Araştırma Makalesi
BibTex RIS Kaynak Göster

Sıfır Değerlikli Alüminyumun Aktive Ettiği Persülfat ile Reactive Yellow 145’in oksidasyonu: Proses şartlarının optimizasyonu

Yıl 2021, Cilt: 11 Sayı: 2, 613 - 628, 15.12.2021
https://doi.org/10.31466/kfbd.977952

Öz

Sıfır değerlikli alüminyum (ZVAl) çok iyi elektron verici özelliğe sahip olması dolayısı ile atıksudaki pek çok organik ve inorganik kirleticinin yükseltgenme veya indirgenme yolu ile giderilmesinde etkili bir metaldır. ZVAl tarafından verilen elektronlar, ortamda bulunan oksidantlar tarafından alınması sonucu oluşan güçlü radikal türleri ile yükseltgenme tepkimelerine veya bu elektronların kirleticiler tarafından direkt alınarak indirgenme tepkimelerine yol açarak kirleticiyi parçalamaktadır. Bu çalışmada Reactive Yellow 145’in ZVAl ile aktive olmuş persülfat ile oksidasyonu incelenmiştir. Oksidasyon prosesinin işletim koşulları Taguchi Deney Tasarım yaklaşımı ile optimize edilmiştir. Optimum koşullar 60 dakika oksidasyon süresi, 0,8 g/L ZVAl dozu, pH 10 ve 15 g/L persülfat dozu olarak belirlenmiştir. Optimum koşullarda Reactive Yellow 145 giderim verimi %76,19 olarak belirlenmiş olup modelin öngördüğü %77,22 giderim ile uyum içindedir. Oksidasyonu etkileyen her bir parametrenin Reactive Yellow 145 giderim verimine etkisi ANOVA ile açıklanmıştır. Verimi etkileyen en önemli parametrenin % 80,06 katkı oranı ile pH olduğu belirlenmiştir.

Destekleyen Kurum

Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

2021- 2621

Teşekkür

Bu çalışma Kocaeli Üniversitesi, BAP birimi tarafından 2021- 2621 nolu projesi ile desteklenmiştir. Yazarlar destek için teşekkür etmektedirler

Kaynakça

  • Arıcı, E., ve Keleştemur, O., (2018). Tufal katkılı harçların basınç dayanımının taguchi metodu ile analizi. Fırat üniversitesi mühendislik bilimleri dergisi, 30(3), 145-151.
  • Ajith, M. P., Aswathi, M., Priyadarshini, E., ve Rajamani, P. (2021). Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresource Technology, 342, 126000.
  • Bokare, A. D., ve Choi, W., (2009). Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environmental Science and Technology, 43(18), 7130–7135.
  • Chkirida, S., Zari, N., Bouhfid, R., ve Qaiss, A. el kacem. (2021). Insight into the bionanocomposite applications on wastewater decontamination: Review. Journal of Water Process Engineering, 43, 102198.
  • Dhawane, S. H., Kumar, T., ve Halder, G., (2016). Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renewable Energy, 89, 506–514.
  • Dogan, M., Ozturk, T., Olmez-Hanci, T., ve Arslan-Alaton, I., (2016). Persulfate and hydrogen peroxide-activated degradation of bisphenol a with nano-scale zero-valent iron and aluminum. Journal of Advanced Oxidation Technologies, 19(2), 266–275.
  • Erdinç, A., ve Keleştemur, O. (2018). Tufal Katkılı Harçların Basınç Dayanımının Taguchi Metodu ile Analizi. Fırat üniversitesi mühendislik bilimleri dergisi, 30(3), 145–151.
  • Gai, W. Z., Liu, W. H., Deng, Z. Y., ve Zhou, J. G. (2012). Reaction of Al powder with water for hydrogen generation under ambient condition. International Journal of Hydrogen Energy, 37(17), 13132–13140.
  • Gupta, G. K., ve Mondal, M. K. (2019). Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology. Energy, 170, 423–437.
  • Jiang, Y., Yang, S., Liu, J., Ren, T., Zhang, Y., ve Sun, X., (2020). Degradation of hexabromocyclododecane (HBCD) by nanoscale zero-valent aluminum (nZVAl). Chemosphere, 244, 125536.
  • Kavcı, E., Üniversitesi, K., Mimarlık Fakültesi, M., Mühendisliği Bölümü, K., ve Özet, T. (2021). Direct Red BWS tekstil boyası adsorpsiyonunun Taguchi L9 (34) ortogonal deney tasarımı ile araştırılması Investigations of adsorption of Direct Red BWS textile dye using Taguchi L9(3 4 ) orthogonal experimental design. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 358–363.
  • Khatri, J., Nidheesh, P. V., Anantha Singh, T. S., ve Suresh Kumar, M., (2018). Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chemical Engineering Journal, 348, 67–73.
  • Li, Y., Zhang, Y., Yang, S., Xue, Y., Liu, J., Wang, M., Liu, S., ve Chen, Y., (2021). Citrate ligand-enhanced microscale zero-valent aluminum corrosion for carbon tetrachloride degradation with high electron utilization efficiency. Science of the Total Environment, 783, 146999.
  • Lin, K. Y. A., ve Lin, C. H. (2016). Simultaneous reductive and adsorptive removal of bromate from water using acid-washed zero-valent aluminum (ZVAl). Chemical Engineering Journal, 297, 19–25.
  • Lin, K. Y. A., Lin, C. H., ve Yang, H. (2017). Enhanced bromate reduction using zero-valent aluminum mediated by oxalic acid. Journal of Environmental Chemical Engineering, 5(5), 5085–5090.
  • Mahmoud, A. S., Farag, R. S., Elshfai, M. M., Mohamed, L. A., & Ragheb, S. M., (2019). Nano Zero-Valent Aluminum (nZVAl) Preparation, Characterization, and Application for the Removal of Soluble Organic Matter with Artificial Intelligence, Isotherm Study, and Kinetic Analysis. Air, Soil and Water Research, 12, 1178622119878707.
  • Nidheesh, P. V., Khatri, J., Anantha Singh, T. S., Gandhimathi, R., ve Ramesh, S. T., (2018). Review of zero-valent aluminium based water and wastewater treatment methods. Chemosphere, 200, 621–631.
  • Rathi, B. S., Kumar, P. S., ve Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of The Total Environment, 797, 149134.
  • Ren, T., Yang, S., Jiang, Y., Sun, X., & Zhang, Y. (2018). Enhancing surface corrosion of zero-valent aluminum (ZVAl) and electron transfer process for the degradation of trichloroethylene with the presence of persulfate. Chemical Engineering Journal, 348, 350–360.
  • Ren, T., Yang, S., Wu, S., Wang, M., ve Xue, Y., (2019). High-energy ball milling enhancing the reactivity of microscale zero-valent aluminum toward the activation of persulfate and the degradation of trichloroethylene. Chemical Engineering Journal, 374, 100–111.
  • Ren, T., Zhang, Y., Liu, J., Zhang, Y., ve Yang, S., (2020). Ethanol-assisted mechanical activation of zero-valent aluminum for fast and highly efficient removal of Cr(VI). Applied Surface Science, 533, 147543.
  • Ross PJ. (1996). Taguchi Techniques for Quality Engineering. Singapore: McGraw Hill Professional Editions, New York, United States.
  • Shen, W., Kang, H., ve Ai, Z., (2018). Comparison of aerobic atrazine degradation with zero valent aluminum and zero valent iron. Journal of Hazardous Materials, 357, 408–414.
  • Sohrabi, M. R., Khavaran, A., Shariati, S., ve Shariati, S., (2017). Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, S3523–S3531.
  • Sridevi, M., Nirmala, C., Jawahar, N., Arthi, G., Vallinayagam, S., ve Sharma, V. K. (2021). Role of nanomaterial’s as adsorbent for heterogeneous reaction in waste water treatment. Journal of Molecular Structure, 1241, 130596.
  • Xie, S., Yang, Y., Gai, W. Z., ve Deng, Z. Y., (2020). Oxide modified aluminum for removal of methyl orange and methyl blue in aqueous solution. RSC Advances, 11(2), 867–875.
  • Yang, S., Zheng, D., Ren, T., Zhang, Y., ve Xin, J., (2017). Zero-valent aluminum for reductive removal of aqueous pollutants over a wide pH range: Performance and mechanism especially at near-neutral pH. Water Research, 123, 704–714.
  • Zhang, H., Cao, B., Liu, W., Lin, K., ve Feng, J., (2012). Oxidative removal of acetaminophen using zero valent aluminum-acid system: Efficacy, influencing factors, and reaction mechanism. Journal of Environmental Sciences, 24(2), 314–319.

Oxidation of Reactive Yellow 145 by Zero Valent Aluminum Activated Persulfate: Optimization of process conditions

Yıl 2021, Cilt: 11 Sayı: 2, 613 - 628, 15.12.2021
https://doi.org/10.31466/kfbd.977952

Öz

Zero-valent aluminum (ZVAl) is an effective metal for removing many organic and inorganic pollutants from wastewater by oxidation or reduction reactions due to its high electron-donating properties. Electrons given by ZVAl, break down the pollutant by causing oxidation reactions with strong radical species formed as a result of taken by oxidants or reduction reactions by being directly taken by pollutants. In this study, the oxidation of Reactive Yellow 145 with ZVAl-activated persulfate was investigated. The operating conditions of the oxidation process were optimized with the Taguchi Experimental Design. Optimum conditions were determined as oxidation time of 60 minutes, ZVAl dose of 0.8 g/L, pH of 10 and persulfate dose of 15 g/L. In optimum conditions, the removal efficiency of Reactive Yellow 145 was determined as 76.19%, which is in compliance with the 77.22% removal predicted by the model. The effect of each parameter on Reactive Yellow 145 removal efficiency was explained by ANOVA. It was determined that the most important parameter affecting the removal efficiency was pH with an contribution rate of 80.06%.

Proje Numarası

2021- 2621

Kaynakça

  • Arıcı, E., ve Keleştemur, O., (2018). Tufal katkılı harçların basınç dayanımının taguchi metodu ile analizi. Fırat üniversitesi mühendislik bilimleri dergisi, 30(3), 145-151.
  • Ajith, M. P., Aswathi, M., Priyadarshini, E., ve Rajamani, P. (2021). Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresource Technology, 342, 126000.
  • Bokare, A. D., ve Choi, W., (2009). Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environmental Science and Technology, 43(18), 7130–7135.
  • Chkirida, S., Zari, N., Bouhfid, R., ve Qaiss, A. el kacem. (2021). Insight into the bionanocomposite applications on wastewater decontamination: Review. Journal of Water Process Engineering, 43, 102198.
  • Dhawane, S. H., Kumar, T., ve Halder, G., (2016). Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renewable Energy, 89, 506–514.
  • Dogan, M., Ozturk, T., Olmez-Hanci, T., ve Arslan-Alaton, I., (2016). Persulfate and hydrogen peroxide-activated degradation of bisphenol a with nano-scale zero-valent iron and aluminum. Journal of Advanced Oxidation Technologies, 19(2), 266–275.
  • Erdinç, A., ve Keleştemur, O. (2018). Tufal Katkılı Harçların Basınç Dayanımının Taguchi Metodu ile Analizi. Fırat üniversitesi mühendislik bilimleri dergisi, 30(3), 145–151.
  • Gai, W. Z., Liu, W. H., Deng, Z. Y., ve Zhou, J. G. (2012). Reaction of Al powder with water for hydrogen generation under ambient condition. International Journal of Hydrogen Energy, 37(17), 13132–13140.
  • Gupta, G. K., ve Mondal, M. K. (2019). Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology. Energy, 170, 423–437.
  • Jiang, Y., Yang, S., Liu, J., Ren, T., Zhang, Y., ve Sun, X., (2020). Degradation of hexabromocyclododecane (HBCD) by nanoscale zero-valent aluminum (nZVAl). Chemosphere, 244, 125536.
  • Kavcı, E., Üniversitesi, K., Mimarlık Fakültesi, M., Mühendisliği Bölümü, K., ve Özet, T. (2021). Direct Red BWS tekstil boyası adsorpsiyonunun Taguchi L9 (34) ortogonal deney tasarımı ile araştırılması Investigations of adsorption of Direct Red BWS textile dye using Taguchi L9(3 4 ) orthogonal experimental design. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 358–363.
  • Khatri, J., Nidheesh, P. V., Anantha Singh, T. S., ve Suresh Kumar, M., (2018). Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chemical Engineering Journal, 348, 67–73.
  • Li, Y., Zhang, Y., Yang, S., Xue, Y., Liu, J., Wang, M., Liu, S., ve Chen, Y., (2021). Citrate ligand-enhanced microscale zero-valent aluminum corrosion for carbon tetrachloride degradation with high electron utilization efficiency. Science of the Total Environment, 783, 146999.
  • Lin, K. Y. A., ve Lin, C. H. (2016). Simultaneous reductive and adsorptive removal of bromate from water using acid-washed zero-valent aluminum (ZVAl). Chemical Engineering Journal, 297, 19–25.
  • Lin, K. Y. A., Lin, C. H., ve Yang, H. (2017). Enhanced bromate reduction using zero-valent aluminum mediated by oxalic acid. Journal of Environmental Chemical Engineering, 5(5), 5085–5090.
  • Mahmoud, A. S., Farag, R. S., Elshfai, M. M., Mohamed, L. A., & Ragheb, S. M., (2019). Nano Zero-Valent Aluminum (nZVAl) Preparation, Characterization, and Application for the Removal of Soluble Organic Matter with Artificial Intelligence, Isotherm Study, and Kinetic Analysis. Air, Soil and Water Research, 12, 1178622119878707.
  • Nidheesh, P. V., Khatri, J., Anantha Singh, T. S., Gandhimathi, R., ve Ramesh, S. T., (2018). Review of zero-valent aluminium based water and wastewater treatment methods. Chemosphere, 200, 621–631.
  • Rathi, B. S., Kumar, P. S., ve Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of The Total Environment, 797, 149134.
  • Ren, T., Yang, S., Jiang, Y., Sun, X., & Zhang, Y. (2018). Enhancing surface corrosion of zero-valent aluminum (ZVAl) and electron transfer process for the degradation of trichloroethylene with the presence of persulfate. Chemical Engineering Journal, 348, 350–360.
  • Ren, T., Yang, S., Wu, S., Wang, M., ve Xue, Y., (2019). High-energy ball milling enhancing the reactivity of microscale zero-valent aluminum toward the activation of persulfate and the degradation of trichloroethylene. Chemical Engineering Journal, 374, 100–111.
  • Ren, T., Zhang, Y., Liu, J., Zhang, Y., ve Yang, S., (2020). Ethanol-assisted mechanical activation of zero-valent aluminum for fast and highly efficient removal of Cr(VI). Applied Surface Science, 533, 147543.
  • Ross PJ. (1996). Taguchi Techniques for Quality Engineering. Singapore: McGraw Hill Professional Editions, New York, United States.
  • Shen, W., Kang, H., ve Ai, Z., (2018). Comparison of aerobic atrazine degradation with zero valent aluminum and zero valent iron. Journal of Hazardous Materials, 357, 408–414.
  • Sohrabi, M. R., Khavaran, A., Shariati, S., ve Shariati, S., (2017). Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, S3523–S3531.
  • Sridevi, M., Nirmala, C., Jawahar, N., Arthi, G., Vallinayagam, S., ve Sharma, V. K. (2021). Role of nanomaterial’s as adsorbent for heterogeneous reaction in waste water treatment. Journal of Molecular Structure, 1241, 130596.
  • Xie, S., Yang, Y., Gai, W. Z., ve Deng, Z. Y., (2020). Oxide modified aluminum for removal of methyl orange and methyl blue in aqueous solution. RSC Advances, 11(2), 867–875.
  • Yang, S., Zheng, D., Ren, T., Zhang, Y., ve Xin, J., (2017). Zero-valent aluminum for reductive removal of aqueous pollutants over a wide pH range: Performance and mechanism especially at near-neutral pH. Water Research, 123, 704–714.
  • Zhang, H., Cao, B., Liu, W., Lin, K., ve Feng, J., (2012). Oxidative removal of acetaminophen using zero valent aluminum-acid system: Efficacy, influencing factors, and reaction mechanism. Journal of Environmental Sciences, 24(2), 314–319.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nevim Genç 0000-0002-6185-1090

Elif Durna 0000-0003-4478-2967

Şeyda Aydın 0000-0002-6298-8144

Proje Numarası 2021- 2621
Yayımlanma Tarihi 15 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 2

Kaynak Göster

APA Genç, N., Durna, E., & Aydın, Ş. (2021). Sıfır Değerlikli Alüminyumun Aktive Ettiği Persülfat ile Reactive Yellow 145’in oksidasyonu: Proses şartlarının optimizasyonu. Karadeniz Fen Bilimleri Dergisi, 11(2), 613-628. https://doi.org/10.31466/kfbd.977952