Research Article
BibTex RIS Cite
Year 2022, , 123 - 134, 30.12.2022
https://doi.org/10.29002/asujse.1090950

Abstract

References

  • [1] O. Jakel, C.P. Karger, J. Derbus. The future of heavy ion radiotherapy. Medical Phsics, 35 (2008) 5653-5663.
  • [2] M. Durante, J.S. Loeffler. Charged particles in radiation oncology. Nature Reviews Clinical Oncology, 7 (2010) 37-43.
  • [3] W.D. Newhauser, R. Zhang. The physics of proton therapy. Phys. Med. Biol., 60 (2015) R155-209.
  • [4] PTCOG. Particle therapy co-operative group. https://www.ptcog.ch, Accessed date: 20.09.2019.
  • [5] T. Tessonnier, T.T. Böhlen, F. Ceruti, A. Sala P. Ferrari, S. Brons, T. Haberer, J. Debus, K. Parodi, A. Mairani. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center. Physics in Medicine adn Biology, 62 (2017) 6579-6594.
  • [6] T. Tessonnier, A. Mairani, S. Brons, T. Haberer, J. Debus, K. Parodi. Experimental dosimetric comparison of 1H, 4He, 12C and 16C scanned ion beams. Physics in Medicine and Biology, 62 (2017) 3958-3982.
  • [7] H. Fuchs, M. Alber, T. Schreiner, D. Georg. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion. Medical Physics, 42 (2015) 5157-5166.
  • [8] A. Mairani, G. Dokic, T. Tessonnier, F. Kamp, D.J. Carlson, M. Ciocca, F. Cerutti, P.R. Sala, A. Ferrari, T.T. Böhlen, O. Jakel, K. Parodi, J. Debus, A. Abdollahi, T. Haberer. Biologically optimized helium ion plans: Calculation approach and its in vitro validation. Physics in Medicine and Biology, 61(2016) 4283-4299.
  • [9] B. Knausl, H. Fuchs, K. Dieckmann, Georg D. Can particle beam therapy be improved using helium ions? A planning studt focusing on pediatric patients. Acta Oncologica, 55 (2016) 751-759.
  • [10] L. Hong, M. Goitein, M. Bucciolini, R. Comiskey, B. Gottschalk, S. Rosenthal, C. Serago, M. Urie. A pencil beam algorithm for proton dose calculations. Physics in Medicine and Biology, 217 (1970) 1305-1330.
  • [11] D. Rogers. Fifty years of Monte Carlo simulations for medical. Physics in Medicine and Biology, 51 (2006) R287-R301.
  • [12] D. Foster, G. Artur. Avarege Neutronic Properties of “Prompt” Fission Poducts”, Los Alamos National Laboraty Report LA-9168-MS (1982).
  • [13] J.F. Ziegler. SRIM; The stopping and range of ion in matter. https://www.srim.org, Accessed date: 20.09.2019.
  • [14] W. Möller, W. Eckstein. Ion mixing and recoil implantation by means of TRIDYN. Nuclear Instruments and Methods in Physics Research B, 7/8 (1985) 645-649.
  • [15] M. Posselt, J.P. Biersack. Influence of recoil transport on energy-loss and damage profiles. Nuclear Instruments and Methods in Physics Research B, 15 (1986) 20-24.
  • [16] R. Behrens, O. Hupe. Influence of the phantom shape (slab, cylinder or alderson) on the performance of an hp(3) eye dosemeter. Radiation Protection Dosimetry, 168 (4) (2016) 441-449.
  • [17] ICRU 1979. International Commission on Radiation Units and Measurements. Average Energy Required to Produce an Ion Pair, ICRU Report 31 (International Commission on Radiation Units and Measurements, Bethesda, MD) (1979).
  • [18] F. Ekinci. Investigation of Interactions of Proton and Carbom Beams With Tissue Equivalent Targets. Gazi University Graduate School of Natural and Applied Sciences (2019) 102-105.
  • [19] J. O. Archambeau, G.W. Bennett, G.S. Levine, R. Cowen, A. Akanuma. Proton radiation therapy. Radiology, 110 (1974) 445-457.
  • [20] A.K. Carlsson, P. Andreo, A. Brahme. Monte Carlo and analytical calculation of proton pencil beams for computerized treatment plan optimization. Physics in Medicine&Biology, 42:6 (1997) 1033.
  • [21] M. Fippel, M. Soukup. A Monte Carlo dose calculation algorithm for proton therapy. Medical Physics, 31(8) (2004) 2263-2273.
  • [22] J. Medin, P. Andreo, 1997. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV). Physics in Medicine & Biology 42(1) (1997) 89.
  • [23] O. Mohamad, S. Yamada, M. Durante. Clinical indications for carbon ion radiotherapy. Clibical Oncology, 30 (2018) 317-329.
  • [24] S.E. Combs, Eds: M.F. Chernov, Y. Muragaki, S. Kesari, I.E. McCutcheon: Intracranial Gliomas. Part III - Innovative Treatment Modalities. Volume 32, Proton and Carbon Ion Therapy of Intracranial Gliomas (Prog Neurol Surg. Basel, Karger, 2018) pp. 57-65.
  • [25] G. Buizza, S. Molinelli, E. D'Ippolito, G. Fontana, A. Pella, F. Valvo, L. Preda, R. Orecchia, G. Baroni, C. Paganelli. MRI-based tumour control probability in skull-base chordomas treated with carbon-ion therapy. Radiotherapy and Oncology, 137 (2019) P32-37.
  • [26] T.J. Dahle, G. Magro, K.S. Ytre-Hauge, C.H. Stokkevag, K. Choi, A. Mairani. Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy. Physics in Medicine & Biology, 63 (2018) 225016.
  • [27] S. Hartfiel, M. Häfner, R.L. Perez, A. Rühle, T. Trinh, J. Debus, E. Peter, P.E. Huber, N.H. Nicolay 2019. Differential response of esophageal cancer cells to particle irradiation. Radiation Oncology 14 (2019) 119.
  • [28] Y. Han, X. Tang, C. Geng, D. Shu, C. Gong, X. Zhang, S. Wu, X. Zhang. Investigation of in vivo beam range verification in carbon ion therapy using the Doppler Shift Effect of prompt gamma: A Monte Carlo simulation study. Radiation Physics and Chemistry, 162 (2019) 72-81.
  • [29] Q. Wang, A. Antony, Y. Deng, H. Chen, M. Moyers, J. Lin, P. Yepes. A track repeating algorithm for intensity modulated carbon ion therapy. Physics in Medicine and Biology, 64 (2019) 9.
  • [30] J.M. Brownstein, A.J. Wisdom, K.D. Castle, Y.M. Mowery, P.M. Guida, C. Lee, F. Tommasino, C.L. Tessa, Scifoni E., Gao J., Luo L., Campos L.D.S., Ma Y., Williams N., Jung S., Marco Durante M., and Kirsch D.G. Characterizing the potency and impact of carbon ion therapy in a primary mouse model of soft tissue sarcoma. American Association for Cancer Research, 17(4) (2018) 858-868.
  • [31] K.D. Choi, S.B. Mein, B. Kopp, G. Magro, S. Molinelli, M. Ciocca, A. Mairani 2018. FRoG—A New Calculation Engine for Clinical Investigations with Proton and Carbon Ion Beams at CNAO. Cancers 10(11) (2018) 395.
  • [32] N.J.C. Spooner, P. Majewski, D. Munac, D.P. Snowden-Ifftd 2010. Simulations of the nuclear recoil head–tail signature in gases relevant to directional dark matter searches. Astroparticle Physics, 34-5 (2010) 284-292.
  • [33] G.B. Senirkentli, F. Ekinci, E. Bostanci, M.S. Güzel, Ö. Dağli, A.M. Karim, A. Mishra. Proton Therapy for Mandibula Plate Phantom. Healthcare, 9(2) (2021) 167.
  • [34] F. Ekinci, M.H. Bölükdemir. The Effect of the Second Peak formed in Biomaterials used in a Slab Head Phantom on the Proton Bragg Peak. Journal of Polytechnıc 23:1 (2019) 129-136.
  • [35] I. Mattei, F. Bini, F. Collamati, E. De Lucia, P.M. Frallicciardi, E. Iarocci, C. Mancini-Terracciano, M. Marafini, S. Muraro, R. Paramatti, V. Patera, L. Piersanti, D. Pinci, A. Rucinski, A. Russomando, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, C. Voena, G. Battistoni. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target. Phys. Med. Biol., 62 (2017) 1438.
  • [36] R. Zhang, P.J. Taddei, M.M. Fitzek, W.D. Newhauser. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions. Phys. Med. Biol., 55 (2010) 2481.
  • [37] L. Burigo, I. Pshenichnov, I. Mishustin, M. Bleicher. Comparative study of dose distributions and cell survival fractions for 1H, 4He, 12C and 16O beams using Geant4 and Microdosimetric Kinetic model. Phys Med Biol., 21;60(8) (2015) 3313-31.
  • [38] T. Tessonnier, A. Mairani, S. Brons, T. Haberer, J. Debus, K. Parodi. Experimental dosimetric comparison of 1H, 4He, 12C and 16O scanned ion beams. Phys. Med. Biol., 62 (2017) 3958.
  • [39] F. Ekinci, E. Bostanci, M.S. Güzel, Dağli O.. Effect of different embolization materials on proton beam stereotactic radiosurgery Arteriovenous Malformation dose distributions using the Monte Carlo simulation code. Journal of Radiation Research and Applied Sciences, 15:3 (2022) 191-197.

Recoil Analysis for Heavy Ion Beams

Year 2022, , 123 - 134, 30.12.2022
https://doi.org/10.29002/asujse.1090950

Abstract

Given that there are 94 clinics and more than 200,000 patients treated worldwide, proton and carbon are the most used heavily charged particles in heavy-ion (HI) therapy. However, there is a recent increasing trend in using new ion beams. Each HI has a different effect on the target. As each HI moves through the tissue, they lose enormous energy in collisions, so their range is not long. Ionization accounts for the majority of this loss in energy. During this interaction of the heavily charged particles with the target, the particles do not only ionize but also lose energy with the recoil. Recoil occurs by atom-to-atom collisions. With these collisions, crystalline atoms react with different combinations and form cascades in accordance with their energies. Thus, secondary particles create ionization and recoil. In this study, recoil values of Boron(B), Carbon(C), Nitrogen(N), and Oxygen(O) beams in the water phantom were computed in the energy range of 2.0-2.5 GeV using Monte Carlo simulation and the results were compared with carbon. Our findings have shown that C beams have 35.3% more recoil range than B beams, while it has 14.5% and 118.7% less recoil range than N and O beams, respectively. The recoil peak amplitude of C beams is 68.1% more than B beams, while it is 13.1% less than N and 22.9% less than O beams. It was observed that there is a regular increase in the recoil peak amplitude for C and B ions, unlike O and N where such a regularity could not be seen. Moreover, the gaps in the crystal structure increased as the energy increases.

References

  • [1] O. Jakel, C.P. Karger, J. Derbus. The future of heavy ion radiotherapy. Medical Phsics, 35 (2008) 5653-5663.
  • [2] M. Durante, J.S. Loeffler. Charged particles in radiation oncology. Nature Reviews Clinical Oncology, 7 (2010) 37-43.
  • [3] W.D. Newhauser, R. Zhang. The physics of proton therapy. Phys. Med. Biol., 60 (2015) R155-209.
  • [4] PTCOG. Particle therapy co-operative group. https://www.ptcog.ch, Accessed date: 20.09.2019.
  • [5] T. Tessonnier, T.T. Böhlen, F. Ceruti, A. Sala P. Ferrari, S. Brons, T. Haberer, J. Debus, K. Parodi, A. Mairani. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center. Physics in Medicine adn Biology, 62 (2017) 6579-6594.
  • [6] T. Tessonnier, A. Mairani, S. Brons, T. Haberer, J. Debus, K. Parodi. Experimental dosimetric comparison of 1H, 4He, 12C and 16C scanned ion beams. Physics in Medicine and Biology, 62 (2017) 3958-3982.
  • [7] H. Fuchs, M. Alber, T. Schreiner, D. Georg. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion. Medical Physics, 42 (2015) 5157-5166.
  • [8] A. Mairani, G. Dokic, T. Tessonnier, F. Kamp, D.J. Carlson, M. Ciocca, F. Cerutti, P.R. Sala, A. Ferrari, T.T. Böhlen, O. Jakel, K. Parodi, J. Debus, A. Abdollahi, T. Haberer. Biologically optimized helium ion plans: Calculation approach and its in vitro validation. Physics in Medicine and Biology, 61(2016) 4283-4299.
  • [9] B. Knausl, H. Fuchs, K. Dieckmann, Georg D. Can particle beam therapy be improved using helium ions? A planning studt focusing on pediatric patients. Acta Oncologica, 55 (2016) 751-759.
  • [10] L. Hong, M. Goitein, M. Bucciolini, R. Comiskey, B. Gottschalk, S. Rosenthal, C. Serago, M. Urie. A pencil beam algorithm for proton dose calculations. Physics in Medicine and Biology, 217 (1970) 1305-1330.
  • [11] D. Rogers. Fifty years of Monte Carlo simulations for medical. Physics in Medicine and Biology, 51 (2006) R287-R301.
  • [12] D. Foster, G. Artur. Avarege Neutronic Properties of “Prompt” Fission Poducts”, Los Alamos National Laboraty Report LA-9168-MS (1982).
  • [13] J.F. Ziegler. SRIM; The stopping and range of ion in matter. https://www.srim.org, Accessed date: 20.09.2019.
  • [14] W. Möller, W. Eckstein. Ion mixing and recoil implantation by means of TRIDYN. Nuclear Instruments and Methods in Physics Research B, 7/8 (1985) 645-649.
  • [15] M. Posselt, J.P. Biersack. Influence of recoil transport on energy-loss and damage profiles. Nuclear Instruments and Methods in Physics Research B, 15 (1986) 20-24.
  • [16] R. Behrens, O. Hupe. Influence of the phantom shape (slab, cylinder or alderson) on the performance of an hp(3) eye dosemeter. Radiation Protection Dosimetry, 168 (4) (2016) 441-449.
  • [17] ICRU 1979. International Commission on Radiation Units and Measurements. Average Energy Required to Produce an Ion Pair, ICRU Report 31 (International Commission on Radiation Units and Measurements, Bethesda, MD) (1979).
  • [18] F. Ekinci. Investigation of Interactions of Proton and Carbom Beams With Tissue Equivalent Targets. Gazi University Graduate School of Natural and Applied Sciences (2019) 102-105.
  • [19] J. O. Archambeau, G.W. Bennett, G.S. Levine, R. Cowen, A. Akanuma. Proton radiation therapy. Radiology, 110 (1974) 445-457.
  • [20] A.K. Carlsson, P. Andreo, A. Brahme. Monte Carlo and analytical calculation of proton pencil beams for computerized treatment plan optimization. Physics in Medicine&Biology, 42:6 (1997) 1033.
  • [21] M. Fippel, M. Soukup. A Monte Carlo dose calculation algorithm for proton therapy. Medical Physics, 31(8) (2004) 2263-2273.
  • [22] J. Medin, P. Andreo, 1997. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV). Physics in Medicine & Biology 42(1) (1997) 89.
  • [23] O. Mohamad, S. Yamada, M. Durante. Clinical indications for carbon ion radiotherapy. Clibical Oncology, 30 (2018) 317-329.
  • [24] S.E. Combs, Eds: M.F. Chernov, Y. Muragaki, S. Kesari, I.E. McCutcheon: Intracranial Gliomas. Part III - Innovative Treatment Modalities. Volume 32, Proton and Carbon Ion Therapy of Intracranial Gliomas (Prog Neurol Surg. Basel, Karger, 2018) pp. 57-65.
  • [25] G. Buizza, S. Molinelli, E. D'Ippolito, G. Fontana, A. Pella, F. Valvo, L. Preda, R. Orecchia, G. Baroni, C. Paganelli. MRI-based tumour control probability in skull-base chordomas treated with carbon-ion therapy. Radiotherapy and Oncology, 137 (2019) P32-37.
  • [26] T.J. Dahle, G. Magro, K.S. Ytre-Hauge, C.H. Stokkevag, K. Choi, A. Mairani. Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy. Physics in Medicine & Biology, 63 (2018) 225016.
  • [27] S. Hartfiel, M. Häfner, R.L. Perez, A. Rühle, T. Trinh, J. Debus, E. Peter, P.E. Huber, N.H. Nicolay 2019. Differential response of esophageal cancer cells to particle irradiation. Radiation Oncology 14 (2019) 119.
  • [28] Y. Han, X. Tang, C. Geng, D. Shu, C. Gong, X. Zhang, S. Wu, X. Zhang. Investigation of in vivo beam range verification in carbon ion therapy using the Doppler Shift Effect of prompt gamma: A Monte Carlo simulation study. Radiation Physics and Chemistry, 162 (2019) 72-81.
  • [29] Q. Wang, A. Antony, Y. Deng, H. Chen, M. Moyers, J. Lin, P. Yepes. A track repeating algorithm for intensity modulated carbon ion therapy. Physics in Medicine and Biology, 64 (2019) 9.
  • [30] J.M. Brownstein, A.J. Wisdom, K.D. Castle, Y.M. Mowery, P.M. Guida, C. Lee, F. Tommasino, C.L. Tessa, Scifoni E., Gao J., Luo L., Campos L.D.S., Ma Y., Williams N., Jung S., Marco Durante M., and Kirsch D.G. Characterizing the potency and impact of carbon ion therapy in a primary mouse model of soft tissue sarcoma. American Association for Cancer Research, 17(4) (2018) 858-868.
  • [31] K.D. Choi, S.B. Mein, B. Kopp, G. Magro, S. Molinelli, M. Ciocca, A. Mairani 2018. FRoG—A New Calculation Engine for Clinical Investigations with Proton and Carbon Ion Beams at CNAO. Cancers 10(11) (2018) 395.
  • [32] N.J.C. Spooner, P. Majewski, D. Munac, D.P. Snowden-Ifftd 2010. Simulations of the nuclear recoil head–tail signature in gases relevant to directional dark matter searches. Astroparticle Physics, 34-5 (2010) 284-292.
  • [33] G.B. Senirkentli, F. Ekinci, E. Bostanci, M.S. Güzel, Ö. Dağli, A.M. Karim, A. Mishra. Proton Therapy for Mandibula Plate Phantom. Healthcare, 9(2) (2021) 167.
  • [34] F. Ekinci, M.H. Bölükdemir. The Effect of the Second Peak formed in Biomaterials used in a Slab Head Phantom on the Proton Bragg Peak. Journal of Polytechnıc 23:1 (2019) 129-136.
  • [35] I. Mattei, F. Bini, F. Collamati, E. De Lucia, P.M. Frallicciardi, E. Iarocci, C. Mancini-Terracciano, M. Marafini, S. Muraro, R. Paramatti, V. Patera, L. Piersanti, D. Pinci, A. Rucinski, A. Russomando, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, C. Voena, G. Battistoni. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target. Phys. Med. Biol., 62 (2017) 1438.
  • [36] R. Zhang, P.J. Taddei, M.M. Fitzek, W.D. Newhauser. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions. Phys. Med. Biol., 55 (2010) 2481.
  • [37] L. Burigo, I. Pshenichnov, I. Mishustin, M. Bleicher. Comparative study of dose distributions and cell survival fractions for 1H, 4He, 12C and 16O beams using Geant4 and Microdosimetric Kinetic model. Phys Med Biol., 21;60(8) (2015) 3313-31.
  • [38] T. Tessonnier, A. Mairani, S. Brons, T. Haberer, J. Debus, K. Parodi. Experimental dosimetric comparison of 1H, 4He, 12C and 16O scanned ion beams. Phys. Med. Biol., 62 (2017) 3958.
  • [39] F. Ekinci, E. Bostanci, M.S. Güzel, Dağli O.. Effect of different embolization materials on proton beam stereotactic radiosurgery Arteriovenous Malformation dose distributions using the Monte Carlo simulation code. Journal of Radiation Research and Applied Sciences, 15:3 (2022) 191-197.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Fatih Ekinci 0000-0002-1011-1105

Gazi Erkan Bostancı 0000-0001-8547-7569

Mehmet Serdar Güzel 0000-0002-3408-0083

Özlem Dağlı 0000-0003-3798-8342

Publication Date December 30, 2022
Submission Date March 21, 2022
Acceptance Date August 17, 2022
Published in Issue Year 2022

Cite

APA Ekinci, F., Bostancı, G. E., Güzel, M. S., Dağlı, Ö. (2022). Recoil Analysis for Heavy Ion Beams. Aksaray University Journal of Science and Engineering, 6(2), 123-134. https://doi.org/10.29002/asujse.1090950
Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr