Research Article
BibTex RIS Cite

Use of Agave (Agave salmiana) Syrup in Kombucha Fermentation

Year 2024, , 62 - 72, 30.12.2024
https://doi.org/10.29002/asujse.1456495

Abstract

In this study, the potential of using different concentrations of agave syrup (AS) as a substrate in kombucha fermentation was investigated. After adding AS at concentrations of 3% (AS3), 5% (AS5), and 7% (AS7) to kombucha, some physicochemical, antioxidant, and microbiological analyses were conducted, alongside the determination of total phenolic content. The lowest pH value was measured as 3.13±0.13 and 2.91±0.15 in AS7 kombucha after fermentation for 7th and 14th days, respectively. The highest total soluble solids content was determined as 7.81±0.28 °Bx in AS7 kombucha on our 48th. The highest DPPH activity was observed in AS7 after 14 days (71±1.02%), metal chelating activity was highest in AS7 kombucha on day 14th (71.5%), and the total phenolic content was found to be 412±0.81 mg GAE/L and 438±0.89 mg GAE/L in AS7 on days 7th and 14th, respectively. The highest levels of acetic acid, lactic acid, and yeast counts were detected in AS7 on days 7th and 14th. The results showed that agave syrup may be an alternative sugar source to sucrose for kombucha, and polyphenols from agave may contribute to antioxidant capacity. Particularly, consumption between 7th and 14th days is recommended due to the highest functional properties observed during this period.

References

  • [1] Teoh, A.L., Heard, G., Cox, J. (2004). Yeast ecology of kombucha fermentation, International Journal of Food Microbiology, 95, 119–126.
  • [2] Martinez, L.J., Suáreza, L.V., Jayabalan, R., Orosa, J.H., Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites, CyTA-Journal of Food, 16, 390–399.
  • [3] Yang, C.S., Maliakal, P., Meng, X. (2002). Inhibition of carcinogenesis by tea, Annual Review of Pharmacology and Toxicology, 42, 25–54.
  • [4] Neffe-Skocińska, K., Sionek, B., Ścibisz, I., Kołożyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of kombucha tea beverages on physicochemical, microbiological and sensory properties, CyTA-Journal of Food, 15, 601–607.
  • [5] Vitas, J.S., Malbaša, R.V., Grahovac, J.A., Lončar, E.S. (2013). The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory, Chemical Industry and Chemical Engineering Quarterly, 19, 129–139.
  • [6] Velicanski, A.S., Cvetković, D.D., Markov, S.L., Šaponjac, V.T.T., Vulić, J.J. (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts, Food Technology and Biotechnology, 52, 420–429.
  • [7] Yavari, N., Assadi, M.M., Moghadam, M.B., Larijani, K. (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology, Australian Journal of Basic and Applied Sciences, 5, 1788–1794.
  • [8] Mora, M.R., Dando, R. (2021). The sensory properties and metabolic impact of natural and synthetic sweeteners, Comprehensive Reviews in Food Science and Food Safety, 20, 1554–1583.
  • [9] Deliza, R., Lima, M. F., Ares, G. (2021). Rethinking sugar reduction in processed foods, Current Opinion in Food Science, 40, 58–66.
  • [10] Santos-Zea, L., Leal-Díaz, A.M., Cortés-Ceballos, E., Gutiérrez-Uribe, J.A. (2012). Agave (Agave spp.) and its traditional products as a source of bioactive compounds, Current Bioactive Compounds, 8, 218–231.
  • [11] Martínez-Herrera, R.E., Rutiaga-Quiñones, O.M., Alemán-Huerta, M.E. (2021). Integration of Agave plants into the polyhydroxybutyrate (PHB) production: A gift of the ancient Aztecs to the current bioworld, Industrial Crops and Products, 174, 114188.
  • [12] Mellado-Mojica, E., Lopez-Perez, M.G. (2015). Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD, Food Chemistry, 167, 349–357.
  • [13] Global Agave Market, Market Report on Agave Nectar. (2021). Available online: https://www.marketdataforecast.com/marketreports/agave-nectar-market (accessed on 12 December).
  • [14] Espinosa-Andrews, H., Urías-Silva, J.E., Morales-Hernández, N. (2021). The role of agave fructans in health and food applications: A review, Trends in Food Science and Technology, 114, 585–598.
  • [15] Mellado-Mojica, E., López, M.G. (2013). Comparative analysis between blue Agave syrup (Agave tequilana Weber var. azul) and other natural syrups, Agrociencia, 47, 233–244.
  • [16] Aldrete-Herrera, P.I., López, M.G., Medina-Torres, L., Ragazzo-Sánchez, J.A., Calderón-Santoyo, M., González-Ávila, M., Ortiz- Basurto, R.I. (2019). Physicochemical composition and apparent degree of polymerization of fructans in fivewild agave varieties: Potential Industrial Use, Foods, 8, 404.
  • [17] Escamilla-Treviño, L.L. (2012). Potential of plants from the genus agave as bioenergy crops, Bioenergy Research, 5, 1–9.
  • [18] Maldonado-Guevara, B.I., Martín del Campo, S.T., Cardador-Martínez, A. (2018). Production process effect on Mexican agave syrups quality: A preliminary study, Journal of Food Research, 7, 50–57.
  • [19] Muniz-Marquez, D.B., Contreras, J.C., Rodríguez, R., Mussatto, S.I., Wong-Paz, J.E., Teixeira, J. A., Aguilar, C.N. (2015). Influence of thermal effect on sugars composition of Mexican Agave syrup, CyTA - Journal of Food, 13, 1–6.
  • [20] Liang, S., Were, L.M. (2018). Chlorogenic acid oxidation-induced greening of sunflower butter cookies as a function of different sweeteners and storage conditions, Food Chemistry, 241, 135–142.
  • [21] Gülhan, A. (2024). Use of ice teas formulated with black teas prepared with different infusion methods and grape juice in the production of water kefir beverages, Food and Humanity, 2, 100219.
  • [22] Rothschild, J., Rosentrater, K.A., Onwulata, C., Singh, M., Menutti, L., Jambazian, P., Omary, M.B. (2015). Influence of quinoa roasting on sensory and physicochemical properties of allergen-free, gluten-free cakes, Internationa Journal of Food Science and Technology, 50, 1873–1881.
  • [23] Zamora-Gasga, V.M., Bello-Pérez, L.A., Ortíz-Basurto, R.I., Tovar, J., Sáyago-Ayerdi, S.G. (2014). Granola bars prepared with agave tequilana ingredients: Chemical composition and in vitro starch hydrolysis, LWT Food Science and Technology, 56, 309–314.
  • [24] Gutierrez-Uribe, J.A., Santos-Zea, L., Serna-Saldívar, S.O. (2017). US8470858B2 - Agave syrup extract having anticancer activity - Google Patents (Patent No. US9585928B2).
  • [25] Hernandez-Ramos, L., García-Mateos, R., Ybarra-Moncada, M.C., Colinas-Le´on, M.T. (2020). Nutritional value and antioxidant activity of the maguey syrup (Agave salmiana and A. mapisaga) obtained through three treatments, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48, 1306–1316.
  • [26] Ribeiro, J.A., dos Santos Pereira, E., de Oliveira Raphaelli, C., Radünz, M., Camargo, T.M., da Rocha Concenço, F.I.G., Cantillano, R.F.F., Fiorentini, Â.M., Nora, L. (2022). Application of prebiotics in apple products and potential health benefits, Journal of Food Science and Technology, 59, 1249–1262.
  • [27] Gülhan, M.F. (2023). A new substrate and nitrogen source for traditional kombucha beverage: Stevia rebaudiana leaves, Applied Biochemistry and Biotechnology, 195(7), 4096–4115.
  • [28] AOAC (Association of Offıcial Analytical Chemists). (2012). Official methods of analysis of AOAC International, 19th ed. Arlington: Association of official analytical chemists.
  • [29] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity, LWT-Food Science and Technology, 28, 25–30.
  • [30] Decker, E.A., Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food, Journal of Agricultural and Food Chemistry, 38, 674-677.
  • [31] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, American Journal of Enology and Viticulture, 16, 144-158.
  • [32] Du Toit, W.J., Lambrechts, M.G. (2002). The enumeration and identification of acetic acid bacteria from South African red wine fermentations, International Journal of Food Microbiology, 74(1), 57–64.
  • [33] Kruk, M., Trzaskowska, M., Scibisz, I., Pokorski, P. (2021). Application of the “SCOBY” and kombucha tea for the production of fermented milk drinks, Microorganisms, 9, 123.
  • [34] Ozuna, C., Franco-Robles, E. (2022). Agave syrup: An alternative to conventional sweeteners? A review of its current technological applications and health effects, LWT-Food Science and Technology, 162, 113434.
  • [35] Yıkmış, S., Tuğgum, S. (2019). Evaluation of microbiological, physicochemical and sensorial properties of purple basil kombucha beverage, Turkish Journal of Agriculture-Food Science and Technology, 7, 1321–1327.
  • [36] da Silva, C.F.G., Santos, F.L,. de Santana, L.R.R., Silva, M.V.L., de Araujo, C.T. (2018). Development and characterization of a soymilk kefir-based functional beverage, Food Science and Technology, 38(3), 543–550.
  • [37] Jakubczyk, K., Kałduńska, J., Kochman, J., Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9, 447.
  • [38] Sievers, M., Lanini, C., Weber, A., Schuler-Schmid, U., Teuber, M. (1995). Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation, Systematic and Applied Microbiology, 18, 590–594.
  • [39] Yavari, N., Assadi, M. M., Moghadam, M. B., Larijani, K. (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology, Australian Journal of Basic and Applied Sciences, 5, 1788–1794.
  • [40] Ayed, L., Hamdi, M. (2015). Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation, Annals of Microbiology, 65, 2293–2299.
  • [41] Kluz M. I., Pietrzyk, K., Pastuszczak, M., Kacaniova, M., Kita, A., Kapusta, I., Zaguła, G., Zagrobelna, E., Strus, K., Marciniak-Lukasiak, K., Stanek-Tarkowska, J., Timar, A.V., Puchalski. C. (2022). Microbiological and physicochemical composition of various types of homemade kombucha beverages using alternative kinds of sugars, Foods, 11, 1523.
  • [42] Dartora, B., Hickert, L.R., Fabricio, M.F., Ayub, M.A.Z., Furlan, J.M., Wagner, R., Perez, K.J., Sant’Anna, V. (2023). Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha, Food Research International, 174, 113569.
  • [43] Amarasinghe, H., Weerakkody, N.S., Waisundara, V.Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus” during extended periods of fermentation, Food Science & Nutrition, 6, 659–665.
  • [44] Cvetkovic, D.D. (2008). Kombucha made from medical herbs-biological activity and fermentation parameters.[Doctoral dissertation].
  • [45] Sreeramulu, G., Zhu, Y., Knol, W. (2000). Kombucha fermentation and its antimicrobial activity, Journal of Agricultural and Food Chemistry, 48, 2589–2594.
  • [46] Belloso-Morales, G., Hernandez-Sanchez, H. (2003). Manufacture of a beverage from cheese whey using a" tea fungus" fermentation, Revista Latinoamericana de Microbiologia, 45, 5.
  • [47] Chen, C., Liu, B. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation, Journal of Applied Microbiology, 89, 834–839.
  • [48] Tamer, C., Temel, S.G., Suna, S., Karabacak, A.O., Ozcan, T., Ersan, L.Y., Kaya, B.T., Copur, O.U. (2021). Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts, Turkish Journal of Agriculture and Forestry, 45, 13–32.
  • [49] Eggleston, G., Boue, S., Bett-Garber, K., Verret, C., Triplett, A., Bechtel, P. (2021). Phenolic contents, antioxidant potential and associated colour in sweet sorghum syrups compared to other commercial syrup sweeteners, Journal of the Science of Food and Agriculture, 101, 613–623.
  • [50] Que, F., Mao, L.C., Pan, X. (2006). Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds, Food Research International, 39(5), 581–587.
  • [51] Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics, International Journal of Food Microbiology, 220, 63-72.
  • [52] Jayabalan, R., Marimuthu, S., Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation, Food Chemistry, 102, 392–8.
  • [53] Gaggia, F., Baffoni, L., Galiano, M., Nielsen, D.S., Jakobsen, R.R., Castro-Mejía, J.L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., Di Gioia, D. (2018). Kombucha beverage from green, black and rooibos teas: a comparative study looking at microbiology, chemistry and antioxidant activity, Nutrients, 11, 1.
  • [54] Bhattacharya, D., Bhattacharya, S., Patra, M.M., Chakravorty, S., Sarkar, S., Chakraborty, W., Koley, H., Gachhui, R. (2016). Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens, Current Microbiology, 73, 885–896.
  • [55] Gamboa-Gomez, C. I., González-Laredo, R.F., Gallegos-Infante, J.A., del Mar Larrosa Pérez, M.Ş., Moreno-Jiménez, M.R., Flores-Rueda, A.G., Rocha-Guzmán, N.E. (2016). Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium, Food Technology and Biotechnology, 54, 367.
  • [56] Jayabalan, R., Subathradevi, P. , Marimuthu, S., Sathishkumar, M., K, Swaminathan. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation, Food Chemistry, 109, 227–234.
  • [57] Vicente-Magueyal, F. J., Bautista-Mendez, A., Villanueva-Tierrablanca, H. D., García- Ruíz, J.L., Jimenez-Islas, H., Navarrete-Bolanos, J.L. (2020). Novel process to obtain agave sap (aguamiel) by directed enzymatic hydrolysis of agave juice fructans, Lebensmittel-Wissenschaft und -Technologie, 127,109387.
  • [58] Kaewkod, T., Bovonsombut, S., Tragoolpua, Y. (2019). Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line, Microorganisms, 7(12), 700.
  • [59] De Filippis, F., Troise, A.D., Vitaglione, P., Ercolini, D. (2018). Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation, Food Microbiology, 73, 11–16.
  • [60] Ayed, L., Ben Abid, S., Hamdi, M. (2017). Development of a beverage from red grape juice fermented with the Kombucha consortium, Annals of Microbiology, 67(1), 111–121.
  • [61] Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R. (2012). Fermentation of black tea broth (kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose, International Food Research Journal, 19 (1), 109–117.
  • [62] Meng, Y., Wang, X., Li, Y., Chen, J., Chen, X. (2014). Microbial interactions and dynamic changes of volatile flavor compounds during the fermentation of traditional kombucha, Food Chemistry, 430, 137060.
  • [63] Cvetkovic, D., Ranitovic, A., Savic, D., Jokovic, N., Vidakovic, A., Pezo, L., Markov, S. (2019). Survival of wild strains of lactobacilli during kombucha fermentation and their contribution to functional characteristics of beverage, Polish Journal of Food and Nutrition Sciences, 69 (4), 407–415.

Kombu çayı Fermantasyonunda Agave (Agave salmiana) Şurubunun Kullanımı

Year 2024, , 62 - 72, 30.12.2024
https://doi.org/10.29002/asujse.1456495

Abstract

Bu çalışmada, farklı konsantrasyonlardaki agave şurubunun (AŞ) kombu çayı fermantasyonunda substrat olarak kullanılma potansiyeli araştırıldı. Kombu çayına %3 (AŞ3), %5 (AŞ5) ve %7 (AŞ7) konsantrasyonlarda AŞ ilave edildikten sonra bazı fizikokimyasal, antioksidan ve mikrobiyolojik analizlerin yanı sıra toplam fenolik madde miktarları belirlendi. En düşük pH değeri AŞ7 fermantasyonun 7. ve 14. günlerinde sırasıyla 3.13±0.13 ve 2.91±0.15 olarak ölçüldü. En yüksek suda çözünür kuru madde AŞ7 kombu çayının 48. saatinde 7.81±0.28 °Bx olarak tespit edildi. En yüksek DPPH aktivitesi AŞ7'de 14. günde %71±1.02, metal şelatlama aktivitesi AŞ7 kombu çayında fermantasyonun 14. gününde %71.5 ve toplam fenolik madde miktarının AŞ7'nin 7. ve 14. günlerinde sırasıyla 412±0.81 mg GAE/L ve 438±0.89 mg GAE/L seviyelerinde olduğu görüldü. En yüksek asetik asit, laktik asit ve maya sayıları AŞ7’nin 7. ve 14. günlerinde tespit edildi. Sonuçlar, agave şurubunun kombu çayı fermantasyonunda kullanılabilmesi için iyi bir substrat kaynağı olabileceğini ve agaveden gelen polifenollerin antioksidan kapasiteye katkıda bulunabileceğini göstermiştir. Özellikle, AŞ7’nin 7 ve 14 günlük fermantasyon sürelerinde belirlenen en yüksek fonksiyonel özelliklerden dolayı bu süreler arasında tüketilmesi tavsiye edilebilir.

References

  • [1] Teoh, A.L., Heard, G., Cox, J. (2004). Yeast ecology of kombucha fermentation, International Journal of Food Microbiology, 95, 119–126.
  • [2] Martinez, L.J., Suáreza, L.V., Jayabalan, R., Orosa, J.H., Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites, CyTA-Journal of Food, 16, 390–399.
  • [3] Yang, C.S., Maliakal, P., Meng, X. (2002). Inhibition of carcinogenesis by tea, Annual Review of Pharmacology and Toxicology, 42, 25–54.
  • [4] Neffe-Skocińska, K., Sionek, B., Ścibisz, I., Kołożyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of kombucha tea beverages on physicochemical, microbiological and sensory properties, CyTA-Journal of Food, 15, 601–607.
  • [5] Vitas, J.S., Malbaša, R.V., Grahovac, J.A., Lončar, E.S. (2013). The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory, Chemical Industry and Chemical Engineering Quarterly, 19, 129–139.
  • [6] Velicanski, A.S., Cvetković, D.D., Markov, S.L., Šaponjac, V.T.T., Vulić, J.J. (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts, Food Technology and Biotechnology, 52, 420–429.
  • [7] Yavari, N., Assadi, M.M., Moghadam, M.B., Larijani, K. (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology, Australian Journal of Basic and Applied Sciences, 5, 1788–1794.
  • [8] Mora, M.R., Dando, R. (2021). The sensory properties and metabolic impact of natural and synthetic sweeteners, Comprehensive Reviews in Food Science and Food Safety, 20, 1554–1583.
  • [9] Deliza, R., Lima, M. F., Ares, G. (2021). Rethinking sugar reduction in processed foods, Current Opinion in Food Science, 40, 58–66.
  • [10] Santos-Zea, L., Leal-Díaz, A.M., Cortés-Ceballos, E., Gutiérrez-Uribe, J.A. (2012). Agave (Agave spp.) and its traditional products as a source of bioactive compounds, Current Bioactive Compounds, 8, 218–231.
  • [11] Martínez-Herrera, R.E., Rutiaga-Quiñones, O.M., Alemán-Huerta, M.E. (2021). Integration of Agave plants into the polyhydroxybutyrate (PHB) production: A gift of the ancient Aztecs to the current bioworld, Industrial Crops and Products, 174, 114188.
  • [12] Mellado-Mojica, E., Lopez-Perez, M.G. (2015). Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD, Food Chemistry, 167, 349–357.
  • [13] Global Agave Market, Market Report on Agave Nectar. (2021). Available online: https://www.marketdataforecast.com/marketreports/agave-nectar-market (accessed on 12 December).
  • [14] Espinosa-Andrews, H., Urías-Silva, J.E., Morales-Hernández, N. (2021). The role of agave fructans in health and food applications: A review, Trends in Food Science and Technology, 114, 585–598.
  • [15] Mellado-Mojica, E., López, M.G. (2013). Comparative analysis between blue Agave syrup (Agave tequilana Weber var. azul) and other natural syrups, Agrociencia, 47, 233–244.
  • [16] Aldrete-Herrera, P.I., López, M.G., Medina-Torres, L., Ragazzo-Sánchez, J.A., Calderón-Santoyo, M., González-Ávila, M., Ortiz- Basurto, R.I. (2019). Physicochemical composition and apparent degree of polymerization of fructans in fivewild agave varieties: Potential Industrial Use, Foods, 8, 404.
  • [17] Escamilla-Treviño, L.L. (2012). Potential of plants from the genus agave as bioenergy crops, Bioenergy Research, 5, 1–9.
  • [18] Maldonado-Guevara, B.I., Martín del Campo, S.T., Cardador-Martínez, A. (2018). Production process effect on Mexican agave syrups quality: A preliminary study, Journal of Food Research, 7, 50–57.
  • [19] Muniz-Marquez, D.B., Contreras, J.C., Rodríguez, R., Mussatto, S.I., Wong-Paz, J.E., Teixeira, J. A., Aguilar, C.N. (2015). Influence of thermal effect on sugars composition of Mexican Agave syrup, CyTA - Journal of Food, 13, 1–6.
  • [20] Liang, S., Were, L.M. (2018). Chlorogenic acid oxidation-induced greening of sunflower butter cookies as a function of different sweeteners and storage conditions, Food Chemistry, 241, 135–142.
  • [21] Gülhan, A. (2024). Use of ice teas formulated with black teas prepared with different infusion methods and grape juice in the production of water kefir beverages, Food and Humanity, 2, 100219.
  • [22] Rothschild, J., Rosentrater, K.A., Onwulata, C., Singh, M., Menutti, L., Jambazian, P., Omary, M.B. (2015). Influence of quinoa roasting on sensory and physicochemical properties of allergen-free, gluten-free cakes, Internationa Journal of Food Science and Technology, 50, 1873–1881.
  • [23] Zamora-Gasga, V.M., Bello-Pérez, L.A., Ortíz-Basurto, R.I., Tovar, J., Sáyago-Ayerdi, S.G. (2014). Granola bars prepared with agave tequilana ingredients: Chemical composition and in vitro starch hydrolysis, LWT Food Science and Technology, 56, 309–314.
  • [24] Gutierrez-Uribe, J.A., Santos-Zea, L., Serna-Saldívar, S.O. (2017). US8470858B2 - Agave syrup extract having anticancer activity - Google Patents (Patent No. US9585928B2).
  • [25] Hernandez-Ramos, L., García-Mateos, R., Ybarra-Moncada, M.C., Colinas-Le´on, M.T. (2020). Nutritional value and antioxidant activity of the maguey syrup (Agave salmiana and A. mapisaga) obtained through three treatments, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48, 1306–1316.
  • [26] Ribeiro, J.A., dos Santos Pereira, E., de Oliveira Raphaelli, C., Radünz, M., Camargo, T.M., da Rocha Concenço, F.I.G., Cantillano, R.F.F., Fiorentini, Â.M., Nora, L. (2022). Application of prebiotics in apple products and potential health benefits, Journal of Food Science and Technology, 59, 1249–1262.
  • [27] Gülhan, M.F. (2023). A new substrate and nitrogen source for traditional kombucha beverage: Stevia rebaudiana leaves, Applied Biochemistry and Biotechnology, 195(7), 4096–4115.
  • [28] AOAC (Association of Offıcial Analytical Chemists). (2012). Official methods of analysis of AOAC International, 19th ed. Arlington: Association of official analytical chemists.
  • [29] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity, LWT-Food Science and Technology, 28, 25–30.
  • [30] Decker, E.A., Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food, Journal of Agricultural and Food Chemistry, 38, 674-677.
  • [31] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, American Journal of Enology and Viticulture, 16, 144-158.
  • [32] Du Toit, W.J., Lambrechts, M.G. (2002). The enumeration and identification of acetic acid bacteria from South African red wine fermentations, International Journal of Food Microbiology, 74(1), 57–64.
  • [33] Kruk, M., Trzaskowska, M., Scibisz, I., Pokorski, P. (2021). Application of the “SCOBY” and kombucha tea for the production of fermented milk drinks, Microorganisms, 9, 123.
  • [34] Ozuna, C., Franco-Robles, E. (2022). Agave syrup: An alternative to conventional sweeteners? A review of its current technological applications and health effects, LWT-Food Science and Technology, 162, 113434.
  • [35] Yıkmış, S., Tuğgum, S. (2019). Evaluation of microbiological, physicochemical and sensorial properties of purple basil kombucha beverage, Turkish Journal of Agriculture-Food Science and Technology, 7, 1321–1327.
  • [36] da Silva, C.F.G., Santos, F.L,. de Santana, L.R.R., Silva, M.V.L., de Araujo, C.T. (2018). Development and characterization of a soymilk kefir-based functional beverage, Food Science and Technology, 38(3), 543–550.
  • [37] Jakubczyk, K., Kałduńska, J., Kochman, J., Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9, 447.
  • [38] Sievers, M., Lanini, C., Weber, A., Schuler-Schmid, U., Teuber, M. (1995). Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation, Systematic and Applied Microbiology, 18, 590–594.
  • [39] Yavari, N., Assadi, M. M., Moghadam, M. B., Larijani, K. (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology, Australian Journal of Basic and Applied Sciences, 5, 1788–1794.
  • [40] Ayed, L., Hamdi, M. (2015). Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation, Annals of Microbiology, 65, 2293–2299.
  • [41] Kluz M. I., Pietrzyk, K., Pastuszczak, M., Kacaniova, M., Kita, A., Kapusta, I., Zaguła, G., Zagrobelna, E., Strus, K., Marciniak-Lukasiak, K., Stanek-Tarkowska, J., Timar, A.V., Puchalski. C. (2022). Microbiological and physicochemical composition of various types of homemade kombucha beverages using alternative kinds of sugars, Foods, 11, 1523.
  • [42] Dartora, B., Hickert, L.R., Fabricio, M.F., Ayub, M.A.Z., Furlan, J.M., Wagner, R., Perez, K.J., Sant’Anna, V. (2023). Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha, Food Research International, 174, 113569.
  • [43] Amarasinghe, H., Weerakkody, N.S., Waisundara, V.Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus” during extended periods of fermentation, Food Science & Nutrition, 6, 659–665.
  • [44] Cvetkovic, D.D. (2008). Kombucha made from medical herbs-biological activity and fermentation parameters.[Doctoral dissertation].
  • [45] Sreeramulu, G., Zhu, Y., Knol, W. (2000). Kombucha fermentation and its antimicrobial activity, Journal of Agricultural and Food Chemistry, 48, 2589–2594.
  • [46] Belloso-Morales, G., Hernandez-Sanchez, H. (2003). Manufacture of a beverage from cheese whey using a" tea fungus" fermentation, Revista Latinoamericana de Microbiologia, 45, 5.
  • [47] Chen, C., Liu, B. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation, Journal of Applied Microbiology, 89, 834–839.
  • [48] Tamer, C., Temel, S.G., Suna, S., Karabacak, A.O., Ozcan, T., Ersan, L.Y., Kaya, B.T., Copur, O.U. (2021). Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts, Turkish Journal of Agriculture and Forestry, 45, 13–32.
  • [49] Eggleston, G., Boue, S., Bett-Garber, K., Verret, C., Triplett, A., Bechtel, P. (2021). Phenolic contents, antioxidant potential and associated colour in sweet sorghum syrups compared to other commercial syrup sweeteners, Journal of the Science of Food and Agriculture, 101, 613–623.
  • [50] Que, F., Mao, L.C., Pan, X. (2006). Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds, Food Research International, 39(5), 581–587.
  • [51] Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics, International Journal of Food Microbiology, 220, 63-72.
  • [52] Jayabalan, R., Marimuthu, S., Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation, Food Chemistry, 102, 392–8.
  • [53] Gaggia, F., Baffoni, L., Galiano, M., Nielsen, D.S., Jakobsen, R.R., Castro-Mejía, J.L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., Di Gioia, D. (2018). Kombucha beverage from green, black and rooibos teas: a comparative study looking at microbiology, chemistry and antioxidant activity, Nutrients, 11, 1.
  • [54] Bhattacharya, D., Bhattacharya, S., Patra, M.M., Chakravorty, S., Sarkar, S., Chakraborty, W., Koley, H., Gachhui, R. (2016). Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens, Current Microbiology, 73, 885–896.
  • [55] Gamboa-Gomez, C. I., González-Laredo, R.F., Gallegos-Infante, J.A., del Mar Larrosa Pérez, M.Ş., Moreno-Jiménez, M.R., Flores-Rueda, A.G., Rocha-Guzmán, N.E. (2016). Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium, Food Technology and Biotechnology, 54, 367.
  • [56] Jayabalan, R., Subathradevi, P. , Marimuthu, S., Sathishkumar, M., K, Swaminathan. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation, Food Chemistry, 109, 227–234.
  • [57] Vicente-Magueyal, F. J., Bautista-Mendez, A., Villanueva-Tierrablanca, H. D., García- Ruíz, J.L., Jimenez-Islas, H., Navarrete-Bolanos, J.L. (2020). Novel process to obtain agave sap (aguamiel) by directed enzymatic hydrolysis of agave juice fructans, Lebensmittel-Wissenschaft und -Technologie, 127,109387.
  • [58] Kaewkod, T., Bovonsombut, S., Tragoolpua, Y. (2019). Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line, Microorganisms, 7(12), 700.
  • [59] De Filippis, F., Troise, A.D., Vitaglione, P., Ercolini, D. (2018). Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation, Food Microbiology, 73, 11–16.
  • [60] Ayed, L., Ben Abid, S., Hamdi, M. (2017). Development of a beverage from red grape juice fermented with the Kombucha consortium, Annals of Microbiology, 67(1), 111–121.
  • [61] Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R. (2012). Fermentation of black tea broth (kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose, International Food Research Journal, 19 (1), 109–117.
  • [62] Meng, Y., Wang, X., Li, Y., Chen, J., Chen, X. (2014). Microbial interactions and dynamic changes of volatile flavor compounds during the fermentation of traditional kombucha, Food Chemistry, 430, 137060.
  • [63] Cvetkovic, D., Ranitovic, A., Savic, D., Jokovic, N., Vidakovic, A., Pezo, L., Markov, S. (2019). Survival of wild strains of lactobacilli during kombucha fermentation and their contribution to functional characteristics of beverage, Polish Journal of Food and Nutrition Sciences, 69 (4), 407–415.
There are 63 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Mehmet Fuat Gülhan 0000-0003-4838-1597

Publication Date December 30, 2024
Submission Date March 21, 2024
Acceptance Date June 12, 2024
Published in Issue Year 2024

Cite

APA Gülhan, M. F. (2024). Use of Agave (Agave salmiana) Syrup in Kombucha Fermentation. Aksaray University Journal of Science and Engineering, 8(2), 62-72. https://doi.org/10.29002/asujse.1456495
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr