Research Article
BibTex RIS Cite
Year 2021, , 46 - 64, 30.06.2021
https://doi.org/10.29002/asujse.908451

Abstract

References

  • [1] H.J. Fan, H.Y. Shu, H.S. Yang, W.C. Chen, Characteristics of landfill leachates in Central Taiwan, Sci. Total Environ. 361 (2006) 25–37.
  • [2] A.K. Bhattacharya, S.N. Mandal, S.K. Das, Adsorption of Zn(II) from aqueous solution by using different adsorbents, Chem. Eng. J. 123 (2006) 43–51.
  • [3] M.N. Rashed, Adsorption technique for the removal of organic pollutants from water and wastewater, INTECH Open Access Publisher, 2013 167-194.
  • [4] G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresource Technol. 97 (2006)1061–1085.
  • [5] J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou, Y. Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater. 164 (2009)1517–1522.
  • [6] H. Çelebi, G. Gök, O. Gök, Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions, Scientific Reports 10, (2020) 17570.
  • [7] S. Ozcan, H. Celebi, Z. Ozcan, Removal of heavy metals from simulated water by using eggshell powder, Desalination and Water Treatment 127 (2018) 75-82.
  • [8] G. Liu, J. Gao, H. Ai, X. Chen, Applications and potential toxicity of magnetic iron oxide nanoparticles, Small 9 (2013) 1533-1545.
  • [9] S. Bao, L. Tang, K. Li, P. Ning, J. Peng, H. Guo, T. Zhu, Y. Liu, Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent, J. Colloid Interf. Sci. 462 (2016) 235–242.
  • [10] H. Karami, Heavy metal removal from water by magnetite nanorods, Chem. Eng. J. 219 (2013) 209–216.
  • [11] M. Nagpal, R. Kakkar, Use of metal oxides for the adsorptive removal of toxic organic pollutants, Sep. Purif. Technol. 211 (2019) 522–539.
  • [12] J.I. Yoo, T. Shinagawa, J.P. Wood, W.P. Linak, D.A. Santoianni, C.J. King, J.O.L. Wendt, High-temperature sorption of cesium and strontium on dispersed kaolinite powders, Environ. Sci. Technol. 39 (2005) 5087-5094.
  • [13] T. Wen, X. Wu, M. Liu, Z. Xing, X. Wang, A.W. Xu, Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites, Dalton Trans. 43 (2014) 7464-7472.
  • [14] D. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith, S. Komarneni, Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes, Angew Chem. Int. Ed. Engl. 50 (2011) 10594-10598.
  • [15] N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, J. Taiwan Inst. Chem Eng 43(1) (2012) 125-131.
  • [16] I. Smiciklas, S. Dimovic, I. Plecas, M. Mitric, Removal of Co2+ from aqueous solutions by hydroxyapatite, Water Res. 40 (2006) 2267-2274.
  • [17] X. Xia, J. Shen, F. Cao, C. Wang, M. Tang, Q. Zhang, S. Wei, A facile synthesis of hydroxyapatite for effective removal strontium ion, J Hazard. Mater. 364 (2019) 326-335.
  • [18] S. Sugiyama, T. Ichii, F. Masayoshi, K. Kawashiro, T. Tomida, N. Shigemoto, H. Hayashi, Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates, J Colloid Interface Sci. 259 (2003) 408-410.
  • [19] Y. Wang, Y. Liu, H. Lu, R. Yang, S. Yang, Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions ontohydroxyapatite-biochar nanocomposite in aqueous solutions, J Solid State Chem. 261 (2018) 53–61.
  • [20] S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, Band 24, 1898, 1-39.
  • [21] Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.
  • [22] W.J. Jr Weber, J.C. Morriss, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. 89 (1963) 31–60.
  • [23] K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore and solid diffusion kinetics in fixed-bed adsorption under constant- pattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  • [24] T. Jiun-Horng, C. Hsiu-Mei, H. Guan-Yinag, C. Hung-Lung, Adsorption characteristics of acetone, chloroform and acetonitrile on sludge–derived adsorbent, commercial granular activated carbon and activated carbon fibers, J Hazard Mater. 154 (2008) 1183-1191.
  • [25] M. Ghasemi, S. Mashhadi, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for Malachite green dye, J. Mol. Liq. 213 (2016) 317-325.
  • [26] S. Mashhadi, R. Sohrabi, H. Javadian, M. Ghasemi, I. Tyagi, S. Agarwal, V.K. Gupta, Rapid removal of Hg (II) from aqueous solution by rice straw activated carbon prepared by microwave assisted H2SO4 activation: kinetic, isotherm and thermodynamic studies, J. Mol. Liq. 215 (2016) 144-153.
  • [27] C. Qi, Q.L. Tang, Y.J. Zhu, X.Y. Zhao, F. Chen, Microwave-assisted hydrothermal rapid synthesis of hydroxyapatite nanowires using adenosine 5'-triphosphate disodium salt as phosphorus source, Materials Letters, 85 (2012) 71-73.
  • [28] G.N. Kousalya, R.M. Gandhi, C. Sairam Sundaran, S. Meenakshi, Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III), Carbohydr. Polym. 82 (2010) 594-599.
  • [29] Y. Li, S. Wang, Y. Zhang, R. Han, W. Wei, Enhanced tetracycline adsorption onto hydroxyapatite by Fe(III) incorporation, J. Mol. Liq. 247 (2017) 171-181.
  • [30] W. Yaoguang, H. Lihua, Z. Guangya, Y. Tao, Y. Liangguo, W. Qin, D. Bin, Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes, J. Colloid Interface Sci. 494 (2017) 380-388.
  • [31] A. Vahdat, B. Ghasemi, M. Yousefpour, Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals, Environ. Nanotechnol. Monit. Manage 12 (2019) 100233.
  • [32] D.N. Thanh, M. Singh, P. Ulbrich, F. Štěpánek, N. Strnadová, As(V) removal from aqueous media using α-MnO2 nanorods-impregnated laterite composite adsorbents, Mater. Res. Bull. 47 (2012) 42-50.
  • [33] G. Nahid, G. Maryam, M. Saleh, G. Paris, S.A. Njud, K.G. Vinod, S. Agarwal, I.V. Burakova, AV Tkachev, Zn (II) removal by amino-functionalized magnetic nanoparticles: kinetics, isotherm, and thermodynamic aspects of adsorption, J. Ind. Eng. Chem. 62 (2018) 302-310.
  • [34] M.G. Saida, N. Frini-Srasra, A comparison of single and mixed pillared clays for zinc and chromium cations removal, Appl. Clay. Sci. 158 (2018) 150-157.
  • [35] S. Chayan, K. Jayanta, A. Basu, S. Nath, Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for zinc (II) removal, Adv. Powder Technol. 29 (2018) 1142-1152.
  • [36] S.B. Kanungo, S.S. Tripathy, Rajeev, Adsorption of Co, Ni, Cu, and Zn on hydrous manganese dioxide from complex electrolyte solutions resembling sea water in major ion content, J. Colloid Interface Sci. 269 (2004) 1–10.
  • [37] E. Valsami-Jones, K.V. Ragnarsdottir, A. Putnis, D. Bosbach, A.J. Kemp, G. Cressey, The dissolution of apatite in the presence of aqueous metal cations at pH 2–7, Chem. Geol. 151 (1998) 215–233.
  • [38] M. Harja, G. Ciobanu, Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite, Sci. Total Environ. 628-629 (2018) 36-43.
  • [39] S. Periyasamy, V. Gopalakannan, N. Viswanathan, Hydrothermal assisted magnetic nano-hydroxyapatite encapsulated alginate beads for efficient Cr(VI) uptake from water, J. Environ. Chem. Eng. 6 (2018) 1443-1454.

A Study On the Zn(II) Separation Efficiency of Chemically Synthesized Hydroxyapatite (HAp) Particles

Year 2021, , 46 - 64, 30.06.2021
https://doi.org/10.29002/asujse.908451

Abstract

In this study, hydroxyapatite particles (HAp) were chemically synthesized by using co-precipitation method to determine their capabilities on the sorption of Zn(II) ions from aqueous solutions. HAp particles were chosen because of their low cost for production, high stability, easy to use, and effective sorption power. In order to determine the operation conditions of the adsorption system to be installed when this adsorbent is desired to be used in field applications, parameters such as system pH, initial Zn(II) concentration and adsorbent concentrations have been optimized. Properties and functional structure of the adsorbent materials were characterized by using SEM, FTIR, and EDX analyzes. The kinetic behavior of Zn(II) adsorption with HAp was consistent with the pseudo second order kinetic model. Additionally, the equilibrium states of the adsorption processes were studied by using Langmuir, Freundlich, Temkin, Scatchard and Dubinin–Radushkevich (D-R) isotherm models. The maximum sorption capacity HAp was obtained as 500 mg/g, and best removal value of 91% were determined at pH of 6.0, optimum adsorbent concentration of 3.75 g/L, in 25 mg/L Zn(II) concentration and optimum mixing time of 45 min. This study showed that the HAp can be considered an effective adsorbent on the Zn(II) removal from wastewater.

References

  • [1] H.J. Fan, H.Y. Shu, H.S. Yang, W.C. Chen, Characteristics of landfill leachates in Central Taiwan, Sci. Total Environ. 361 (2006) 25–37.
  • [2] A.K. Bhattacharya, S.N. Mandal, S.K. Das, Adsorption of Zn(II) from aqueous solution by using different adsorbents, Chem. Eng. J. 123 (2006) 43–51.
  • [3] M.N. Rashed, Adsorption technique for the removal of organic pollutants from water and wastewater, INTECH Open Access Publisher, 2013 167-194.
  • [4] G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresource Technol. 97 (2006)1061–1085.
  • [5] J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou, Y. Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater. 164 (2009)1517–1522.
  • [6] H. Çelebi, G. Gök, O. Gök, Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions, Scientific Reports 10, (2020) 17570.
  • [7] S. Ozcan, H. Celebi, Z. Ozcan, Removal of heavy metals from simulated water by using eggshell powder, Desalination and Water Treatment 127 (2018) 75-82.
  • [8] G. Liu, J. Gao, H. Ai, X. Chen, Applications and potential toxicity of magnetic iron oxide nanoparticles, Small 9 (2013) 1533-1545.
  • [9] S. Bao, L. Tang, K. Li, P. Ning, J. Peng, H. Guo, T. Zhu, Y. Liu, Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent, J. Colloid Interf. Sci. 462 (2016) 235–242.
  • [10] H. Karami, Heavy metal removal from water by magnetite nanorods, Chem. Eng. J. 219 (2013) 209–216.
  • [11] M. Nagpal, R. Kakkar, Use of metal oxides for the adsorptive removal of toxic organic pollutants, Sep. Purif. Technol. 211 (2019) 522–539.
  • [12] J.I. Yoo, T. Shinagawa, J.P. Wood, W.P. Linak, D.A. Santoianni, C.J. King, J.O.L. Wendt, High-temperature sorption of cesium and strontium on dispersed kaolinite powders, Environ. Sci. Technol. 39 (2005) 5087-5094.
  • [13] T. Wen, X. Wu, M. Liu, Z. Xing, X. Wang, A.W. Xu, Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites, Dalton Trans. 43 (2014) 7464-7472.
  • [14] D. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith, S. Komarneni, Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes, Angew Chem. Int. Ed. Engl. 50 (2011) 10594-10598.
  • [15] N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, J. Taiwan Inst. Chem Eng 43(1) (2012) 125-131.
  • [16] I. Smiciklas, S. Dimovic, I. Plecas, M. Mitric, Removal of Co2+ from aqueous solutions by hydroxyapatite, Water Res. 40 (2006) 2267-2274.
  • [17] X. Xia, J. Shen, F. Cao, C. Wang, M. Tang, Q. Zhang, S. Wei, A facile synthesis of hydroxyapatite for effective removal strontium ion, J Hazard. Mater. 364 (2019) 326-335.
  • [18] S. Sugiyama, T. Ichii, F. Masayoshi, K. Kawashiro, T. Tomida, N. Shigemoto, H. Hayashi, Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates, J Colloid Interface Sci. 259 (2003) 408-410.
  • [19] Y. Wang, Y. Liu, H. Lu, R. Yang, S. Yang, Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions ontohydroxyapatite-biochar nanocomposite in aqueous solutions, J Solid State Chem. 261 (2018) 53–61.
  • [20] S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, Band 24, 1898, 1-39.
  • [21] Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.
  • [22] W.J. Jr Weber, J.C. Morriss, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. 89 (1963) 31–60.
  • [23] K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore and solid diffusion kinetics in fixed-bed adsorption under constant- pattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  • [24] T. Jiun-Horng, C. Hsiu-Mei, H. Guan-Yinag, C. Hung-Lung, Adsorption characteristics of acetone, chloroform and acetonitrile on sludge–derived adsorbent, commercial granular activated carbon and activated carbon fibers, J Hazard Mater. 154 (2008) 1183-1191.
  • [25] M. Ghasemi, S. Mashhadi, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for Malachite green dye, J. Mol. Liq. 213 (2016) 317-325.
  • [26] S. Mashhadi, R. Sohrabi, H. Javadian, M. Ghasemi, I. Tyagi, S. Agarwal, V.K. Gupta, Rapid removal of Hg (II) from aqueous solution by rice straw activated carbon prepared by microwave assisted H2SO4 activation: kinetic, isotherm and thermodynamic studies, J. Mol. Liq. 215 (2016) 144-153.
  • [27] C. Qi, Q.L. Tang, Y.J. Zhu, X.Y. Zhao, F. Chen, Microwave-assisted hydrothermal rapid synthesis of hydroxyapatite nanowires using adenosine 5'-triphosphate disodium salt as phosphorus source, Materials Letters, 85 (2012) 71-73.
  • [28] G.N. Kousalya, R.M. Gandhi, C. Sairam Sundaran, S. Meenakshi, Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III), Carbohydr. Polym. 82 (2010) 594-599.
  • [29] Y. Li, S. Wang, Y. Zhang, R. Han, W. Wei, Enhanced tetracycline adsorption onto hydroxyapatite by Fe(III) incorporation, J. Mol. Liq. 247 (2017) 171-181.
  • [30] W. Yaoguang, H. Lihua, Z. Guangya, Y. Tao, Y. Liangguo, W. Qin, D. Bin, Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes, J. Colloid Interface Sci. 494 (2017) 380-388.
  • [31] A. Vahdat, B. Ghasemi, M. Yousefpour, Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals, Environ. Nanotechnol. Monit. Manage 12 (2019) 100233.
  • [32] D.N. Thanh, M. Singh, P. Ulbrich, F. Štěpánek, N. Strnadová, As(V) removal from aqueous media using α-MnO2 nanorods-impregnated laterite composite adsorbents, Mater. Res. Bull. 47 (2012) 42-50.
  • [33] G. Nahid, G. Maryam, M. Saleh, G. Paris, S.A. Njud, K.G. Vinod, S. Agarwal, I.V. Burakova, AV Tkachev, Zn (II) removal by amino-functionalized magnetic nanoparticles: kinetics, isotherm, and thermodynamic aspects of adsorption, J. Ind. Eng. Chem. 62 (2018) 302-310.
  • [34] M.G. Saida, N. Frini-Srasra, A comparison of single and mixed pillared clays for zinc and chromium cations removal, Appl. Clay. Sci. 158 (2018) 150-157.
  • [35] S. Chayan, K. Jayanta, A. Basu, S. Nath, Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for zinc (II) removal, Adv. Powder Technol. 29 (2018) 1142-1152.
  • [36] S.B. Kanungo, S.S. Tripathy, Rajeev, Adsorption of Co, Ni, Cu, and Zn on hydrous manganese dioxide from complex electrolyte solutions resembling sea water in major ion content, J. Colloid Interface Sci. 269 (2004) 1–10.
  • [37] E. Valsami-Jones, K.V. Ragnarsdottir, A. Putnis, D. Bosbach, A.J. Kemp, G. Cressey, The dissolution of apatite in the presence of aqueous metal cations at pH 2–7, Chem. Geol. 151 (1998) 215–233.
  • [38] M. Harja, G. Ciobanu, Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite, Sci. Total Environ. 628-629 (2018) 36-43.
  • [39] S. Periyasamy, V. Gopalakannan, N. Viswanathan, Hydrothermal assisted magnetic nano-hydroxyapatite encapsulated alginate beads for efficient Cr(VI) uptake from water, J. Environ. Chem. Eng. 6 (2018) 1443-1454.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Yağmur Uysal 0000-0002-7217-8217

Ahmet Dizle

Publication Date June 30, 2021
Submission Date April 2, 2021
Acceptance Date June 9, 2021
Published in Issue Year 2021

Cite

APA Uysal, Y., & Dizle, A. (2021). A Study On the Zn(II) Separation Efficiency of Chemically Synthesized Hydroxyapatite (HAp) Particles. Aksaray University Journal of Science and Engineering, 5(1), 46-64. https://doi.org/10.29002/asujse.908451

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License