene incorporated Cu2Se: Role of mismatching phonon modes. Nano Energy, 53, 993-1002. DOI: 10.1016/j.nanoen.2018.09.041
  • [46] Nunna, R., Qiu, P., Yin, M., Chen, H., Hanus, R., Song, Q., Chen, L. (2017). Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy & Environmental Science, 10(9), 1928-1935. DOI: 10.1039/C7EE01737E
  • [47] Yo, Y., Zhang, B.P., Pei, J., Liu, Y.C., Li, J.F. (2017). Thermoelectric performance enhancement of Cu2S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction. Journal of Materials Chemistry C, 5(31), 7845-7852. DOI: 10.1039/C7TC01937H
  • [48] Basit, A., Xin, J., Murtaza, G., Wei, L., Hameed, A., Guoyu, W., Dai, J.Y. (2023). Recent advances, challenges, and perspective of copper‐based liquid‐like thermoelectric chalcogenides: a review. EcoMat, 5(9), e12391. DOI: 10.1002/eom2.12391
  • [49] Nieroda, P., Leszczyński, J., Kapera, K., Rutkowski, P., Ziewiec, K., Szymańska, A., Kruszewski, M.J., Rudnik, M., Koleżyński, A. (2024). Thermoelectric Properties of Cu2S Doped with P, As, Sb and Bi-Theoretical and Experimental Studies. Materials, 17(22), 5440. DOI: 10.3390/ma17225440
  • [50] Bogatu, C., Vîlcu, R., & Dută, A. (2005). Experimental Methods For Study High-Pressure Phase Behaviour. Part I. Static Methods. Analele Universităţii din Bucureşti–Chimie Anul, 14 (1-2), 193-203.
  • [51] Santamaria-Perez, D., Garbarino, G., Chulia-Jorda, R., Dobrowolski, M.A., Mühle, C., Jansen, M. (2014). Pressure-induced phase transformations in mineral chalcocite, Cu2S, under hydrostatic conditions. Journal of Alloys and Compounds, 610, 645-650. DOI: 10.1016/j.jallcom.2014.04.176
  • [52] Yang, X., Jiang, S.Q., Zhang, H.C., Zhao, K.P., Shi, X., Chen, X.J. (2018). Pressure-induced structural phase transition and electrical properties of Cu2S. Journal of Alloys and Compounds, 766, 813-817. DOI: 10.1016/j.jallcom.2018.07.037
  • [53] Xue, L., Fang, C., Shen, W., Shen, M., Ji, W., Zhang, Y., Jia, X. (2020). Thermoelectric properties of S-doped Cu2Se materials synthesized by high-pressure and high-temperature method. Modern Physics Letters B, 34(01), 2050006. DOI: 10.1142/S0217984920500062
  • [54] Xue, L., Fang, C., Shen, W., Shen, M., Ji, W., Zhang, Y., Jia, X. (2019). High pressure synthesis and thermoelectric performances of Cu2Se compounds. Physics Letters A, 383(29), 125917. DOI: 10.1016/j.physleta.2019.125917
  • [55] Lee, R., Howard, J.A., Probert, M.R., Steed, J.W. (2014). Structure of organic solids at low temperature and high pressure. Chemical Society Reviews, 43(13), 4300-4311.
  • [56] Qin, F., Zhang, D., Qin, S. (2021). High Pressure Behaviors and a Novel High-Pressure Phase of Cuprous Oxide Cu2O. Frontiers in Earth Science, 9, 740685. DOI: 10.3389/feart.2021.740685
  • [57] Ju, X., Xu, C., Hu, Y., Han, X., Wei, G., Du, X. (2017). A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems. Solar Energy Materials and Solar Cells, 161, 305-327. DOI: 10.1016/j.solmat.2016.12.004
  • [58] Singh, G.K. (2013). Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, 1-13. DOI: 10.1016/j.energy.2013.02.057
  • [59] Dincer, F. (2011). The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renewable and Sustainable Energy Reviews, 15(1), 713-720. DOI: 10.1016/j.rser.2010.09.026
  • [60] Alami, A.H., Olabi, A.G., Mdallal, A., Rezk, A., Radwan, A., Rahman, S.M.A., Abdelkareem, M.A. (2023). Concentrating solar power (CSP) technologies: Status and analysis. International Journal of Thermofluids, 18, 100340. DOI: 10.1016/j.ijft.2023.100340
  • [61] Burhan, M., Shahzad, M.W., Ng K.C. (2017). Long-term performance potential of concentrated photovoltaic (CPV) systems. Energy conversion and management, 148, 90-99. DOI: 10.1016/j.enconman.2017.05.072
  • [62] https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system#:~:text=Looking%20into%20the%20growing%20usage,output%20of%20a%20photovoltaic%20system.
  • [63] Riha, S.C., Jin, S., Baryshev, S.V., Thimsen, E., Wiederrecht, G.P., Martinson, A.B. (2013). Stabilizing Cu2S for photovoltaics one atomic layer at a time. ACS Applied Materials & Interfaces, 5(20), 10302-10309. DOI: 10.1021/am403225e
  • [64] Nieroda, P., Leszczyński, J., Mikuła, A., Mars, K., Kruszewski, M. J., Koleżyński, A. (2020). Thermoelectric properties of Cu2S obtained by high temperature synthesis and sintered by IHP method. Ceramics International, 46(16), 25460-25466. DOI: 10.1016/j.ceramint.2020.07.016
  • [65] Stolle, C. J., Harvey, T.B., Korgel, B.A. (2013). Nanocrystal photovoltaics: a review of recent progress. Current Opinion in Chemical Engineering, 2(2), 160-167. DOI: 10.1016/j.coche.2013.03.001
  • [66] Dean, J.I., Inogouchi, T., Mito, S., Park, Y.S., Shin, B.K., Tairov, Y.M., Wagner, S. (2006). Electroluminescence (Vol. 17). Springer Science & Business Media, NJ 08540, USA.
  • [67] Wu, Y., Wadia, C., Ma, W., Sadtler, B., Alivisatos, A. P. (2008). Synthesis and photovoltaic application of copper (I) sulfide nanocrystals. Nano letters, 8(8), 2551-2555. DOI: 10.1021/nl801817d
  • [68] Li, H., Wang, K., Cheng, S., Jiang, K. (2018). Controllable electrochemical synthesis of copper sulfides as sodium-ion battery anodes with superior rate capability and ultralong cycle life. ACS Applied Materials & Interfaces, 10(9), 8016-8025. DOI: 10.1021/acsami.7b19138
  • [69] Tay, E. (2015). Electrochemical Deposition of Cu-Zn-Sn-S Films. Phd Thesis, Imperial College London, Department of Materials, London, United Kingdom.
  • [70] Garcia, V.M., Nair, P.K., Nair, M.T.S. (1999). Copper selenide thin films by chemical bath deposition. Journal of Crystal Growth, 203(1-2), 113-124. DOI: 10.1016/S0022-0248(99)00040-8
  • [71] Rathod, K.C. (2021). Synthesis characterization of copper selenide thin films and study of photovoltaic solar applications. Material Science: An Indian Journal, 19, 157.
  • [72] Barman, S.K. (2019). A First Principles Based Approach to Stabilize Cu2S for Efficient Solar Absorber Material. Phd Thesis, The University of Texas at Arlington, Department of Materials, Arlington, USA.
  • [73] Mulla, R., Rabinal, M.H.K. (2019). Copper sulfides: earth‐abundant and low‐cost thermoelectric materials. Energy Technology, 7(7), 1800850. DOI: 10.1002/ente.201800850
  • [74] Zimmer, D., Ruiz-Fuertes, J., Morgenroth, W., Friedrich, A., Bayarjargal, L., Haussühl, E., Winkler, B. (2018). Pressure-induced changes of the structure and properties of monoclinic α-chalcocite Cu2S. Physical Review B, 97(13), 134111. DOI: 10.1103/PhysRevB.97.134111
  • [75] Zhao, Y., Burda, C. (2012). Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy & Environmental Science, 5(2), 5564-5576. DOI: 10.1039/C1EE02734D
  • [76] Klan, J.M., Harper, D.K., Ruffley, J.P., Gan, X.Y., Millstone, J.E., Johnson, J.K. (2021). Theoretical Study of the Impact of Vacancies and Disorder on the Electronic Properties of Cu2–xSe. The Journal of Physical Chemistry C, 125(22), 12324-12332. DOI: 10.1021/acs.jpcc.1c02147
  • [77] Xu, J., Zhao, J., Liu, W. (2023). A comparative study of renewable and fossil fuels energy impacts on green development in Asian countries with divergent income inequality. Resources Policy, 85, 104035. DOI: 10.1016/j.resourpol.2023.104035
  • [78] Kızılaslan, A. (2020). Lityum-iyon piller için sülfür esaslı katı elektrolitlerin sentezlenerek elektrot-elektrolit arayüzeyinin incelenmesi. Doktora Tezi, Sakarya Üniversitesi, Metalurji ve Malzeme Mühendisliği Bölümü, Sakarya, Türkiye.
  • [79] Schmidt-Rohr, K. (2018). How batteries store and release energy: explaining basic electrochemistry. Journal of Chemical Education, 95(10), 1801-1810. DOI: 10.1021/acs.jchemed.8b00479
  • [80] Bekmezci, M., Altuner, E.E., Erduran, V., Bayat, R., Isik, I., Şen, F. (2021). Fundamentals of electrochemistry. In Nanomaterials for Direct Alcohol Fuel Cells, pp. 1-15. DOI: 10.1016/B978-0-12-821713-9.00023-8
  • [81] Arora, P., White, R.E., Doyle, M. (1998). Capacity fade mechanisms and side reactions in lithium‐ion batteries. Journal of the Electrochemical Society, 145(10), 3647. DOI: 10.1149/1.1838857
  • [82] Chen, C., Wang, X., Zhu, J., Liu, K., Knoll, A.C. (2025). Applications–Transportation Applications| Battery Charging Technologies. In Encyclopedia of Electrochemical Power Sources, 373-390. DOI: 10.1016/B978-0-323-96022-9.00275-9
  • [83] Abdulkareem, A.J.A. (2022). High capacity LiFePO4/C/rGO nanocomposite positive electrode for lithium ion batteries. MSc Thesis, Sakarya University, Nanoscience & Nanoengineering, Sakarya, Turkey.
  • [84] Hyun, J.E., Lee, P.C., Tatsumi, I. (2015). Preparation and electrochemical properties of sulfur-polypyrrole composite cathodes for electric vehicle applications. Electrochimica Acta, 176, 887-892. DOI: 10.1016/j.electacta.2015.07.055
  • [85] Lin, X., Zhou, G., Liu, J., Yu, J., Effat, M.B., Wu, J., Ciucci, F. (2020). Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Advanced Energy Materials, 10(43), 2001235. DOI: 10.1002/aenm.202001235
  • [86] Li, T., Zhao, D., Shi, M., Wang, T., Yin, Q., Li, Y., Sui, Y. (2023). MOF-derived N, S Co-doped carbon matrix-encapsulated Cu2S nanoparticles as high-performance lithium-ion battery anodes: a joint theoretical and experimental study. Journal of Materials Chemistry A, 11(3), 1461-1472. DOI: 10.1039/D2TA08539A
  • [87] Yu, H., Liu, J., Wu, X., Li, R., Jin, R., Zhou, G. (2024). Construction of mesocrystal Cu2-xSe nanoplates with high infiltration for enhanced electrochemical performance in lithium ion batteries and electrochemical supercapacitors. Applied Surface Science, 655, 159530. DOI: 10.1016/j.apsusc.2024.159530
  • [88] Bugday, N., Huang, J., Deng, W., Zou, G., Hou, H., Ji, X., Yaşar, S. (2025). Architectures of zeolitic imidazolate framework derived Cu2Se/ZnSe@ NPC and Cu1. 95Se@ NPC nanoparticles as anode materials for sodium-ion and lithium-ion batteries. Journal of Power Sources, 632, 236352. DOI: doi.org/10.1016/j.jpowsour.2025.236352
  • [89] Wang, Y., Feng, X., Xiong, Y., Stoupin, S., Huang, R., Zhao, M., Abruña, H.D. (2020). An innovative lithium ion battery system based on a Cu2S anode material. ACS applied materials & interfaces, 12(15), 17396-17405. DOI: 10.1021/acsami.9b21982
  • [90] Li, X., Zhang, Z., Liu, C., Lin, Z. (2018). Capacity increase investigation of Cu2Se electrode by using electrochemical impedance spectroscopy. Frontiers in Chemistry, 6, 221. DOI: 10.3389/fchem.2018.00221
  • [91] Bae, K.Y., Cho, S.H., Kim, B.H., Son, B.D., Yoon, W.Y. (2019). Energy-density improvement in Li-ion rechargeable batteries based on LiCoO2+ LiV3O8 and graphite+ Li-metal hybrid electrodes. Materials, 12(12), 2025. DOI: 10.3390/ma12122025
  • [92] Phogat, P., Shreya, S., Jha, R., Singh, S. (2024). Chalcogenide nanocomposites for energy materials. Engineering and Technology Journal, 9(7), 4580-4606. DOI: 10.47191/etj/v9i07.29
  • [93] van Oversteeg, C.H.M. (2020). Copper Sulfide Nanoparticles: Synthesis, Characterization and Catalysis. PhD Thesis, Utrecht University, the Netherlands.
  • [94] Vamathevan, V., Amal, R., Beydoun, D., Low, G., McEvoy, S. (2002). Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3), 233-245. DOI: 10.1016/S1010-6030(02)00049-7
  • [95] Yang, X., Ni, H., Yu, X., Cao, B., Xing, J., Chen, Q., Zhao, J.T. (2024). Roles of concentration-dependent Cu doping behaviors on the thermoelectric properties of n-type Mg3Sb1. 5Bi0. 5. Journal of Materiomics, 10(1), 154-162. DOI: 10.1016/j.jmat.2023.05.004
  • [96] Lv, Y., Chen, J., Zheng, R.K., Song, J., Zhang, T., Li, X., Chen, L. (2015). Photo-induced enhancement of the power factor of Cu2S thermoelectric films. Scientific Reports, 5(1), 16291. DOI: 10.1038/srep16291
  • [97] Gan, Y. X. (2021). A review on the processing technologies for corrosion resistant thermoelectric oxide coatings. Coatings, 11(3), 284. DOI: 10.3390/coatings11030284
  • [98] Liu, H., Shi, X., Xu, F., Zhang, L., Zhang, W., Chen, L., Snyder, G.J. (2012). Copper ion liquid-like thermoelectrics. Nature Materials, 11(5), 422-425. DOI: 10.1038/nmat3273
  • [99] Parreira, P., Lavareda, G., Amaral, A., Do Rego, A.B., Conde, O., Valente, J., De Carvalho, C.N. (2011). Transparent p-type CuxS thin films. Journal of Alloys and Compounds, 509(16), 5099-5104. DOI: 10.1016/j.jallcom.2011.01.174
  • [100] Khusayfan, N.M., Khanfar, H.K. (2019). Structural and optical properties of Cu2Se/Yb/Cu2Se thin films. Results in Physics, 12, 645-651. DOI: doi.org/10.1016/j.rinp.2018.11.099

Recent Advances in the Study of Bulk Crystals: Copper Chalcogenides

Year 2025, Volume: 9 Issue: 1, 10 - 22
https://doi.org/10.29002/asujse.1643708

Abstract

Solid crystalline materials play a crucial role in a range of technological applications, from photovoltaics to thermoelectrics. Increasing the performance of these materials is important in terms of application efficiency. This review provides an overview of recent developments in the field, with a focus on photovoltaic materials, defect chemistry, and thermoelectric properties. Copper sulfide and selenides have advantages such as environmental friendliness, low cost and improved thermoelectric efficiency that set them apart from the competition. Special emphasis is placed on copper sulfides (Cu₂S) and selenides (Cu₂Se) due to their unique structural and electronic properties, making them promising candidates for sustainable energy applications. The manifestation of these copper chalcogens occurs within a variety of crystal structures, contingent on the liquid-like motion of the Cu⁺ ion within the crystal. In this review, the defective, deficiency and regular structures identified in recent years were also discussed.

Supporting Institution

This work was supported by Scientific Research Projects Coordination Unit of Aksaray University, Project Number 2020-040.

References

  • [1] World Bank, Fossil Fuel Energy Consumption, Data, Energy Foss, Fuels Consum, 2016 < https://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS.
  • [2] Yilmaz, F. (2018). Thermodynamic performance evaluation of a novel solar energy based multigeneration system. Applied Thermal Engineering, 143, 429-437.DOI: 10.1016/j.applthermaleng.2018.07.125
  • [3] Zhang, Y., Li, Z., Long, Q., Chen, G. (2024). A strategy towards fabrication of thermoplastic-based composites with outstanding mechanical and thermoelectric performances. Journal of Colloid and Interface Science, 674, 695-701. DOI: 10.1016/j.jcis.2024.06.188
  • [4] Baskaran, P., Rajasekar, M. (2025). Recent progress in thermoelectric devices and applications. Chemical Engineering Journal, 506, 159929. DOI: 10.1016/j.cej.2025.159929
  • [5] Burnete, N.V., Mariasiu, F., Depcik, C., Barabas, I., Moldovanu, D. (2022). Review of thermoelectric generation for internal combustion engine waste heat recovery. Progress in Energy and Combustion Science, 91, 101009. DOI: 10.1016/j.pecs.2022.101009
  • [6] Mamur, H., Dilmaç, Ö.F., Begum, J., Bhuiyan, M.R.A. (2021). Thermoelectric generators act as renewable energy sources. Cleaner Materials, 2, 100030. DOI: 10.1016/j.clema.2021.100030
  • [7] Kong, S., Huang, Z., Hu, Y., Jiang, Y., Lu Y., Zhao, W., Xie Y. (2023). Tellurium-nanowire-doped thermoelectric hydrogel with high stretchability and seebeck coefficient for low-grade heat energy harvesting. Nano Energy, 115, 108708. DOI: 10.1016/j.nanoen.2023.108708
  • [8] Paul, M. (2020). Microwave Assisted Aqueous Synthesis of Nanostructured Bi₂Te₃ and Sb₂Te₃ Thermoelectric Materials. MSc thesis, KTH Royal Institute of Technology, Engineering Physics, Stockholm, Sweden.
  • [9] Witting, I.T., Chasapis, T.C., Ricci, F., Peters, M., Heinz, N.A., Hautier, G., Snyder, G.J. (2019). The thermoelectric properties of bismuth telluride. Advanced Electronic Materials, 5(6), 1800904. DOI: 10.1002/aelm.201800904.
  • [10] LaLonde, A.D., Pei, Y., Wang, H., Snyder, G.J. (2011). Lead telluride alloy thermoelectrics. Materials Today, 14(11), 526-532. DOI: 10.1016/S1369-7021(11)70278-4
  • [11] Bhandari, C.M., Rowe, D.M. (1980). Silicon–germanium alloys as high-temperature thermoelectric materials. Contemporary Physics, 21(3), 219-242. DOI: 10.1080/00107518008210957
  • [12] Yang, L., Chen, Z.G., Dargusch, M.S., Zou, J. (2018). High performance thermoelectric materials: progress and their applications. Advanced Energy Materials, 8(6), 1701797. DOI: 10.1002/aenm.201701797
  • [13] Huang, Z., Jiang, R., Li, P., Liu, X., Chen, G., Zhao, L., Wang, J. (2024). Size and surface-dependent phase transition temperature in Cu2Se nanobridges. Nano Today, 58, 102460. DOI: 10.1016/j.nantod.2024.102460
  • [14] Bölen, E., Deligoz, E., Ozisik, H. (2024). Intrinsically low lattice thermal conductivity and thermoelectric performance of 2D Cu2Te. Physica Scripta, 99(4), 045920. DOI: 10.1088/1402-4896/ad2e5f
  • [15] White, S.L., Banerjee, P., Jain, P.K. (2017). Liquid-like cationic sub-lattice in copper selenide clusters. Nature Communications, 8(1), 14514. DOI: 10.1038/ncomms14514
  • [16] Bhuiyan, M.R.A., Mamur, H., Üstüner, M.A., Dilmaç, Ö.F. (2022). Current and future trend opportunities of thermoelectric generator applications in waste heat recovery. Gazi University Journal of Science, 35(3), 896-915. DOI: 10.35378/gujs.934901
  • [17] Maier, J. (1993). Defect chemistry: composition, transport, and reactions in the solid state; part I: thermodynamics. Angewandte Chemie International Edition in English, 32(3), 313-335. DOI: doi.org/10.1002/anie.199303133
  • [18] Kittel, C., McEuen, P. (2018). Introduction to solid state physics. John Wiley & Sons.
  • [19] Nguyen, T.P. (2006). Defect analysis in organic semiconductors. Materials Science in Semiconductor Processing, 9(1-3), 198-203. DOI: doi.org/10.1016/j.mssp.2006.01.060
  • [20] Kroger, F.A. (1977). Defect chemistry in crystalline solids. Annual Review of Materials Science, 7(1), 449-475. DOI: 10.1146/annurev.ms.07.080177.002313
  • [21] Savaşkan, T. (2017). Malzeme bilimi ve malzeme muayenesi. Celpler Matbaacılık, 347-350.
  • [22] Danilkin, S.A., Skomorokhov, A.N., Hoser, A., Fuess, H., Rajevac, V., Bickulova, N.N. (2003). Crystal structure and lattice dynamics of superionic copper selenide Cu2− δSe. Journal of Alloys and Compounds, 361(1-2), 57-61. DOI: 10.1016/S0925-8388(03)00439-0
  • [23] Heyding, R.D., Murray, R.M. (1976). The crystal structures of Cu1• 8Se, Cu3Se2, α- and γCuSe, CuSe2, and CuSe2II. Canadian Journal of Chemistry, 54(6), 841-848. DOI: 10.1139/v76-122
  • [24] Lu, P., Liu, H., Yuan, X., Xu, F., Shi, X., Zhao, K., Chen, L. (2015). Multiformity and fluctuation of Cu ordering in Cu2Se thermoelectric materials. Journal of Materials Chemistry A, 3(13), 6901-6908. DOI: 10.1039/C4TA07100J
  • [25] Kumar, S., Gupta, M.K., Goel, P., Mittal, R., Delaire, O., Thamizhavel, A., Chaplot, S.L. (2022). Solidlike to liquidlike behavior of Cu diffusion in superionic Cu2X (X= S, Se): An inelastic neutron scattering and ab initio molecular dynamics investigation. Physical Review Materials, 6(5), 055403.
  • [26] Zhao, S., Chen, H., Zhao, X., Luo, J., Tang, Z., Zeng, G., Sun, Y. (2020). Excessive iodine addition leads to room-temperature superionic Cu2S with enhanced thermoelectric properties and improved thermal stability. Materials Today Physics, 15, 100271. DOI: 10.1016/j.mtphys.2020.100271
  • [27] Jo, I.R., Rajesh, J.A., Lee, Y.H., Park, J.H., Ahn, K.S. (2020). Enhanced electrocatalytic activity and electrochemical stability of Cu2S/PbS counter electrode for quantum-dot-sensitized solar cells. Applied Surface Science, 525, 146643. DOI: 10.1016/j.apsusc.2020.146643
  • [28] Nieroda, P., Kusior, A., Leszczyński, J., Rutkowski, P., Koleżyński A. (2021). Thermoelectric properties of Cu2Se synthesized by hydrothermal method and densified by SPS technique. Materials, 14(13), 3650. DOI: 10.3390/ma14133650
  • [29] Matsuzaki, K., Tsunoda, N., Kumagai, Y., Tang, Y., Nomura, K., Oba, F., Hosono, H. (2022). Hole-doping to a Cu (I)-based semiconductor with an isovalent cation: Utilizing a complex defect as a shallow acceptor. Journal of the American Chemical Society, 144(36), 16572-16578. DOI: 10.1021/jacs.2c06283
  • [30] Lukashev, P., Lambrecht, W.R., Kotani, T., Van Schilfgaarde, M. (2007). Electronic and crystal structure of Cu2-xS: full-potential electronic structure calculations. Physical Review B Condensed Matter and Materials Physics, 76(19), 195202. DOI: 10.1103/PhysRevB.76.195202
  • [31] Xu, Q., Huang, B., Zhao, Y., Yan, Y., Noufi, R., Wei, S.H. (2012). Crystal and electronic structures of CuxS solar cell absorbers. Applied Physics Letters, 100, 061906. DOI: 10.1063/1.3682503
  • [32] Zhao, K., Qiu, P., Shi, X., Chen, L. (2020). Recent advances in liquid‐like thermoelectric materials. Advanced Functional Materials, 30(8), 1903867. DOI: 10.1002/adfm.201903867
  • [33] Ioffe, A.F., Stil'Bans, L.S., Iordanishvili, E.K., Stavitskaya, T.S., Gelbtuch, A., Vineyard, G. (1959). Semiconductor thermoelements and thermoelectric cooling. Physics Today, 12(5), 42-42. DOI: 10.1063/1.3060810
  • [34] Fleurial, J.P. (2009). Thermoelectric power generation materials: Technology and application opportunities. Jom, 61(4), 79-85. DOI: 10.1007/s11837-009-0057-z
  • [35] Twaha, S., Zhu, J., Yan, Y., Li, B. (2016). A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews, 65, 698-726. DOI: 10.1016/j.rser.2016.07.034
  • [36] Rull-Bravo, M., Moure, A., Fernández, J.F., Martín-González, M. (2015). Skutterudites as thermoelectric materials: revisited. RSC Advances, 5(52), 41653-41667. DOI: 10.1039/C5RA03942H
  • [37] Snyder, G.J. (2008). Small thermoelectric generators. The Electrochemical Society Interface, 17(3), 54. DOI: 10.1149/2.F06083IF
  • [38] Shi, X.L., Zou, J., Chen, Z.G. (2020). Advanced thermoelectric design: from materials and structures to devices. Chemical Reviews, 120(15), 7399-7515. DOI: 10.1021/acs.chemrev.0c00026
  • [39] Zhu, T., Liu, Y., Fu, C., Heremans, J.P., Snyder, J.G., Zhao, X. (2017). Compromise and synergy in high‐efficiency thermoelectric materials. Advanced Materials, 29(14), 1605884. DOI: 10.1002/adma.201605884
  • [40] Coughlan, C., Ibanez, M., Dobrozhan, O., Singh, A., Cabot, A., Ryan, K.M. (2017). Compound copper chalcogenide nanocrystals. Chemical Reviews, 117(9), 5865-6109. DOI: 10.1021/acs.chemrev.6b00376
  • [41] Liu W. D., Yang L., Chen Z. G., Zou J. (2020). Promising and eco‐friendly Cu2X‐based thermoelectric materials: progress and applications. Advanced Materials, 32(8), 1905703. DOI: 10.1002/adma.201905703
  • [42] Wang, Q., Li, Z., Xue, Y., Gao, Z., Wang, A., Wang, J., Wang, S. (2024). Enhanced thermoelectric performance of Cu2Se thin film derived from potential barrier scattering by incorporating SnSe nano-dispersions. Applied Physics Letters, 124(19). DOI: 10.1063/5.0201400
  • [43] He, Y., Day, T., Zhang, T., Liu, H., Shi, X., Chen, L., Snyder, G. J. (2014). High thermoelectric performance in non‐toxic earth‐abundant copper sulfide. Advanced Materials, 23(26), 3974-3978. DOI: doi.org/10.1002/adma.201400515
  • [44] Zhao, K., Duan, H., Raghavendra, N., Qiu, P., Zeng, Y., Zhang, W., Chen, L. (2017). Solid‐state explosive reaction for nanoporous bulk thermoelectric materials. Advanced Materials, 29(42), 1701148. DOI: 10.1002/adma.201701148
  • [45] Li, M., Cortie, D.L., Liu, J., Yu, D., Islam, S.M.K.N., Zhao, L., Wang, X. (2018). Ultra-high thermoelectric performance in graphene incorporated Cu2Se: Role of mismatching phonon modes. Nano Energy, 53, 993-1002. DOI: 10.1016/j.nanoen.2018.09.041
  • [46] Nunna, R., Qiu, P., Yin, M., Chen, H., Hanus, R., Song, Q., Chen, L. (2017). Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy & Environmental Science, 10(9), 1928-1935. DOI: 10.1039/C7EE01737E
  • [47] Yo, Y., Zhang, B.P., Pei, J., Liu, Y.C., Li, J.F. (2017). Thermoelectric performance enhancement of Cu2S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction. Journal of Materials Chemistry C, 5(31), 7845-7852. DOI: 10.1039/C7TC01937H
  • [48] Basit, A., Xin, J., Murtaza, G., Wei, L., Hameed, A., Guoyu, W., Dai, J.Y. (2023). Recent advances, challenges, and perspective of copper‐based liquid‐like thermoelectric chalcogenides: a review. EcoMat, 5(9), e12391. DOI: 10.1002/eom2.12391
  • [49] Nieroda, P., Leszczyński, J., Kapera, K., Rutkowski, P., Ziewiec, K., Szymańska, A., Kruszewski, M.J., Rudnik, M., Koleżyński, A. (2024). Thermoelectric Properties of Cu2S Doped with P, As, Sb and Bi-Theoretical and Experimental Studies. Materials, 17(22), 5440. DOI: 10.3390/ma17225440
  • [50] Bogatu, C., Vîlcu, R., & Dută, A. (2005). Experimental Methods For Study High-Pressure Phase Behaviour. Part I. Static Methods. Analele Universităţii din Bucureşti–Chimie Anul, 14 (1-2), 193-203.
  • [51] Santamaria-Perez, D., Garbarino, G., Chulia-Jorda, R., Dobrowolski, M.A., Mühle, C., Jansen, M. (2014). Pressure-induced phase transformations in mineral chalcocite, Cu2S, under hydrostatic conditions. Journal of Alloys and Compounds, 610, 645-650. DOI: 10.1016/j.jallcom.2014.04.176
  • [52] Yang, X., Jiang, S.Q., Zhang, H.C., Zhao, K.P., Shi, X., Chen, X.J. (2018). Pressure-induced structural phase transition and electrical properties of Cu2S. Journal of Alloys and Compounds, 766, 813-817. DOI: 10.1016/j.jallcom.2018.07.037
  • [53] Xue, L., Fang, C., Shen, W., Shen, M., Ji, W., Zhang, Y., Jia, X. (2020). Thermoelectric properties of S-doped Cu2Se materials synthesized by high-pressure and high-temperature method. Modern Physics Letters B, 34(01), 2050006. DOI: 10.1142/S0217984920500062
  • [54] Xue, L., Fang, C., Shen, W., Shen, M., Ji, W., Zhang, Y., Jia, X. (2019). High pressure synthesis and thermoelectric performances of Cu2Se compounds. Physics Letters A, 383(29), 125917. DOI: 10.1016/j.physleta.2019.125917
  • [55] Lee, R., Howard, J.A., Probert, M.R., Steed, J.W. (2014). Structure of organic solids at low temperature and high pressure. Chemical Society Reviews, 43(13), 4300-4311.
  • [56] Qin, F., Zhang, D., Qin, S. (2021). High Pressure Behaviors and a Novel High-Pressure Phase of Cuprous Oxide Cu2O. Frontiers in Earth Science, 9, 740685. DOI: 10.3389/feart.2021.740685
  • [57] Ju, X., Xu, C., Hu, Y., Han, X., Wei, G., Du, X. (2017). A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems. Solar Energy Materials and Solar Cells, 161, 305-327. DOI: 10.1016/j.solmat.2016.12.004
  • [58] Singh, G.K. (2013). Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, 1-13. DOI: 10.1016/j.energy.2013.02.057
  • [59] Dincer, F. (2011). The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renewable and Sustainable Energy Reviews, 15(1), 713-720. DOI: 10.1016/j.rser.2010.09.026
  • [60] Alami, A.H., Olabi, A.G., Mdallal, A., Rezk, A., Radwan, A., Rahman, S.M.A., Abdelkareem, M.A. (2023). Concentrating solar power (CSP) technologies: Status and analysis. International Journal of Thermofluids, 18, 100340. DOI: 10.1016/j.ijft.2023.100340
  • [61] Burhan, M., Shahzad, M.W., Ng K.C. (2017). Long-term performance potential of concentrated photovoltaic (CPV) systems. Energy conversion and management, 148, 90-99. DOI: 10.1016/j.enconman.2017.05.072
  • [62] https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system#:~:text=Looking%20into%20the%20growing%20usage,output%20of%20a%20photovoltaic%20system.
  • [63] Riha, S.C., Jin, S., Baryshev, S.V., Thimsen, E., Wiederrecht, G.P., Martinson, A.B. (2013). Stabilizing Cu2S for photovoltaics one atomic layer at a time. ACS Applied Materials & Interfaces, 5(20), 10302-10309. DOI: 10.1021/am403225e
  • [64] Nieroda, P., Leszczyński, J., Mikuła, A., Mars, K., Kruszewski, M. J., Koleżyński, A. (2020). Thermoelectric properties of Cu2S obtained by high temperature synthesis and sintered by IHP method. Ceramics International, 46(16), 25460-25466. DOI: 10.1016/j.ceramint.2020.07.016
  • [65] Stolle, C. J., Harvey, T.B., Korgel, B.A. (2013). Nanocrystal photovoltaics: a review of recent progress. Current Opinion in Chemical Engineering, 2(2), 160-167. DOI: 10.1016/j.coche.2013.03.001
  • [66] Dean, J.I., Inogouchi, T., Mito, S., Park, Y.S., Shin, B.K., Tairov, Y.M., Wagner, S. (2006). Electroluminescence (Vol. 17). Springer Science & Business Media, NJ 08540, USA.
  • [67] Wu, Y., Wadia, C., Ma, W., Sadtler, B., Alivisatos, A. P. (2008). Synthesis and photovoltaic application of copper (I) sulfide nanocrystals. Nano letters, 8(8), 2551-2555. DOI: 10.1021/nl801817d
  • [68] Li, H., Wang, K., Cheng, S., Jiang, K. (2018). Controllable electrochemical synthesis of copper sulfides as sodium-ion battery anodes with superior rate capability and ultralong cycle life. ACS Applied Materials & Interfaces, 10(9), 8016-8025. DOI: 10.1021/acsami.7b19138
  • [69] Tay, E. (2015). Electrochemical Deposition of Cu-Zn-Sn-S Films. Phd Thesis, Imperial College London, Department of Materials, London, United Kingdom.
  • [70] Garcia, V.M., Nair, P.K., Nair, M.T.S. (1999). Copper selenide thin films by chemical bath deposition. Journal of Crystal Growth, 203(1-2), 113-124. DOI: 10.1016/S0022-0248(99)00040-8
  • [71] Rathod, K.C. (2021). Synthesis characterization of copper selenide thin films and study of photovoltaic solar applications. Material Science: An Indian Journal, 19, 157.
  • [72] Barman, S.K. (2019). A First Principles Based Approach to Stabilize Cu2S for Efficient Solar Absorber Material. Phd Thesis, The University of Texas at Arlington, Department of Materials, Arlington, USA.
  • [73] Mulla, R., Rabinal, M.H.K. (2019). Copper sulfides: earth‐abundant and low‐cost thermoelectric materials. Energy Technology, 7(7), 1800850. DOI: 10.1002/ente.201800850
  • [74] Zimmer, D., Ruiz-Fuertes, J., Morgenroth, W., Friedrich, A., Bayarjargal, L., Haussühl, E., Winkler, B. (2018). Pressure-induced changes of the structure and properties of monoclinic α-chalcocite Cu2S. Physical Review B, 97(13), 134111. DOI: 10.1103/PhysRevB.97.134111
  • [75] Zhao, Y., Burda, C. (2012). Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy & Environmental Science, 5(2), 5564-5576. DOI: 10.1039/C1EE02734D
  • [76] Klan, J.M., Harper, D.K., Ruffley, J.P., Gan, X.Y., Millstone, J.E., Johnson, J.K. (2021). Theoretical Study of the Impact of Vacancies and Disorder on the Electronic Properties of Cu2–xSe. The Journal of Physical Chemistry C, 125(22), 12324-12332. DOI: 10.1021/acs.jpcc.1c02147
  • [77] Xu, J., Zhao, J., Liu, W. (2023). A comparative study of renewable and fossil fuels energy impacts on green development in Asian countries with divergent income inequality. Resources Policy, 85, 104035. DOI: 10.1016/j.resourpol.2023.104035
  • [78] Kızılaslan, A. (2020). Lityum-iyon piller için sülfür esaslı katı elektrolitlerin sentezlenerek elektrot-elektrolit arayüzeyinin incelenmesi. Doktora Tezi, Sakarya Üniversitesi, Metalurji ve Malzeme Mühendisliği Bölümü, Sakarya, Türkiye.
  • [79] Schmidt-Rohr, K. (2018). How batteries store and release energy: explaining basic electrochemistry. Journal of Chemical Education, 95(10), 1801-1810. DOI: 10.1021/acs.jchemed.8b00479
  • [80] Bekmezci, M., Altuner, E.E., Erduran, V., Bayat, R., Isik, I., Şen, F. (2021). Fundamentals of electrochemistry. In Nanomaterials for Direct Alcohol Fuel Cells, pp. 1-15. DOI: 10.1016/B978-0-12-821713-9.00023-8
  • [81] Arora, P., White, R.E., Doyle, M. (1998). Capacity fade mechanisms and side reactions in lithium‐ion batteries. Journal of the Electrochemical Society, 145(10), 3647. DOI: 10.1149/1.1838857
  • [82] Chen, C., Wang, X., Zhu, J., Liu, K., Knoll, A.C. (2025). Applications–Transportation Applications| Battery Charging Technologies. In Encyclopedia of Electrochemical Power Sources, 373-390. DOI: 10.1016/B978-0-323-96022-9.00275-9
  • [83] Abdulkareem, A.J.A. (2022). High capacity LiFePO4/C/rGO nanocomposite positive electrode for lithium ion batteries. MSc Thesis, Sakarya University, Nanoscience & Nanoengineering, Sakarya, Turkey.
  • [84] Hyun, J.E., Lee, P.C., Tatsumi, I. (2015). Preparation and electrochemical properties of sulfur-polypyrrole composite cathodes for electric vehicle applications. Electrochimica Acta, 176, 887-892. DOI: 10.1016/j.electacta.2015.07.055
  • [85] Lin, X., Zhou, G., Liu, J., Yu, J., Effat, M.B., Wu, J., Ciucci, F. (2020). Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Advanced Energy Materials, 10(43), 2001235. DOI: 10.1002/aenm.202001235
  • [86] Li, T., Zhao, D., Shi, M., Wang, T., Yin, Q., Li, Y., Sui, Y. (2023). MOF-derived N, S Co-doped carbon matrix-encapsulated Cu2S nanoparticles as high-performance lithium-ion battery anodes: a joint theoretical and experimental study. Journal of Materials Chemistry A, 11(3), 1461-1472. DOI: 10.1039/D2TA08539A
  • [87] Yu, H., Liu, J., Wu, X., Li, R., Jin, R., Zhou, G. (2024). Construction of mesocrystal Cu2-xSe nanoplates with high infiltration for enhanced electrochemical performance in lithium ion batteries and electrochemical supercapacitors. Applied Surface Science, 655, 159530. DOI: 10.1016/j.apsusc.2024.159530
  • [88] Bugday, N., Huang, J., Deng, W., Zou, G., Hou, H., Ji, X., Yaşar, S. (2025). Architectures of zeolitic imidazolate framework derived Cu2Se/ZnSe@ NPC and Cu1. 95Se@ NPC nanoparticles as anode materials for sodium-ion and lithium-ion batteries. Journal of Power Sources, 632, 236352. DOI: doi.org/10.1016/j.jpowsour.2025.236352
  • [89] Wang, Y., Feng, X., Xiong, Y., Stoupin, S., Huang, R., Zhao, M., Abruña, H.D. (2020). An innovative lithium ion battery system based on a Cu2S anode material. ACS applied materials & interfaces, 12(15), 17396-17405. DOI: 10.1021/acsami.9b21982
  • [90] Li, X., Zhang, Z., Liu, C., Lin, Z. (2018). Capacity increase investigation of Cu2Se electrode by using electrochemical impedance spectroscopy. Frontiers in Chemistry, 6, 221. DOI: 10.3389/fchem.2018.00221
  • [91] Bae, K.Y., Cho, S.H., Kim, B.H., Son, B.D., Yoon, W.Y. (2019). Energy-density improvement in Li-ion rechargeable batteries based on LiCoO2+ LiV3O8 and graphite+ Li-metal hybrid electrodes. Materials, 12(12), 2025. DOI: 10.3390/ma12122025
  • [92] Phogat, P., Shreya, S., Jha, R., Singh, S. (2024). Chalcogenide nanocomposites for energy materials. Engineering and Technology Journal, 9(7), 4580-4606. DOI: 10.47191/etj/v9i07.29
  • [93] van Oversteeg, C.H.M. (2020). Copper Sulfide Nanoparticles: Synthesis, Characterization and Catalysis. PhD Thesis, Utrecht University, the Netherlands.
  • [94] Vamathevan, V., Amal, R., Beydoun, D., Low, G., McEvoy, S. (2002). Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3), 233-245. DOI: 10.1016/S1010-6030(02)00049-7
  • [95] Yang, X., Ni, H., Yu, X., Cao, B., Xing, J., Chen, Q., Zhao, J.T. (2024). Roles of concentration-dependent Cu doping behaviors on the thermoelectric properties of n-type Mg3Sb1. 5Bi0. 5. Journal of Materiomics, 10(1), 154-162. DOI: 10.1016/j.jmat.2023.05.004
  • [96] Lv, Y., Chen, J., Zheng, R.K., Song, J., Zhang, T., Li, X., Chen, L. (2015). Photo-induced enhancement of the power factor of Cu2S thermoelectric films. Scientific Reports, 5(1), 16291. DOI: 10.1038/srep16291
  • [97] Gan, Y. X. (2021). A review on the processing technologies for corrosion resistant thermoelectric oxide coatings. Coatings, 11(3), 284. DOI: 10.3390/coatings11030284
  • [98] Liu, H., Shi, X., Xu, F., Zhang, L., Zhang, W., Chen, L., Snyder, G.J. (2012). Copper ion liquid-like thermoelectrics. Nature Materials, 11(5), 422-425. DOI: 10.1038/nmat3273
  • [99] Parreira, P., Lavareda, G., Amaral, A., Do Rego, A.B., Conde, O., Valente, J., De Carvalho, C.N. (2011). Transparent p-type CuxS thin films. Journal of Alloys and Compounds, 509(16), 5099-5104. DOI: 10.1016/j.jallcom.2011.01.174
  • [100] Khusayfan, N.M., Khanfar, H.K. (2019). Structural and optical properties of Cu2Se/Yb/Cu2Se thin films. Results in Physics, 12, 645-651. DOI: doi.org/10.1016/j.rinp.2018.11.099
There are 100 citations in total.

Details

Primary Language English
Subjects Structural Properties of Condensed Matter, Condensed Matter Physics (Other)
Journal Section Review
Authors

Mehtap Akgün 0009-0002-0787-3210

Hacı Özışık 0000-0002-4011-1720

Early Pub Date March 18, 2025
Publication Date
Submission Date February 20, 2025
Acceptance Date March 5, 2025
Published in Issue Year 2025Volume: 9 Issue: 1

Cite

APA Akgün, M., & Özışık, H. (2025). Recent Advances in the Study of Bulk Crystals: Copper Chalcogenides. Aksaray University Journal of Science and Engineering, 9(1), 10-22. https://doi.org/10.29002/asujse.1643708

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License