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Abstract

In this paper, we introduce two operators associated with ¥ and ** operators in ideal
topological spaces and discuss the properties of these operators. We give further
characterizations of Hayashi-Samuel spaces with the help of these two operators. We also give
a brief discussion on homeomorphism of generalized closure spaces which were induced by

these two operators.
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1. INTRODUCTION

The study of local function on ideal topological space was introduced by Kuratowski [1] and
Vaidyanathswamy [2]. The mathematicians like Jankovic and Hamlett [3, 4], Samuel [5],
Hayashi [6], Hashimoto [7], Newcomb [8], Modak [9, 10], Bandyopadhyay and Modak [11,
12], Noiri and Modak [13], Al-Omari et al. [14, 15, 16, 17] have enriched this study. Natkaniec
in [18] have introduced the complement of local function and it is called ¥ -Operator. In an

ideal topological space (X,z,Z), the local function ()" is defined as: A (Z,7) (or, simply, A"

) = {xeX:U,nAg T}, where U, €7(X), the collection of all open sets containing x. Its
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complement function, that is, ¥ -operator is defined as: W(A) = X \_ (X \_A)". Using these
two set functions, ()" and ¥, Modak and Islam [19, 20] have introduced two moreoperators in
the ideal topological spaces and they are: *'(A)=WY(A)=X\(X\ A) and
P (A) = (P(A) ={xe X:U NY(A) ¢}, where U, e7(X).

Following example shows that the values of the operators ¥~ and ** are not the same:

Example 1.1. Let X ={a,b,c}, z={&,{c}, X} and Z ={&,{c}}. Then, **(X)=¥(X")
=¥({a,b}) =X\ ({c}) =X and (¥(X)) =X ={a,b}. Therefore, ¥ (X) =**(X).

The value of the operator ** is an open set and the value of the operator ¥~ is a closed set. In
this paper, we further consider the operators using joint operators ¥~ and ** simultaneously
and shall define two more operators using of ¥* and ** which is A and meet of ¥" and **
which is V. We also consider the values of these two operators on various ideal topological
spaces as well as various subsets of the ideal topological space. We also give a bunch of
characterization of Hayashi-Samuel space. An ideal topological space (X,z,Z) is called

Hayashi-Samuel space [21], if z~Z ={}. Theauthors Hamlett and Jankovi c [3] called it by

the name of 7 -boundary, whereas the authors Dontchev, Ganster and Rose [22] called it by the
name of codense ideal. In the study of ideal topological spaces, it played an important role. Two

well known Hayashi-Samuel spaces are: Let 7 be a topology onaset X , then (X,7,{J}) isa
Hayashi-Samuel space and if Z, is the collection of all nowhere dense subsets of (X,7), then
(X,7,Z,) is also a Hayashi-Samuel space.

Further, we also give the topological properties of the generalized closure spaces [23, 24]

induced by the above mentioned operators A and V.

Now we shall give a few words about generalized closure spaces. The study of closure spaces
was introduced by Habil and Elzenati [23] in 2003 and Stadler [24] in 2005. Generalized closure
space is the generalization of closure space and its definition is as follows:

Definition 1.2. Let X be a set, ¢(X) be the power set of X and cl: p(X) - @(X) be any
arbitrary set-valued set-function, called a closure function. We call cl(A) the closure of A, and

we call the pair (X,cl) a generalized closure space (see [23, 24]).
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Consider the following axioms (see [23, 24]) of the closure function for all A, B, A, € p(X),

A is an index set:

The closure function in a generalized closure space (X,cl) is called:

(KO0) grounded, if cl(©) =2 .

(K1) isotonic, if A< B implies cl(A) < cl(B).
(K2) expanding, if Accl(A).

(K3) sub-additive, if cl(AuB) < cl(A)ucl(B).
(K4) idempotent, if cl(cl(A)) =cl(A).

(K5) additive, if | Jcl(A,)=cl(|J(A,)).

AeA AeA

Definition 1.3. [24, 25, 26] A pair (X,cl) issaid to be an isotonic space if it satisfies the axioms
(KO) and (K1). If an isotonic space (X,cl) satisfies (K2), then it is called a neighbourhood

space. A closure space that satisfies (K4), is called a neighbourhood space. A topological space,

that satisfies (K3), is a closure space.
‘int * is the complement function of the closure function ‘c/” and it is defined as:

int(A) = X \cl(X \ A), for Ac X .

2. A Operator

Definition 2.1. Let (X,r,Z)be an ideal topological space. We define the operator
A p(X) > p(X) as:
A(A) =¥ (A U**(A), for Ac X .

Observe that, for Ac X, A(A) is the union of an open set and a closed set.

The next example shows that union of an open set and a closed set is not always an expression
of A(A), forany Ac X.

Example 2.2. Let X ={a,b,c}, 7={J,{a},{a,b}, X} and Z ={Z,{b}}. Let A ={a} and
A, ={c}. Then, A is open and A, is closed. Then A UA ={a,c}. Now (¥(Q)) =0
=(Y{B})) = (Y{c})) = (¥{b.c})) ", (Y({a}) = X =(¥({a,b}))" =(¥Y({a,c}))
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=(¥(X))'and ¥(&) = @ =¥(({b})") = ¥({c})) = ¥(({b.c})) , ¥ (({a})) = X

=¥ (({a,b})) = ¥({ac}))=Y(X").Sothereisno T e p(X) suchthat A(T)=A UA,.

If Z ={Z}, then A(A) = Int(CI(A)) UCI(Int(A)) (where ‘Int’ and ‘CI’ denote the interior and
closure operator of (X,z) respectively) and if Z =7, then

A(A) =[Int(CI(Int(CI(IntCIAN)MN]VICI (Int(CI(Int(CI(Int(A))))]

= Int(CI(A)) UCI(Int(A)).

Therefore, the value of A, for any subset A of X on (X,7,{&}) and (X,7,Z,) are equal.

The operator A is not grounded and it follows from the following example:
Example 2.3. Let X={ab,c,d}, ={{a}, X} and Z={,{a}}. Then,
A@) =V (D) u*" (D) =D u{ay={a}= . So, the operator A is not grounded.

Theorem 2.4. An ideal topological space (X,z,Z) is Hayashi-Samuel, if and only if, the

operator A: o(X) — go(X) is grounded.

Proof. Suppose that (X,z,Z) be a Hayashi-Samuel space. Then, X = X" [4].
Now, A(D) =¥ (D) U*" (D) = (X X )Y UX\ X)) =g ud=0.

Conversely  suppose that A(@)=@. Then Y (@)uU*"(@)=0, implies,
(P(@) W)=, implies, (X\ X)) UX\ X)=@. Thus, X\ X =@ and

(X\ X") =@. Hence, (X,z,7) is a Hayashi-Samuel space.

We recall following definition:

Definition 2.5. Let (X,z,Z) be an ideal topological space and A< X . Then, A is said to be
a W -set [9] (resp. W-C set [12], regular open set [27]) if Ac (¥(A))" (resp.
Ac CI(¥(A), A= Int(CI(A))).

The collection of all ¥*-sets (resp. ¥ -C sets) in (X,z,Z) is denoted as " (X,z) (resp.
Y(X,7)).
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Corollary 2.6. In an ideal topological space (X,7,Z), the following properties are equivalent:
1. (X,7,7) is a Hayashi-Samuel space [20];
2. V(D) =@ [20];
3.1f Ac X isclosed, then, ¥(A)\ A=9 [20];

C* (X)) = p(X) is grounded;

_if Ac X, then, Int(CI(A)) = ¥(Int(CI(A))) [20];

. A is regular open, A=Y¥(A)[20];

. A is grounded,;

.if U er, then, ¥(U) c Int(CI(U)) cU " [20];

Jif 1 €Z , then, W(1) =2 [20];

© 00 ~N o o1 b~

10. W' (X,7) =¥(X,7) [20];

11. W' (A) =CI(¥(A)), for each Ac X [20];
12. GG’ foreach Ger;

13. ¥ (X)=X;

14.if J €7, then, Int(J)=C.

Proof. Follows from Theorem 2.4 and Corollary 2.18 of [20].

Theorem 2.7. Let (X,7,Z) be an ideal topological space. Then the operator A: p(X) — @(X)

is isotonic.

Proof. Follows from the following facts:
(i) The operator * is isotonic.
(if) The operator  is isotonic.

The following example shows that the operator A is not expanding.

Example 2.8. Let X ={a,b,c}, 7={, X} and Z={,{a}}. Let A={a}. Then,

Y (A) =D =*"(A). Thus, A(A) =T (A)U*"(A) =D . Hence, AZ A(A).
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Theorem 2.9. Let (X,r,Z) be an ideal topological space. Then for A, Bep(X),
A(A)UA(B) c A(AUB).

Proof. Let A Be@(X). Since, Ac AuUB and A is isotonic, hence, A(A)c A(AUB).
Similarly, A(B) c A(AuB). Hence A(A) UA(B)c A(AUB).
Since Int(CI(Au B)) = Int(CI(A)) U CI(Int(A)) U CI(Int(B)) U Int(CI(B)), the operator A is

not sub-additive, and hence it is not additive.

Theorem 2.10. Let (X,7,Z) be a Hayashi-Samuel space. Then A(A)c A", forany Ac X .

Proof. Follows from the following facts:
(i) Y(A)c A, forany Aep(X).
(i) (P(A) c A", forany Aep(X).

Corollary 2.11.Let (X,7,Z) be a Hayashi-Samuel space. Then A(A)cCl (A), for any
Ac X.

Corollary 2.12. Let (X,7,Z) be a Hayashi-Samuel space. Then A(X)= X.

Following example shows that the converse of the Corollary 2.12 does not hold, in general.

Example 2.13. Let X={ab,c}, ={0{c},X} and Z={F{c}}. Then,
*(X)=P(X)=Y{a,bp) =X\ ({cH =X and (¥(X)) =X ={ab}. Therefore,

AX) =¥ (X)U*"(X)= X but (X,z,7) is not a Hayashi-Samuel space.

Theorem 2.14. Let (X,7z,Z) be a Hayashi-Samuel space. Then for Uer,
Int(Cl(U))cA(U)cU" =CIU).

Proof. We have, A(U)=¥ (U)U*"(U)=(¥U)) U¥U")=CI(¥U))U¥(CIU)) [13]
= CI(PU)) ULX (X \ CIU))'T=[X \ CI¥U) UCI(X \.CI(U))]. This implies that
Int(Cl(U)) < AU).
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Further, from Theorem 2.10, A(U) cU”™ < CI(U). Thus Int(CI(U))c AU) cU =CI().

The authors Jankovic and Hamlett have introduced a new topology 7 (Z) [4] from (X,z,Z).

Its closure operator is denoted as CI™ [4].

Theorem 2.15. Let (X,z,Z) be an ideal topological space and JeZ. Then,
Ad)=CI'(X\ X).

Proof. Let JeZ. Then, (X\J) =X" [4.A0)=¥"(J)U**(J)=(¥@)) vrQ")
=(XN(XNJ)) V(@) = (XN X)) U(XN\ X)) =CI'(X\ X) [12].

Corollary 2.16. Let (X,7,Z) be a Hayashi-Samuel space and J €Z . Then, A(J)=9.

It is not necessary that A(A) =< implies Ae .

Example 2.17. Let X ={a,b,c}, r={Z,{a}.{a,b}, X} and Z ={,{b}}. Let A={b,c}« L.

Then, ¥ (A) =*"(A)=D. So, A(A) =@ . This example shows that A(A) =& but Ag 7.

Corollary 2.18. Let (X,7,Z) be an ideal topological space. Then,
AAUT)=A(ANJ)=A(A),for Ac X,JeT.

Proof. Obvious from [3] and [4].

3. V Operator

In this section, we shall define another operator V and discuss the role of V in Hayashi-Samuel

spaces.

Definition 3.1. Let (X,7z,Z) be an ideal topological space. We define the operator
V:ip(X) > p(X) as:

V(A) =¥ (A)**(A), for Ac X ..
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It is obvious that for a subset A of X, the value V(A) is the intersection of a closed set and

an open set, since, V" (A) is a closed set and ** (A) is an open set. Thus, V(A) is a locally

closed setin (X,7) forany Ae @(X).

Example 3.2. Let X ={a,b,c},7 ={I,{a}.{a,b}, X} and Z ={Z,{b}}. Also let H ={b}.
Then H ={a,b}~{b,c}. So H is a locally closed set. Now, (¥(Q)) =< =(¥Y({b})
=(PY{c}) = (¥(b,c}) (Y{a}) =X =(¥({a,b})) =(Y{ac}) = (¥(X)) and
P(@)==P({)")=P({c}))=P({b.ch), ¥({a)) = X =¥({ab})")
=¥({ac}))="(X").

So, there does not exist any set A,Bc X, such that H can be expressed as
H =(¥(A)) "W (B"). Therefore, we conclude that locally closed set cannot be decomposed

by the operators ¥~ and ** .

If T ={Q}, then V(A) =¥ (A)N*"(A) =(¥(A)) "¥(A") =[Int(CI(A)]N[CI(Int(A))].

If Z=Z,, then V(A =¥ (A)N*(A) = (P(A) NP(A) =[Int(CI(AN]N[CI(Int(A))]
=[Int(CI(Int(CI(Int(CI(A))IN]N[CI(Int(CI(Int(CI(Int(A)))].
Moreover, X \ A(A)=V(X \_A).

The value of V onasubset A of X on the spaces (X,z,{<}) and (X,7,Z,) are equal.

Theorem 3.3. Let (X,7,Z) be a Hayashi-Samuel space. Then the operator V : (X) — @(X)

is grounded.

Proof. Obvious from the facts that:

(i) X = X", for the Hayashi-Samuel space (X,z,7).
(i) *" (@) =D
(i) ¥ (©0) =D .

The following example shows that the converse of the above theorem is not true, in general:
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Example 3.4. Let X ={a,b}, r={,{a}, X} and Z ={,{a}}.
Then V(@) =¥ (D) "*" (D) =D n{a}y=T, but (X,z,Z) is not a Hayashi-Samuel space.

Theorem 3.5. Let (X,7,Z) be an ideal topological space. Then the operator V : go(X) — o(X)

is isotonic.

Proof. Since, both the operators * and ¥ are isotonic, then V is isotonic.

The following Example shows that the operator V is not expanding.

Example 3.6. Let X ={a,b,c}, 7 ={, X} and Z ={Z,{a}}. Let A={a}.

Then, ¥ (A) =2 =*"(A). Thus, V(A) =¥ (A)n*"(A) =D . Hence, AZV(A).

The following example shows that the operator V is not subadditive.

Example 3.7. Let X ={a,b,c,d}, r={Z,{a}.{b}.{a,b}, X} and Z ={,{c}}. Let A={a}
and B={b}. Then, ¥ (A)={a,c,d}, *'(A)={a} and ¥ (B)={b,c,d}, *"(B)={b}. So
V(A) =¥ (A)*'(A)={a} and V(B)=¥"(B)n*"(B)={b}. So, V(A)uV(B)={a,b}.
Also, ¥ (AUB)=X and **(AUB)=X . Thus, V(AUB)=% (AUB)"*"(AUB)=X .
Therefore, V(AU B) Z V(A)UV(B). Hence, V is not subadditive.

Remark 3.8. Let (X,7,Z) be an ideal topological space. Then the operator V: p(X) — g(X)

is not additive.

However following holds:

Theorem 3.9. Let (X,z,Z) be an ideal topological space. Then for A,Bep(X),
V(A)uV(B)c V(AUB).
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Proof. Let A Beg@(X). Since, Ac AuB and V s isotonic, then, V(A)c V(AUB).
Similarly, V(B) c V(AuUB). Hence, V(A)uV(B) c V(AU B).

Theorem 3.10. Let (X,7,Z) be a Hayashi-Samuel space. Then V(A) c A", forany Ac X .

Proof. It is obvious from the following facts:
(i) ** (A) c A", for the Hayashi-Samuel space (X,z,Z).

(i) ¥ (A) < A", for the Hayashi-Samuel space (X,z,7).

Corollary 3.11. Let (X,7,Z) be a Hayashi-Samuel space. Then V(A) < CI'(A), for any
Ac X.

Corollary 3.12. Let (X,7,Z) be a Hayashi-Samuel space. Then
1. A(A)UV(A) c A", forany Ac X .
2. AAA)NV(A)c A", forany Ac X ..

Theorem 3.13. An ideal topological space (X,z,Z) is Hayashi-Samuel, if and only if,
V(X)=X.

Proof. Let (X,7,Z) be a Hayashi-Samuel space. Then X" =X .

Then, V(X) =" (X)n*"(X) =[(X N\ (XX X)) TA[X N (XN X)T=X"nX=X.
Conversely suppose that X = V(X) =¥ (X) n*" (X) = (¥(X)) n¥(X")
=[XNCXONX)T ALX N XN X)) T= X NU(XN X)X e X", Thus, X =X", and

hence the space is Hayashi-Samuel.

Corollary 3.14. In an ideal topological space (X,z,Z), the following properties are equivalent:
1. (X,7,7) is a Hayashi-Samuel space [20];
2. ¥(2) =2 [20];
3. if Ac X isclosed, then, ¥(A)\ A= [20];

4. %" (X)) = ¢(X) is grounded:;
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5.if Ac X, then, Int(CI(A)) = ¥(Int(CI(A))) [20];
6. A isregular open, A=¥(A)[20];

7. A is grounded,;

8. V(X)=X;

9.if U e, then, ¥(U) c Int(CI(U)) cU"[20];
10.if 1 € Z , then, ¥(1) = & [20];

11. W' (X,7) =¥(X,7) [20];

12. W' (A) =CI(¥(A)), for each Ac X [20];
13. GG, foreach Ger;

14. ¥"(X)=X;

15.if JeZ, then, Int(J)=.

Corollary 3.15. Let (X,7z,Z) be a Hayashi-Samuel space such that V(X)= X . Then,

P(X)=X and **(X)=X .

Proof. Follows from the fact that, X =V(X)c ¥ (X)< X and X =V(X)c**(X) < X".

Theorem 3.16. Let (X,7,Z) be a Hayashi-Samuel space. Then, for U e,
Int(ClI(U)) = V().

Proof. We have

VU) =¥ U)n*"(U)=(¥U)) nPU") =CI(¥U)) n¥(CIV))

= CIIX N\ (X NU)TAIX N (X N\ CIU))]

2 [X N Int(CHX N UDIN[X N CHX N\ CIU))]

=[X (X \_CI(U))]~ Int(CIU)) = CI(U) N Int(CI(V)) = Int(CIV)) .

Corollary 3.17. Let (X,7,Z) be a Hayashi-Samuel space. Then for U e,
Int(Cl(U))cV(U) U™ =CIU).

Theorem 3.18. Let (X,7,Z) be a Hayashi-Samuel space and J €Z. Then, V(J)=9.
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Proof. Let JeZ. Then, J'=& [4]. Now, V(J)=¥(I)n*"(J)=(¥YJ)) n¥@J)
=(XN(XN\J)) n?@)=(X\X) n(X\ X)=0.

The converse of this theorem is not true in general.

Example 3.19. Let X ={a,b}, r={0.{a}, X} and Z ={.{a}}. Let J={a}. Then,

V() =¥ J)n*"(J) = {a}= . Here the space (X,z,Z) is not a Hayashi-Samuel space.

Corollary 3.20. Let (X,7,Z) be a Hayashi-Samuel space and J € Z,then V(J)=A(J)=9O.

Corollary 3.21. Let (X,z,Z) be an ideal topological space. Then, for Ac X,JeZ,
V(AN J)=V(AuJ)=V(A).

Proof. Obvious from [3] and [4].

Lemma 3.22. Let (X,7,Z) be a Hayashi-Samuel space. Then, for Ac X
1L (A) = XN P (X \ A).
2. (XN A =X\ P (A).

More general relation between A and V is:

Theorem 3.23. Let (X,7,Z) be a Hayashi-Samuel space. Then for Ac X,
V(A) = X N AX N\ A).

Proof. We have
XN V(A) = X N[ (A (A]=[X NP (ATULX N\ *(A)]
=* (XN A UX N XN (XN AN =[P (XN AU (XN A]=AX N\ A).
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4. Spaces induced by A and V

In generalized closure space (X,cl), two concepts were defined: one is closure preserving [26]
and other is continuity [26]. But fortunately, two concepts are coincident in the isotonic space

[24, 26]. Here we define continuity in isotonic space.

Definition 4.1. [24, 26] Let (X,cl, ) and (Y,cl,) be two generalized closure spaces. A function

f : X =Y iscontinuous if cl, (f*(B)) < f(cl, (B)), forall Be p(Y).

In isotonic spaces, (X,cl,) and (Y,cl,), we can represent the continuity by the following way:

Definition 4.2. [24, 26] Let (X,cl, ) and (Y,cl,) be two generalized closure spaces. A function

f : X =Y s closure-preserving (or continuous), if for all Ae @(X), f(cl, (A)) ccl, (f(A))

Now, for the isotonic spaces, (X,A) and (X,V), itis obvious that f (V(A)) < f(A(A)), since,

V(A) < A(A), for any function f : X — X and for any Ae p(X).

Further, if the function f:(X,A)— (X,V) is closure-preserving (or continuous), then,

f (A(A)) < VI (A), for any subset A e (X). Thus, we have following:

Theorem 4.3. Let f:(X,A)—>(X,V) be a closure-preserving function. Then,
f(V(A) c f(A(A) c V(f(A), forall Acp(X).

We define homeomorphism between two isotonic spaces from [25]:

Definition 4.4. If (X,cl) and (Y,cl) are isotonic spaces and f :(X,cl,)—>(Y,cl,) is a

bijection, then f isa homeomorphism if and only if f(cl, (A)) =cl, (f (A)), forevery Ae p(X)

Corollary 4.5. Let f:(X,A)— (X,V) be a bijective closure-preserving function such that
VI (A) < f(A(A)), forall Aep(X). Then, f isahomeomorphism.
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Theorem 4.6. The identity function i:(X,V)— (X,A) is always a closure-preserving (or

continuous) function.
Proof. We know that i(V(A)) ci(A(A)) =A(A) =A(i(A)).

Example 4.7. Let X ={a,b}, r={&{a}, X} and Z={I,{a}}. Let A={a} and
i:(X,A) > (X,V) be the identity function. Then, i(A)=A, A(A)={a} and V(A)=J. So,
i(A(A)) € V(i(A)). This example shows that the identity function i:(X,A) — (X,V) may not

be a closure-preserving function.

Corollary 4.8. A closure-preserving bijective mapping f:(X,A)—>(X,V) s
homeomorphism, if and only if, V(f (A)) < f(A(A)), forall Ae p(X).

Proof. Suppose, V(f(A)) < f(A(A)). Then, from the Corollary 4.5, f is a homeomorphism.
Conversely, suppose f :(X,A) —(X,V) is a homeomorphism, then V(f(A)) < f(A(A)) is

obvious.

Definition 4.9. [26] A generalized closure space (X,cl) is a T,-space if and only if for any
X,y e X with x=y, there exists N, € N'(x) (where A(x)={N €p(X):xe Int(N)}) such
that y e N, or there exists N, e N'(y) (where AV (y)={N ep(X):ye Int(N)}) such that
xegN,.
Definition 4.10. [25] A generalized closure space (X,cl) is a T, -space if, for any X,y e X

with x =y, there exists N"e A/(x) and N" e N/ (y) suchthat xg N”" and y¢ N'.

Definition 4.11. [25] A generalized closure space (X,cl) is a T, -space if and only if, for all

X,y € X with x#y, there exists N'e A/(x) and N"e NV (y) suchthat N'mN"=.
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Definition 4.12. [25] A space (X,cl) isa T , -space if and only if, for all x,y e X with x=y
2=
2

, there exists N"e N'(x) and N” e N'(y) such that cI(N")ncl(N") =T .

Theorem 4.13. Let f:(X,A) — (X,V) be a bijective closure-preserving function such that

V(f(A)) < f(A(A)), for all Aep(X). Then, the followings hold:
1. (X,A) isa T, -space, if and only if, (X,V) isa T, -space.
2. (X,A) isa T -space, if and only if, (X,V) isa T,-space.
3. (X,A) isa T, -space, if and only if, (X,V) isa T, -space.
4. (X,A) isa T21 -space, if and only if, (X,V) isa T21 -space.
2 2

Definition 4.14. Let (X,cl,) and (Y,cl,) be two generalized closure spaces. A function

f : X > Y is called anti closure-preserving if cl, (f(A)) c f(cl, (A)), forall Ae p(X).
Existence of anti closure-preserving function:

Example 4.15. Let X ={a,b,c}=Y . Let us define cl, :p(X)—> @(X) by, cl (J)=J,
cly({a}) ={a}, cl,({b})={b}, cly({ch={c} clx({ab})={ab}, cli({ac})={ab},
cl, {b,c}) ={b,c}, cl, (X)=X and cl, :p(X) > p(X) by cl, (J)=9, cl, ({a}) ={a,b},
cly({b}) ={b.c}, cly({ch)={ob.c}, cl,({abh=Y, cl({ach=Y, cl{bc}={bc}
cl, (Y)=VY.

Define f:(Y,ch,)—>(X,cl,) by f(x)=x. Then cl (f(@)=D, cl (f(V))=X,
cl, (f{a}) ={a},cl, (f{b}) ={b},cl, (f{c}) ={c},cl, (f{a,b}) ={a,b}=cl, (f{a,c}),

cly (f{b,c}) ={b,c}and f (cl, () =, f(cl, {a})) ={a,b}, f (cl, ({b})) ={b.c}

= f(cly ({c})) = f(cly ({b,c})), f(cl,({a,b}))=X =f(cl,({a,c}))=f(cl, (YV)).

Thus cly (T (<)) = f(cl, () cl (1 (¥)) = f(cl, (V) ,cl; (T{a}) < f(cl, ({a}).
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cly (f{b}) < f(cl, ({b})) . cly (F{c}) < T (cl, ({c})) ,cly (f{a,b}) c T(cl, ({a.b})),
cly (f{b,c}) < f(cl,({b,c})), cly (f{a,c}) < f(cl, ({a,c})).

Thus we see that f is an anti closure-preserving function.

Note that the identity function i:(X,A) — (Y, V) is always an anti closure-preserving function,

since, for all Ac X, V(i(A)) = V(A) € A(A) =i(A(A)).

Remark 4.16. We can replace “V(f (A)) < f(A(A))” in Corollary 4.5, Corollary 4.8

and Theorem 4.13 by “ f is an anti closure-preserving function”.
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