Research Article
BibTex RIS Cite

Harnessing the Power of Ellagic Acid: A Natural Shield Against Salt Stress in Wheat and Chickpea

Year 2024, , 102 - 113, 30.12.2024
https://doi.org/10.29002/asujse.1582075

Abstract

The research investigates how ellagic acid (EA) influences the reduction of salinity stress in wheat and chickpea plants. Salinity is a major challenge for global agriculture as it interferes with vital plant physiological functions, especially photosynthesis, by causing ion imbalances and oxidative damage. This study examines EA, a phenolic compound known for its antioxidant capabilities, and its ability to counteract the detrimental impacts of salt stress. In this experiment, wheat and chickpea plants were grown under controlled conditions and exposed to salinity (100 mM NaCl), both with and without the application of EA (12.5 µM). Various parameters, such as fresh and dry biomass, proline concentration, and gas exchange rates, were recorded. The findings revealed that salt stress drastically lowered both biomass and gas exchange performance in the plants, but the application of EA partially alleviated these negative effects. EA enhanced both fresh and dry weights, minimized electrolyte leakage, and elevated proline levels, particularly in chickpea plants. Additionally, gas exchange parameters, including carbon assimilation (A), stomatal conductance (gs), and transpiration rate (E), improved with the combined EA and salt treatment compared to salt stress alone. The study concludes that EA serves as a protective agent against oxidative damage caused by salinity, enhancing growth parameters and boosting photosynthetic performance. This suggests that EA could be a valuable approach to increasing plant tolerance to salinity in agricultural systems..

References

  • [1] Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management 38(1): 39-67. DOI: 10.1111/sum.12772
  • [2] Hao, S.,Y. Wang,Y. Yan,Y. Liu,J. Wang.,S. Chen. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 7(6): 132. DOI: 10.3390/horticulturae7060132
  • [3] Zahra, N.,M.S. Al Hinai,M.B. Hafeez,A. Rehman,A. Wahid,K.H. Siddique.,M. Farooq. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry 178: 55-69. DOI: 10.1016/j.plaphy.2022.03.003
  • [4] Mahawar, L.,M. Živčák,M. Barboricova,M. Kovár,A. Filaček,J. Ferencova,D.M. Vysoká.,M. Brestič. (2024). Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. Plant Physiology and Biochemistry 206: 108281. DOI: 10.1016/j.plaphy.2023.108281
  • [5] Vajjiravel, P.,D. Nagarajan,V. Pugazhenthi,A. Suresh,M.K. Sivalingam,A. Venkat,P.P. Mahapatra,K. Razi,M. Al Murad.,D.W. Bae. (2024). Circadian-based approach for improving physiological, phytochemical and chloroplast proteome in Spinacia oleracea under salinity stress and light emitting diodes. Plant Physiology and Biochemistry 207: 108350. DOI: 10.1016/j.plaphy.2024.108350
  • [6] Sarkar, M.M.,P. Rudra,P. Paul,T.K. Dua.,S. Roy. (2024). Enhanced adaptation to salinity stress in lentil seedlings through the use of trehalose-functionalized silica nanoparticles (TSiNPs): Exploring silica-sugar absorption and oxidative balance. Plant Physiology and Biochemistry 206. DOI: 108309 10.1016/j.plaphy.2023.108309
  • [7] Sheikhalipour, M.,G. Gohari,B. Esmaielpour,M. Behnamian,M.T. Giglou,M.H. Milani,M.K. Bahrami,M. Kulak,A. Ioannou.,V. Fotopoulos. (2023). Effect of melatonin foliar sprays on morphophysiological attributes, fruit yield and quality of Momordica charantia L. under salinity stress. Plant Physiology and Biochemistry 205: 108194. DOI: 108309 10.1016/j.plaphy.2023.108194
  • [8] Yu, L.,S. Tang,C. Guo,H. Korpelainen.,C. Li. (2023). Differences in ecophysiological responses of Populus euphratica females and males exposed to salinity and alkali stress. Plant Physiology and Biochemistry 198: 107707. DOI: 10.1016/j.plaphy.2023.107707
  • [9] Wang, H.,J. Li,H. Liu,S. Chen,Q. uz Zaman,M. Rehman,K. El-Kahtany,S. Fahad,G. Deng.,J. Yang. (2023). Variability in morpho-biochemical, photosynthetic pigmentation, enzymatic and quality attributes of potato for salinity stress tolerance. Plant Physiology and Biochemistry 203: 108036. DOI: 10.1016/j.plaphy.2023.108036
  • [10] Ahlawat, Y.K.,M. Singh,K. Manorama,N. Lakra,A. Zaid.,F. Zulfiqar. (2024). Plant phenolics: neglected secondary metabolites in plant stress tolerance. Brazilian Journal of Botany 47(3): 703-721. DOI: 10.1007/s40415-023-00949-x
  • [11] Wulandari, Y.,Y. Sulistyaningsih,A. Suprayogi,M. Rahminiwati.,T. Triadiati. Effect of salinity on glandular trichomes density, phenolic and flavonoid contents of Morus spp. accessions leaves from Indonesia. in IOP Conference Series: Earth and Environmental Science. 2023. IOP Publishing. DOI: 10.1088/1755-1315/1271/1/012037
  • [12] Vafadar, F..,P. Ehsanzadeh. (2023). Synergistic effects of calcium and melatonin on physiological and phytochemical attributes of Dracocephalum kotschyi genotypes under salinity stress. Physiologia Plantarum 175(3): e13912. DOI: 10.1111/ppl.13912
  • [13] Pungin, A.,L. Lartseva,V. Loskutnikova,V. Shakhov,E. Popova,L. Skrypnik.,O. Krol. (2023). Effect of salinity stress on phenolic compounds and antioxidant activity in halophytes Spergularia marina (L.) Griseb. and Glaux maritima L. cultured in vitro. Plants 12(9): 1905. DOI: 10.3390/plants12091905
  • [14] Gholamnia, A.,A. Mosleh Arani,H. Sodaeizadeh,S. Tarkesh Esfahani.,S. Ghasemi. (2022). Expression profiling of rosmarinic acid biosynthetic genes and some physiological responses from Mentha piperita L. under salinity and heat stress. Physiology and Molecular Biology of Plants 28(3): 545-557. DOI: 10.1007/s12298-022-01159-7
  • [15] Parvin, K.,M. Hasanuzzaman,S. Mohsin,K. Nahar.,M. Fujita. (2021). Coumarin improves tomato plant tolerance to salinity by enhancing antioxidant defence, glyoxalase system and ion homeostasis. Plant Biology 23: 181-192. DOI: 10.1111/plb.13208
  • [16] Kwon, E.-H.,A. Adhikari,M. Imran,D.-S. Lee,C.-Y. Lee,S.-M. Kang.,I.-J. Lee. (2023). Exogenous SA Applications Alleviate Salinity Stress via Physiological and Biochemical changes in St John’s Wort Plants. Plants 12(2): 310. DOI: 10.3390/plants12020310
  • [17] El-Soud, W.A.,M.M. Hegab,H. AbdElgawad,G. Zinta.,H. Asard. (2013). Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiology and Biochemistry 71: 173-183. DOI: 10.1016/j.plaphy.2013.07.007
  • [18] Ríos, J.-L.,R.M. Giner,M. Marín.,M.C. Recio. (2018). A pharmacological update of ellagic acid. Planta medica 84(15): 1068-1093. DOI: 10.1055/a-0633-9492
  • [19] Alfei, S.,B. Marengo.,G. Zuccari. (2020). Oxidative stress, antioxidant capabilities, and bioavailability: Ellagic acid or urolithins? Antioxidants 9(8): 707. DOI: 10.3390/antiox9080707
  • [20] Cozzi, R.,R. Ricordy,F. Bartolini,L. Ramadori,P. Perticone.,R. De Salvia. (1995). Taurine and ellagic acid: Two differently‐acting natural antioxidants. Environmental and Molecular Mutagenesis 26(3): 248-254. DOI: 10.1002/em.2850260310
  • [21] Khan, A.,S. Nazar,I. Lang,H. Nawaz.,M.A. Hussain. (2017). Effect of ellagic acid on growth and physiology of canola (Brassica napus L.) under saline conditions. Journal of Plant Interactions 12(1): 520-525. DOI: 10.1080/17429145.2017.1400122
  • [22] Bates, L.S.,R. Waldren.,I. Teare. (1973). Rapid determination of free proline for water-stress studies. Plant and soil 39: 205-207. DOI: 10.1007/BF00018060
  • [23] Kim, J.W..,T. Minamikawa. (1997). Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Bioscience, biotechnology, and biochemistry 61(1): 118-123. DOI: 10.1271/bbb.61.118
  • [24] Azeem, M.,K. Pirjan,M. Qasim,A. Mahmood,T. Javed,H. Muhammad,S. Yang,R. Dong,B. Ali.,M. Rahimi. (2023). Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports 13(1): 2895. DOI: 10.1038/s41598-023-29954-6
  • [25] Al-Fraihat, A.H.,S.Y. Al-Dalain,A.A. Zatimeh.,M.A. Haddad. (2023). Enhancing rosemary (Rosmarinus officinalis, L.) growth and volatile oil constituents grown under soil salinity stress by some amino acids. Horticulturae 9(2): 252. DOI: 10.3390/horticulturae9020252
  • [26] Denaxa, N.-K.,A. Nomikou,N. Malamos,E. Liveri,P.A. Roussos.,V. Papasotiropoulos. (2022). Salinity effect on plant growth parameters and fruit bioactive compounds of two strawberry cultivars, coupled with environmental conditions monitoring. Agronomy 12(10): 2279. DOI: 10.3390/agronomy12102279
  • [27] Kumar, K.,P. Debnath,S. Singh.,N. Kumar. (2023). An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 3(3): 570-585. DOI: 10.3390/stresses3030040
  • [28] Sharma, A.,S.K. Kohli,K. Khanna,M. Ramakrishnan,V. Kumar,R. Bhardwaj,M. Brestic,M. Skalicky,M. Landi.,B. Zheng. (2023). Salicylic acid: a phenolic molecule with multiple roles in salt-stressed plants. Journal of Plant Growth Regulation 42(8): 4581-4605. DOI: 10.1007/s00344-022-10902-z
  • [29] Babaei, M.,L. Shabani.,S. Hashemi-Shahraki. (2022). Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L. Botanical Studies 63(1): 22. DOI: 10.1186/s40529-022-00352-x
  • [30] Mishra, N.,P. Dey,R.K. Singhal,C. Sahu,D. Jena,S. Nanda.,J. Chauhan. (2023). Plant phenolics: as antioxidants and potent compounds under multiple stresses, in Plant phenolics in abiotic stress management., Springer. p. 215-234. DOI: 10.1007/978-981-19-6426-8_11
  • [31] Bano, A.,A. Gupta,S. Rai,T. Fatima,S. Sharma.,N. Pathak. (2021). Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. Plant stress physiology—perspectives in agriculture: 1-18. DOI: 10.5772/intechopen.10104
  • [32] Sachdev, S.,S.A. Ansari,M.I. Ansari,M. Fujita.,M. Hasanuzzaman. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 10(2): 277. DOI: 10.3390/antiox10020277
  • [33] Ahmad, R.,S. Hussain,M.A. Anjum,M.F. Khalid,M. Saqib,I. Zakir,A. Hassan,S. Fahad.,S. Ahmad. (2019). Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches: 191-205. DOI: 10.1007/978-3-030-06118-0_8
  • [34] Mariani, L..,A. Ferrante. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae 3(4): 52. DOI: 10.3390/horticulturae3040052
  • [35] Yusuf, M.,S.A. Hasan,B. Ali,S. Hayat,Q. Fariduddin.,A. Ahmad. (2008). Effect of salicylic acid on salinity‐induced changes in Brassica juncea. Journal of integrative plant biology 50(9): 1096-1102. DOI: 10.1111/j.1744-7909.2008.00697.x
  • [36] Hayat, S.,S.A. Hasan,M. Yusuf,Q. Hayat.,A. Ahmad. (2010). Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany 69(2): 105-112. DOI: 10.1016/j.envexpbot.2010.03.004
  • [37] Albaladejo-Marico, L.,L. Yepes-Molina.,M. Carvajal. (2024). Alteration of nutrient uptake and secondary metabolism connection by foliar application of citrus flavonoids to broccoli plants. Plant Growth Regulation: 1-13. DOI: 10.1007/s10725-024-01204-3
  • [38] Maqsood, M.F.,M. Shahbaz,U. Zulfiqar,R.U. Saman,A. Rehman,N. Naz,M. Akram.,F.U. Haider. (2023). Enhancing wheat growth and yield through salicylic acid-mediated regulation of gas exchange, antioxidant defense, and osmoprotection under salt stress. Stresses 3(1): 372-386. DOI: 10.3390/stresses3010027
  • [39] Ben Ahmed, C.,B. Ben Rouina,S. Sensoy,M. Boukhriss.,F. Ben Abdullah. (2010). Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry 58(7): 4216-4222. DOI: 10.1021/jf9041479
  • [40] Zouari, M.,C.B. Ahmed,N. Elloumi,K. Bellassoued,D. Delmail,P. Labrousse,F.B. Abdallah.,B.B. Rouina. (2016). Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicology and environmental safety 128: 195-205. DOI: 10.1016/j.ecoenv.2016.02.024
  • [41] Silva, F.L.B.,L.G.E. Vieira,A.F. Ribas,A.L. Moro,D.M. Neris.,A.C. Pacheco. (2018). Proline accumulation induces the production of total phenolics in transgenic tobacco plants under water deficit without increasing the G6PDH activity. Theoretical and Experimental Plant Physiology 30: 251-260. DOI: 10.1007/s40626-018-0119-0
  • [42] Rady, M.M.,A. Kuşvuran,H.F. Alharby,Y. Alzahrani.,S. Kuşvuran. (2019). Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. Journal of Plant Growth Regulation 38: 449-462. DOI: 10.1007/s00344-018-9860-5
Year 2024, , 102 - 113, 30.12.2024
https://doi.org/10.29002/asujse.1582075

Abstract

References

  • [1] Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management 38(1): 39-67. DOI: 10.1111/sum.12772
  • [2] Hao, S.,Y. Wang,Y. Yan,Y. Liu,J. Wang.,S. Chen. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 7(6): 132. DOI: 10.3390/horticulturae7060132
  • [3] Zahra, N.,M.S. Al Hinai,M.B. Hafeez,A. Rehman,A. Wahid,K.H. Siddique.,M. Farooq. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry 178: 55-69. DOI: 10.1016/j.plaphy.2022.03.003
  • [4] Mahawar, L.,M. Živčák,M. Barboricova,M. Kovár,A. Filaček,J. Ferencova,D.M. Vysoká.,M. Brestič. (2024). Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. Plant Physiology and Biochemistry 206: 108281. DOI: 10.1016/j.plaphy.2023.108281
  • [5] Vajjiravel, P.,D. Nagarajan,V. Pugazhenthi,A. Suresh,M.K. Sivalingam,A. Venkat,P.P. Mahapatra,K. Razi,M. Al Murad.,D.W. Bae. (2024). Circadian-based approach for improving physiological, phytochemical and chloroplast proteome in Spinacia oleracea under salinity stress and light emitting diodes. Plant Physiology and Biochemistry 207: 108350. DOI: 10.1016/j.plaphy.2024.108350
  • [6] Sarkar, M.M.,P. Rudra,P. Paul,T.K. Dua.,S. Roy. (2024). Enhanced adaptation to salinity stress in lentil seedlings through the use of trehalose-functionalized silica nanoparticles (TSiNPs): Exploring silica-sugar absorption and oxidative balance. Plant Physiology and Biochemistry 206. DOI: 108309 10.1016/j.plaphy.2023.108309
  • [7] Sheikhalipour, M.,G. Gohari,B. Esmaielpour,M. Behnamian,M.T. Giglou,M.H. Milani,M.K. Bahrami,M. Kulak,A. Ioannou.,V. Fotopoulos. (2023). Effect of melatonin foliar sprays on morphophysiological attributes, fruit yield and quality of Momordica charantia L. under salinity stress. Plant Physiology and Biochemistry 205: 108194. DOI: 108309 10.1016/j.plaphy.2023.108194
  • [8] Yu, L.,S. Tang,C. Guo,H. Korpelainen.,C. Li. (2023). Differences in ecophysiological responses of Populus euphratica females and males exposed to salinity and alkali stress. Plant Physiology and Biochemistry 198: 107707. DOI: 10.1016/j.plaphy.2023.107707
  • [9] Wang, H.,J. Li,H. Liu,S. Chen,Q. uz Zaman,M. Rehman,K. El-Kahtany,S. Fahad,G. Deng.,J. Yang. (2023). Variability in morpho-biochemical, photosynthetic pigmentation, enzymatic and quality attributes of potato for salinity stress tolerance. Plant Physiology and Biochemistry 203: 108036. DOI: 10.1016/j.plaphy.2023.108036
  • [10] Ahlawat, Y.K.,M. Singh,K. Manorama,N. Lakra,A. Zaid.,F. Zulfiqar. (2024). Plant phenolics: neglected secondary metabolites in plant stress tolerance. Brazilian Journal of Botany 47(3): 703-721. DOI: 10.1007/s40415-023-00949-x
  • [11] Wulandari, Y.,Y. Sulistyaningsih,A. Suprayogi,M. Rahminiwati.,T. Triadiati. Effect of salinity on glandular trichomes density, phenolic and flavonoid contents of Morus spp. accessions leaves from Indonesia. in IOP Conference Series: Earth and Environmental Science. 2023. IOP Publishing. DOI: 10.1088/1755-1315/1271/1/012037
  • [12] Vafadar, F..,P. Ehsanzadeh. (2023). Synergistic effects of calcium and melatonin on physiological and phytochemical attributes of Dracocephalum kotschyi genotypes under salinity stress. Physiologia Plantarum 175(3): e13912. DOI: 10.1111/ppl.13912
  • [13] Pungin, A.,L. Lartseva,V. Loskutnikova,V. Shakhov,E. Popova,L. Skrypnik.,O. Krol. (2023). Effect of salinity stress on phenolic compounds and antioxidant activity in halophytes Spergularia marina (L.) Griseb. and Glaux maritima L. cultured in vitro. Plants 12(9): 1905. DOI: 10.3390/plants12091905
  • [14] Gholamnia, A.,A. Mosleh Arani,H. Sodaeizadeh,S. Tarkesh Esfahani.,S. Ghasemi. (2022). Expression profiling of rosmarinic acid biosynthetic genes and some physiological responses from Mentha piperita L. under salinity and heat stress. Physiology and Molecular Biology of Plants 28(3): 545-557. DOI: 10.1007/s12298-022-01159-7
  • [15] Parvin, K.,M. Hasanuzzaman,S. Mohsin,K. Nahar.,M. Fujita. (2021). Coumarin improves tomato plant tolerance to salinity by enhancing antioxidant defence, glyoxalase system and ion homeostasis. Plant Biology 23: 181-192. DOI: 10.1111/plb.13208
  • [16] Kwon, E.-H.,A. Adhikari,M. Imran,D.-S. Lee,C.-Y. Lee,S.-M. Kang.,I.-J. Lee. (2023). Exogenous SA Applications Alleviate Salinity Stress via Physiological and Biochemical changes in St John’s Wort Plants. Plants 12(2): 310. DOI: 10.3390/plants12020310
  • [17] El-Soud, W.A.,M.M. Hegab,H. AbdElgawad,G. Zinta.,H. Asard. (2013). Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiology and Biochemistry 71: 173-183. DOI: 10.1016/j.plaphy.2013.07.007
  • [18] Ríos, J.-L.,R.M. Giner,M. Marín.,M.C. Recio. (2018). A pharmacological update of ellagic acid. Planta medica 84(15): 1068-1093. DOI: 10.1055/a-0633-9492
  • [19] Alfei, S.,B. Marengo.,G. Zuccari. (2020). Oxidative stress, antioxidant capabilities, and bioavailability: Ellagic acid or urolithins? Antioxidants 9(8): 707. DOI: 10.3390/antiox9080707
  • [20] Cozzi, R.,R. Ricordy,F. Bartolini,L. Ramadori,P. Perticone.,R. De Salvia. (1995). Taurine and ellagic acid: Two differently‐acting natural antioxidants. Environmental and Molecular Mutagenesis 26(3): 248-254. DOI: 10.1002/em.2850260310
  • [21] Khan, A.,S. Nazar,I. Lang,H. Nawaz.,M.A. Hussain. (2017). Effect of ellagic acid on growth and physiology of canola (Brassica napus L.) under saline conditions. Journal of Plant Interactions 12(1): 520-525. DOI: 10.1080/17429145.2017.1400122
  • [22] Bates, L.S.,R. Waldren.,I. Teare. (1973). Rapid determination of free proline for water-stress studies. Plant and soil 39: 205-207. DOI: 10.1007/BF00018060
  • [23] Kim, J.W..,T. Minamikawa. (1997). Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Bioscience, biotechnology, and biochemistry 61(1): 118-123. DOI: 10.1271/bbb.61.118
  • [24] Azeem, M.,K. Pirjan,M. Qasim,A. Mahmood,T. Javed,H. Muhammad,S. Yang,R. Dong,B. Ali.,M. Rahimi. (2023). Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports 13(1): 2895. DOI: 10.1038/s41598-023-29954-6
  • [25] Al-Fraihat, A.H.,S.Y. Al-Dalain,A.A. Zatimeh.,M.A. Haddad. (2023). Enhancing rosemary (Rosmarinus officinalis, L.) growth and volatile oil constituents grown under soil salinity stress by some amino acids. Horticulturae 9(2): 252. DOI: 10.3390/horticulturae9020252
  • [26] Denaxa, N.-K.,A. Nomikou,N. Malamos,E. Liveri,P.A. Roussos.,V. Papasotiropoulos. (2022). Salinity effect on plant growth parameters and fruit bioactive compounds of two strawberry cultivars, coupled with environmental conditions monitoring. Agronomy 12(10): 2279. DOI: 10.3390/agronomy12102279
  • [27] Kumar, K.,P. Debnath,S. Singh.,N. Kumar. (2023). An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 3(3): 570-585. DOI: 10.3390/stresses3030040
  • [28] Sharma, A.,S.K. Kohli,K. Khanna,M. Ramakrishnan,V. Kumar,R. Bhardwaj,M. Brestic,M. Skalicky,M. Landi.,B. Zheng. (2023). Salicylic acid: a phenolic molecule with multiple roles in salt-stressed plants. Journal of Plant Growth Regulation 42(8): 4581-4605. DOI: 10.1007/s00344-022-10902-z
  • [29] Babaei, M.,L. Shabani.,S. Hashemi-Shahraki. (2022). Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L. Botanical Studies 63(1): 22. DOI: 10.1186/s40529-022-00352-x
  • [30] Mishra, N.,P. Dey,R.K. Singhal,C. Sahu,D. Jena,S. Nanda.,J. Chauhan. (2023). Plant phenolics: as antioxidants and potent compounds under multiple stresses, in Plant phenolics in abiotic stress management., Springer. p. 215-234. DOI: 10.1007/978-981-19-6426-8_11
  • [31] Bano, A.,A. Gupta,S. Rai,T. Fatima,S. Sharma.,N. Pathak. (2021). Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. Plant stress physiology—perspectives in agriculture: 1-18. DOI: 10.5772/intechopen.10104
  • [32] Sachdev, S.,S.A. Ansari,M.I. Ansari,M. Fujita.,M. Hasanuzzaman. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 10(2): 277. DOI: 10.3390/antiox10020277
  • [33] Ahmad, R.,S. Hussain,M.A. Anjum,M.F. Khalid,M. Saqib,I. Zakir,A. Hassan,S. Fahad.,S. Ahmad. (2019). Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches: 191-205. DOI: 10.1007/978-3-030-06118-0_8
  • [34] Mariani, L..,A. Ferrante. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae 3(4): 52. DOI: 10.3390/horticulturae3040052
  • [35] Yusuf, M.,S.A. Hasan,B. Ali,S. Hayat,Q. Fariduddin.,A. Ahmad. (2008). Effect of salicylic acid on salinity‐induced changes in Brassica juncea. Journal of integrative plant biology 50(9): 1096-1102. DOI: 10.1111/j.1744-7909.2008.00697.x
  • [36] Hayat, S.,S.A. Hasan,M. Yusuf,Q. Hayat.,A. Ahmad. (2010). Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany 69(2): 105-112. DOI: 10.1016/j.envexpbot.2010.03.004
  • [37] Albaladejo-Marico, L.,L. Yepes-Molina.,M. Carvajal. (2024). Alteration of nutrient uptake and secondary metabolism connection by foliar application of citrus flavonoids to broccoli plants. Plant Growth Regulation: 1-13. DOI: 10.1007/s10725-024-01204-3
  • [38] Maqsood, M.F.,M. Shahbaz,U. Zulfiqar,R.U. Saman,A. Rehman,N. Naz,M. Akram.,F.U. Haider. (2023). Enhancing wheat growth and yield through salicylic acid-mediated regulation of gas exchange, antioxidant defense, and osmoprotection under salt stress. Stresses 3(1): 372-386. DOI: 10.3390/stresses3010027
  • [39] Ben Ahmed, C.,B. Ben Rouina,S. Sensoy,M. Boukhriss.,F. Ben Abdullah. (2010). Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry 58(7): 4216-4222. DOI: 10.1021/jf9041479
  • [40] Zouari, M.,C.B. Ahmed,N. Elloumi,K. Bellassoued,D. Delmail,P. Labrousse,F.B. Abdallah.,B.B. Rouina. (2016). Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicology and environmental safety 128: 195-205. DOI: 10.1016/j.ecoenv.2016.02.024
  • [41] Silva, F.L.B.,L.G.E. Vieira,A.F. Ribas,A.L. Moro,D.M. Neris.,A.C. Pacheco. (2018). Proline accumulation induces the production of total phenolics in transgenic tobacco plants under water deficit without increasing the G6PDH activity. Theoretical and Experimental Plant Physiology 30: 251-260. DOI: 10.1007/s40626-018-0119-0
  • [42] Rady, M.M.,A. Kuşvuran,H.F. Alharby,Y. Alzahrani.,S. Kuşvuran. (2019). Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. Journal of Plant Growth Regulation 38: 449-462. DOI: 10.1007/s00344-018-9860-5
There are 42 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Fevzi Elbasan 0000-0001-8399-452X

Publication Date December 30, 2024
Submission Date November 9, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2024

Cite

APA Elbasan, F. (2024). Harnessing the Power of Ellagic Acid: A Natural Shield Against Salt Stress in Wheat and Chickpea. Aksaray University Journal of Science and Engineering, 8(2), 102-113. https://doi.org/10.29002/asujse.1582075
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr