Research Article
BibTex RIS Cite

Bir Üretim Sisteminde Simülasyon Uygulaması

Year 2020, Volume: 4 Issue: 2, 172 - 186, 30.12.2020
https://doi.org/10.29002/asujse.765097

Abstract

Simülasyon yapılacak olan yatırımları, sistem değişikliklerini gerçek hayatta uygulamanın daha maliyetli ve zaman alıcı olduğu durumda değişikliklerin bilgisayar ortamında uygulanmasını ve analiz edilmesini sağlar. Aynı zamanda yeni veya mevcut sistemlere kaynak tahsisi için inceleme ve karar verme konusunda araştırmacılara ve uygulayıcılara yardımcı olmak için yaygın olarak kullanılan bir dizi araç ve yöntemdir. Simülasyon ile modelleme genellikle üretim sistemleri olmak üzere servis sistemleri gibi diğer alanlarda da kullanımı önemli sonuçlar verecek bir yöntemdir. Bu çalışmada ambalaj sektöründe faaliyet gösteren bir üretim işletmesinin ebat-ambalaj bölümünde mevcut durumun işleyişi Arena 14.0 programında modellenmiştir. Simülasyon modelinde 15 iterasyon yapılmıştır. Ambalajlama bölümündeki en büyük problemin ara stoklar olduğu bilinmektedir. Bu nedenle bu bölümde darboğazlara ve üretim karmaşıklığına yol açan durumların analiz edilip çıkan sonuçlara göre çevrim süresini azaltmak, çıkan parça adedini artırmak ve kaynak kullanım oranlarını yükseltmek amaçlanmıştır. Bu doğrultuda çeşitli alternatif senaryolar oluşturulmuştur. Oluşturulan senaryolar Arena 14.0 programında modellenerek birbirleriyle karşılaştırılmış bu senaryolardan en iyi sonuç vereni yeni operatör ve makine tahsisinin birlikte olduğu durum olarak belirlenmiştir. Bu sayede çevrim süresi, makine ve operatör kullanım oranlarında, kuyrukta bekleme sürelerinde önemli azalmalar meydana gelmiştir ve çıkan parça sayısı artmıştır.

References

  • [1] W. El Maraghy, H. El Maraghy, T. Tomiyama, L. Monostori, Complexity in Engineering Design and Manufacturing. CIRP Annals-Manufacturing Technology, 61 (2012) 793-814.
  • [2] F.S. Onursal, Kesme Kaybı ve Stok Maliyetlerinin Optimizasyonuna Yönelik Bir Model Önerisi. Doktora Tezi, Kocaeli Üniversitesi Endüstri Mühendisliği Anabilim Dalı, 2014.
  • [3] M. Yalvaç, Kütüphane ve Bilgi Merkezlerinde Sistem Analizinin Önemi ve Uygulanabilirliği: Bir Örnek: İstanbul Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığına Bağlı Birimlere Yayın Sağlama Alt Sistemi’nde Sistem Analizi Çalışması. (Çantay Kitapevi, İstanbul, 2000).
  • [4] O.H. Yüregir, Bilişimde Sistem Analizi ve Tasarımı. (Nobel Kitapevi, Adana, 2001) pp. 17-23.
  • [5] C. Yeroğlu, Üretim ve Servis Sistemlerinde Pratik Simülasyon Teknikleri. (Nobel Kitapevi, İstanbul, 2001).
  • [6] N. Ruiz, A. Giret, V. Botti, V. Feria, An İntelligent Simulation Environment For Manufacturing Systems. Computers and Industrial Engineering,76 (2014) 148-168.
  • [7] H.A. Taha, Yöneylem Araştırması. Çev., Ş.A. Baray ve Ş. Esnaf. (Literatür Yayıncılık, İstanbul, 2000) pp. 665.
  • [8] T. Lin, C. Chen, Simulation Optimization Approach for Hybrid Flow Shop Scheduling Problem in Semiconductor Back-end Manufacturing Simulation Modelling Practice and Theory, 51 (2015) 100-114.
  • [9] W. Junior, J. Montevechi, T. Miranda, A. Campos, Discrete simulation-based optimization methods for industrial engineering problems: A systematic literature review. Computers & Industrial Engineering,128 (2019) 526-540.
  • [10] M. Li, H. Shurrab, Simulation of Production Systems Sim’s Coffee Cups-Project Report 2015.
  • [11] Ö. Ergüt, Üretim Sistemlerinde Bir Simülasyon Uygulaması. Osmaniye Korkut Ata University İktisadi ve İdari Bilimler Fakültesi Dergisi, 3(2) (2019) 244-258.
  • [12] A. Anglani, A. Grieco, M. Pacella, T. Tolia, Object-Oriented Modeling and Simulation of Flexible Manufacturing Systems: A Rule-Based Procedure Simulation of Modelling Practice and Theory, 10 (2002) 209-234.
  • [13] A. Sözen, Hız Kesicilerin Trafik Yüklemesi Altındaki Dinamik Simülasyonu. Yüksek lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, 2007.
  • [14] E. Mouayni, A. Etienne, A. Lux, A. Siadat, J.Y. Dantan, A Simulation-Based Approach for Time Allowances Assessment During Production System Design With Consideration of Worker’s Fatigue, Learning And Reliability. Computers & Industrial Engineering,139 (2020) 105650.
  • [15] M. Kikolski, Study of Production Scenarios with the Use of Simulation Models. Procedia Engineering, 182 (2017) 321-328.
  • [16] B. Dengiz, Y.T. İç, Ö. Belgin, A meta-model based simulation optimization using hybrid simulation-analytical modeling to increase the productivity in automotive industry. Mathematics and Computers in Simulation, 120 (2016) 120-128.
  • [17] S. Alkeheder, A. Alomair, B. Aladwani, Hold Baggage Security Screening System in Kuwait International Airport Using Arena Software. Ain Shams Engineering Journal. 11 (2020) 687-696.
  • [18] K. Nouri, G. Nour, Optimization via Computer Simulation of a Mixed Assembly Line of Wooden Furniture - A Case Study.Procedia Manufacturing, 39 (2019) 956-963.
  • [19] O. Frough, A. Khetwal, J. Rostami, Predicting TBM utilization factor using discrete event simulation models. Tunnelling and Underground Space Technology, 87 (2019) 91-99.
  • [20] A.Aroua, G.Abdulnour, Optimization of the emergency department in hospitals using simulation and experimental design: Case study. Procedia Manufacturing,17 (2018),878-885.
  • [21] W. Nyemba, C. Mbohwa, Modelling, Simulation and Optimization of the Materials Flow of a Multi-product Assembling Plant. Procedia Manufacturing, 8 (2017) 59-66.
  • [22] M. Li, F. Yang, H. Wan, J. Fowler, Simulation-based experimental design and statistical modeling for lead time quotation. Journal of Manufacturing Systems, 37(1) (2015) 362-374.
  • [23] J. Viana, S.C. Brailsford, V. Harindra, P.R. Harper, Combining Discrete-Event Simulation and System Dynamics in A Healthcare Setting: A Composite Model for Chlamydia Infection. European Journal of Operational Research, 237(1) (2014) 196-2061.
  • [24] R. Phanden, A. Jain, Assessment of Makespan Performance for Flexible Process Plans in Job Shop Scheduling. IFAC-Papers Online, 48(3) (2015) 1948-1953.
  • [25] P. Huang, T. Yu, Y. Chou, Y. Lin, Simulation Method for Dispatching National Border Security Manpower to Mitigate Manpower Shortage. Journal of Air Transport Management, 57 (2016) 43-51.
  • [26] M. Bağ, E. Aslan, Bir Tekstil Fabrikasında Simülasyon Uygulaması. Journal of International Management, Educational and Economics Perspectives, 4(1) (2016) 38-54.
  • [27] S. Alegre, J. Carpio, J. Miguez, Modelling of Electric and Parallel-Hybrid Electric Vehicle using Matlab/Simulink Environment and Planning of Charging Stations Through A Geographic Information System and Genetic Algorithms. Renewable and Sustainable Energy Reviews, 74 (2017) 1020-1027.
  • [28] J. Mondragon, J. Garcia, J. Flores, J. Lopez, S. Vazquez, Experiments simulation and design to set traffic lights’ operation rules. Transport Policy, 67 (2018) 2-12.
  • [29] B. Rahimikelarijani, A. Abedi, M. Hamidi, J. Cho, Simulation modeling of Houston Ship Channel vessel traffic for optimal closure scheduling. Simulation of Modelling Practice and Theory, 80 (2018) 89-103.
  • [30] F. Hosseini, P. Scarf, A. Syntetos, Joint maintenance-inventory optimisation of parallel production systems, Journal of Manufacturing Systems, 48 (2018) 73-86.
  • [31] G. Tasoglu, G. Yildiz, Simulated annealing based simulation optimization method for sol-ving integrated berth allocation and quay crane scheduling problems. Simulation of Modelling Practice and Theory, 97 (2019) 101948.
  • [32] A. Vieira, L. Dias, M. Santos, G. Pereira, J. Olivieira, On the use of simulation as a Big Data semantic validator for supply chain management. Simulation of Modelling Practice and Theory, 98 (2020) 101985.
  • [33] G. Guizzi, D. Falcone, F. Felice, An Integrated and Parametric Simulation Model to Improve Production and Maintenance Processes: Towards A Digital Factory Performance. Computers and Engineering, 137 (2019) 106052.
  • [34] H. Sime, P. Jana, D. Panghal, Feasibility of Using Simulation Technique For Line Balancing in Apparel Industry, Procedia Manufacturing, 30 (2019) 300-307.
  • [35] D. Mourtzis, A. Vasilakopoulos, E. Zervas, N. Boli, Manufacturing System Design using Simulation in Metal Industry towards Education 4.0. Procedia Manufacturing, 31 (2019) 155-161.
  • [36] F. Uludag, Y. Olabi, E. Günay, G. Kremer, Mitigating the Effects of Bottlenecks in Wagon Manufacturing. Procedia Manufacturing, 39 (2019) 1010-1019.
  • [37] A. Afrapoli, M. Tabesh, H. Nasab, A Multiple Objective Transportation Problem Approach to Dynamic Truck Dispatching in Surface Mines. European Journal of Operational Research, 276 (2019) 331-342.
  • [38] R. Joshi, Q. Tian, A. Shaurya, P. Arora, W. Guo, Simulation and Analysis of Preventive Maintenance Scheduling Techniques for Fruit-Roll Packaging Line. Procedia Manufacturing, 39 (2019)1762-1772.
  • [39] H. Güneş, S. Bıçakçı, E. Orta, D. Akdaş, Development of Simulation for Artificial Intelligence Techniques in Smart Homes. Gazi Üniversitesi Fen Bilimleri Dergisi,7(3) (2019) 554-563.
  • [40] A. Sebatlı, F. Çavdur, Analysis of Relief Supplies Distribution Operations via Simulation. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(4) (2019) 2079-2096.
  • [41] S. Chakravarthy, A. Rumyantsev, Analytical and Simulation Studies of Queueing-Inventory Models with MAP Demands in Batches and Positive Phase Type Services. Simulation of Modelling Practice and Theory, 103 (2020) 102092.
  • [42] M. Caterino, A. Grego, S. D’Ambra, P. Manco, M. Fera, R. Macchiaroli, F. Caputo, Simulation Techniques for Production Lines Performance Control. Procedia Manufacturing, 42 (2020) 91-96.

A Simulation Study on a Production System

Year 2020, Volume: 4 Issue: 2, 172 - 186, 30.12.2020
https://doi.org/10.29002/asujse.765097

Abstract

In case it is more costly and time consuming to implement system investments, system changes in simulation, it enables the changes to be applied and analyzed in computer environment. It is also a common set of tools and methods to assist researchers and practitioners in reviewing and making decisions for resource allocation to new or existing systems. Modeling with simulation is a method that will give important results in other areas such as production systems and service systems. In this study, the functioning of the current situation in the size-packaging department of a production company operating in the packaging sector is modeled in the Arena 14.0 program. The simulation model 15 replications were made and run one day. It is known that the biggest problem in the packaging department is intermediate stocks. For this reason, in this section, it is aimed to reduce cycle time, increase the number of parts and increase the resource utilization rates according to the results of analyzing the situations that lead to bottlenecks and production complexity. Accordingly, various alternative scenarios have been created. The scenarios created were modeled in Arena 14.0 program and compared with each other, the best results of these scenarios were determined as the situation where the new operator and machine allocation were together. In this way, there has been a significant reduction in cycle time, machine and operator usage rates and queuing times. The number of pieces released has also increased by 80. It was not included in the evaluation because cost data was not shared. A more detailed examination can be made by including the cost data in the study.

References

  • [1] W. El Maraghy, H. El Maraghy, T. Tomiyama, L. Monostori, Complexity in Engineering Design and Manufacturing. CIRP Annals-Manufacturing Technology, 61 (2012) 793-814.
  • [2] F.S. Onursal, Kesme Kaybı ve Stok Maliyetlerinin Optimizasyonuna Yönelik Bir Model Önerisi. Doktora Tezi, Kocaeli Üniversitesi Endüstri Mühendisliği Anabilim Dalı, 2014.
  • [3] M. Yalvaç, Kütüphane ve Bilgi Merkezlerinde Sistem Analizinin Önemi ve Uygulanabilirliği: Bir Örnek: İstanbul Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığına Bağlı Birimlere Yayın Sağlama Alt Sistemi’nde Sistem Analizi Çalışması. (Çantay Kitapevi, İstanbul, 2000).
  • [4] O.H. Yüregir, Bilişimde Sistem Analizi ve Tasarımı. (Nobel Kitapevi, Adana, 2001) pp. 17-23.
  • [5] C. Yeroğlu, Üretim ve Servis Sistemlerinde Pratik Simülasyon Teknikleri. (Nobel Kitapevi, İstanbul, 2001).
  • [6] N. Ruiz, A. Giret, V. Botti, V. Feria, An İntelligent Simulation Environment For Manufacturing Systems. Computers and Industrial Engineering,76 (2014) 148-168.
  • [7] H.A. Taha, Yöneylem Araştırması. Çev., Ş.A. Baray ve Ş. Esnaf. (Literatür Yayıncılık, İstanbul, 2000) pp. 665.
  • [8] T. Lin, C. Chen, Simulation Optimization Approach for Hybrid Flow Shop Scheduling Problem in Semiconductor Back-end Manufacturing Simulation Modelling Practice and Theory, 51 (2015) 100-114.
  • [9] W. Junior, J. Montevechi, T. Miranda, A. Campos, Discrete simulation-based optimization methods for industrial engineering problems: A systematic literature review. Computers & Industrial Engineering,128 (2019) 526-540.
  • [10] M. Li, H. Shurrab, Simulation of Production Systems Sim’s Coffee Cups-Project Report 2015.
  • [11] Ö. Ergüt, Üretim Sistemlerinde Bir Simülasyon Uygulaması. Osmaniye Korkut Ata University İktisadi ve İdari Bilimler Fakültesi Dergisi, 3(2) (2019) 244-258.
  • [12] A. Anglani, A. Grieco, M. Pacella, T. Tolia, Object-Oriented Modeling and Simulation of Flexible Manufacturing Systems: A Rule-Based Procedure Simulation of Modelling Practice and Theory, 10 (2002) 209-234.
  • [13] A. Sözen, Hız Kesicilerin Trafik Yüklemesi Altındaki Dinamik Simülasyonu. Yüksek lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, 2007.
  • [14] E. Mouayni, A. Etienne, A. Lux, A. Siadat, J.Y. Dantan, A Simulation-Based Approach for Time Allowances Assessment During Production System Design With Consideration of Worker’s Fatigue, Learning And Reliability. Computers & Industrial Engineering,139 (2020) 105650.
  • [15] M. Kikolski, Study of Production Scenarios with the Use of Simulation Models. Procedia Engineering, 182 (2017) 321-328.
  • [16] B. Dengiz, Y.T. İç, Ö. Belgin, A meta-model based simulation optimization using hybrid simulation-analytical modeling to increase the productivity in automotive industry. Mathematics and Computers in Simulation, 120 (2016) 120-128.
  • [17] S. Alkeheder, A. Alomair, B. Aladwani, Hold Baggage Security Screening System in Kuwait International Airport Using Arena Software. Ain Shams Engineering Journal. 11 (2020) 687-696.
  • [18] K. Nouri, G. Nour, Optimization via Computer Simulation of a Mixed Assembly Line of Wooden Furniture - A Case Study.Procedia Manufacturing, 39 (2019) 956-963.
  • [19] O. Frough, A. Khetwal, J. Rostami, Predicting TBM utilization factor using discrete event simulation models. Tunnelling and Underground Space Technology, 87 (2019) 91-99.
  • [20] A.Aroua, G.Abdulnour, Optimization of the emergency department in hospitals using simulation and experimental design: Case study. Procedia Manufacturing,17 (2018),878-885.
  • [21] W. Nyemba, C. Mbohwa, Modelling, Simulation and Optimization of the Materials Flow of a Multi-product Assembling Plant. Procedia Manufacturing, 8 (2017) 59-66.
  • [22] M. Li, F. Yang, H. Wan, J. Fowler, Simulation-based experimental design and statistical modeling for lead time quotation. Journal of Manufacturing Systems, 37(1) (2015) 362-374.
  • [23] J. Viana, S.C. Brailsford, V. Harindra, P.R. Harper, Combining Discrete-Event Simulation and System Dynamics in A Healthcare Setting: A Composite Model for Chlamydia Infection. European Journal of Operational Research, 237(1) (2014) 196-2061.
  • [24] R. Phanden, A. Jain, Assessment of Makespan Performance for Flexible Process Plans in Job Shop Scheduling. IFAC-Papers Online, 48(3) (2015) 1948-1953.
  • [25] P. Huang, T. Yu, Y. Chou, Y. Lin, Simulation Method for Dispatching National Border Security Manpower to Mitigate Manpower Shortage. Journal of Air Transport Management, 57 (2016) 43-51.
  • [26] M. Bağ, E. Aslan, Bir Tekstil Fabrikasında Simülasyon Uygulaması. Journal of International Management, Educational and Economics Perspectives, 4(1) (2016) 38-54.
  • [27] S. Alegre, J. Carpio, J. Miguez, Modelling of Electric and Parallel-Hybrid Electric Vehicle using Matlab/Simulink Environment and Planning of Charging Stations Through A Geographic Information System and Genetic Algorithms. Renewable and Sustainable Energy Reviews, 74 (2017) 1020-1027.
  • [28] J. Mondragon, J. Garcia, J. Flores, J. Lopez, S. Vazquez, Experiments simulation and design to set traffic lights’ operation rules. Transport Policy, 67 (2018) 2-12.
  • [29] B. Rahimikelarijani, A. Abedi, M. Hamidi, J. Cho, Simulation modeling of Houston Ship Channel vessel traffic for optimal closure scheduling. Simulation of Modelling Practice and Theory, 80 (2018) 89-103.
  • [30] F. Hosseini, P. Scarf, A. Syntetos, Joint maintenance-inventory optimisation of parallel production systems, Journal of Manufacturing Systems, 48 (2018) 73-86.
  • [31] G. Tasoglu, G. Yildiz, Simulated annealing based simulation optimization method for sol-ving integrated berth allocation and quay crane scheduling problems. Simulation of Modelling Practice and Theory, 97 (2019) 101948.
  • [32] A. Vieira, L. Dias, M. Santos, G. Pereira, J. Olivieira, On the use of simulation as a Big Data semantic validator for supply chain management. Simulation of Modelling Practice and Theory, 98 (2020) 101985.
  • [33] G. Guizzi, D. Falcone, F. Felice, An Integrated and Parametric Simulation Model to Improve Production and Maintenance Processes: Towards A Digital Factory Performance. Computers and Engineering, 137 (2019) 106052.
  • [34] H. Sime, P. Jana, D. Panghal, Feasibility of Using Simulation Technique For Line Balancing in Apparel Industry, Procedia Manufacturing, 30 (2019) 300-307.
  • [35] D. Mourtzis, A. Vasilakopoulos, E. Zervas, N. Boli, Manufacturing System Design using Simulation in Metal Industry towards Education 4.0. Procedia Manufacturing, 31 (2019) 155-161.
  • [36] F. Uludag, Y. Olabi, E. Günay, G. Kremer, Mitigating the Effects of Bottlenecks in Wagon Manufacturing. Procedia Manufacturing, 39 (2019) 1010-1019.
  • [37] A. Afrapoli, M. Tabesh, H. Nasab, A Multiple Objective Transportation Problem Approach to Dynamic Truck Dispatching in Surface Mines. European Journal of Operational Research, 276 (2019) 331-342.
  • [38] R. Joshi, Q. Tian, A. Shaurya, P. Arora, W. Guo, Simulation and Analysis of Preventive Maintenance Scheduling Techniques for Fruit-Roll Packaging Line. Procedia Manufacturing, 39 (2019)1762-1772.
  • [39] H. Güneş, S. Bıçakçı, E. Orta, D. Akdaş, Development of Simulation for Artificial Intelligence Techniques in Smart Homes. Gazi Üniversitesi Fen Bilimleri Dergisi,7(3) (2019) 554-563.
  • [40] A. Sebatlı, F. Çavdur, Analysis of Relief Supplies Distribution Operations via Simulation. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(4) (2019) 2079-2096.
  • [41] S. Chakravarthy, A. Rumyantsev, Analytical and Simulation Studies of Queueing-Inventory Models with MAP Demands in Batches and Positive Phase Type Services. Simulation of Modelling Practice and Theory, 103 (2020) 102092.
  • [42] M. Caterino, A. Grego, S. D’Ambra, P. Manco, M. Fera, R. Macchiaroli, F. Caputo, Simulation Techniques for Production Lines Performance Control. Procedia Manufacturing, 42 (2020) 91-96.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Burcu Özcan 0000-0003-0820-4238

Edanur Yıldırak 0000-0003-1721-2969

Publication Date December 30, 2020
Submission Date July 6, 2020
Acceptance Date December 21, 2020
Published in Issue Year 2020Volume: 4 Issue: 2

Cite

APA Özcan, B., & Yıldırak, E. (2020). Bir Üretim Sisteminde Simülasyon Uygulaması. Aksaray University Journal of Science and Engineering, 4(2), 172-186. https://doi.org/10.29002/asujse.765097

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License