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Abstract: Different metrics are used for measuring the goodness of packet routing between the source and destination 
pairs in a communication network. One approach is to compute the paths from the measured metric values, which are 

predetermined independently according to the network resources. The combination of some metrics of different natures 

to get a composite cost function for the routing process is non-trivial. We consider two metrics, namely delay and 

packet loss rate. The first one takes values from the large numbers and the second from the small. We propose some 

methods for constructing composite functions of these metrics without any constraints and use them for the shortest 

path calculations. We give the numerical results of the proposed composite functions versus the Dijkstra’s algorithm 
with the individual metrics. We spot out the best function according to our computer simulation results. Our composite 

function works for any arbitrary point-to-point networks. To the best of our knowledge, the technique is novel. Our 

results show an efficient way to balance the effects of the metrics in the context of many-to-many routing. 

Keywords: Cost function, delay, network communications, packet loss rate, QoS routing. 

 

1. Introduction 
 

One of the most important terms during the 

transmission of voice or data among the networks is 

Quality of Service (QoS). This key subject is the basic 

factor specifying the QoS levels especially in 

multimedia applications. There are many factors 

having an influence on QoS of the network. One of 

them is the route selection or routing, which includes 

discovering different paths along a network. The 

metrics in the routing process have been mostly 

defined in the literature, according to their effects on 

the whole QoS of the network. Hanzo II and Tafazolli 
[1] presented a metric classification related to network, 

link, and physical layers of the OSI model. Some of 

their metrics are end-to-end delay, packet loss rate, 

jitter, link stability, and bit error rate. Yin, et. al. [2] 

gave a similar metric list for performance measurement 

of routing protocols.  

Several researchers have studied end-to-end 

connection implementations that maintain the required 

metrics in a reasonable range. QoS renegotiation, 

which is the decision of the probable QoS values, must 

be performed between network and application layers 
to get the necessary performance level [3]. Application 

layer requires some specific QoS values from the 

transportation layer and then available QoS values 

related to the network situation are decided. In various 

studies, this can be done by QoS negotiation. For example 

Obreja and Borcoci [4] described an approach in which 

each domain manager is able to establish QoS values 

without having the traffic information of other domains. 

Here, the processes of routing and QoS negotiation run 

independently. During offline computation, paths are 
chosen on a network where nodes are referred to domain 

manages. Therefore any scalability problem is prevented. 

Iqbal, et. al. [5] proposed another QoS scheme which is 

dependent on the negotiation between network and 

application layers. Here, network layer gives the 

information about network congestion to the application 

layer. Source node’s applications adjust sending data rate 

according to the congestion level of the traffic flows.  

Routing is concerned in this scheme. 

In the literature, Multi-Constrained Path Problem 

(MCPP) provides to find multiple metric-constrained paths 

along a network. MCPP is also considered as an optimality 
problem [6-7]. Djarallah, et. al. [6] defined the metrics as 

the vectors of weight parameters. So they performed the 

metrics as non-composite numbers and computed them 

discretely. After then they used these metrics to get the 

optimal paths for the source-destination pairs. They 

initialized an inter-domain route set on the way of this 

solution. They obtained several feasible paths which satisfy 

the predetermined metrics and then eliminated some of 

them which have larger weights. On the last set, they 

performed an objective function to select the optimal path. 
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In another multiple metric method [8], the user requests 

different QoS values and then each service provider 

tries to find a suitable domain link based on these 

requested values. Bertrand, et. al. [9] benefited from 

some additive metrics and computed the total metric 

values of the links in a relaxation step. They compared 

these values with each other with the goal of finding 
multiple paths and obtaining Virtual Shortest Path Tree 

which includes the path with the minimum cost. 

Masip-Bruin, et. al. [10] benefited from Enhanced 

QoS Border Gateway Protocol to provide the paths. In 

this scheme, a metric for a path segment is chosen and 

then an assembling function is used to combine all 

segment values as the whole path value. After the 

computations, a decision step is applied through a 

Degree of Preference function for getting the best path 

related to the metric values, and also all available paths 

are stored. In a different multi-constrained routing 
solution, Shin, et. al. [11] initialized the process with 

some subpaths and then performed their extensions to 

reach the whole paths. In this scheme, the number of 

subpaths is limited during the computations, but then 

raised to find the rest of the paths in a probabilistic 

way. Xue and Ganz [12] actuated the routing process 

depending on the metrics of bandwidth and delay 

consecutively. Similarly, Yuan and Liu [13] considered 

k different metrics independently. The main drawback 

of this method is that the authors should store all 

optimal paths and provide the QoS requirements by 
using the constraint of each metric. 

In the literature, the path weights are commonly 

computed based on different metrics independently and 

then a comparison is made between all metrics to get 

the best path. The challenging problem of combining 

various metrics to analyze path optimality has been 

studied within several algorithms as given briefly in 

[14]. 

In this paper, we provide an easy computation to 

find the path of optimal trade-off between two metrics 

at the same time. These two metrics fall on different 

number ranges, one is from very small real numbers, 
and the other from large integers. We give the 

structures of some composite functions, and use 

experiments to find the most effective one. Our work 

differs from the other works in the literature in the way 

that the metrics are not necessarily in similar natures. 

For example, Van Mieghem, et. al. [15] implemented 

their algorithm with all constraints uniformly 

distributed on [0, 1]. 

The rest of this paper is designed as follows. 

Section 2 gives some necessary definitions. In Section 

3, we define two basic composite functions and 
construct a new composite function, of which we select 

the terms carefully. Then, it is followed by 

experimental results. Finally, we give the conclusion 

and future work of this study in Section 4. In this 

paper, we put aside the unpredictable practical network 

environmental issues such as user request, admission 

control, and security.  

 

 

 

2. Definitions and Notation 
 

The network, or graph, G=(V,E) in question is a 

connected, and undirected, static point-to-point arbitrary 

graph, where V ={1,2,...,n} is the set of nodes and E the 

edge set. Each edge e has a two-dimensional cost (-,-), and 

the two metrics inside are delay (D) and packet loss rate 

(PL). The delay of e can be considered as the average time 

for a message to wait in the outgoing buffer (queue) of e 

before departure. The packet loss rate of e is the probability 

of a message being lost during transmission through e. We 

assume two conditions on these two metrics such as general 

assumptions in the most QoS studies.    

 

1. The delay and packet loss rate are static for each edge. 

2. The delay and packet loss rate of an edge are not directly 

proportional to each other. 

 

We argue for assumption 1. Obviously, this assumption 

may not be accurate as the metrics are affected by the 

interference between messages. However, their dynamic 

values are difficult to trace in real time, and even 

sophisticated methods can only give approximation. More 

importantly, there is no algorithmic difference between 

using their actual values and using the approximated ones. 
In practice, the system can use the latest known values and 

construct the composite function after a certain period of 

time. 

We now argue for assumption 2. For unreliable protocol 

like UDP, a lost packet will not be transmitted again, and 

therefore, there will not cause any longer delay. For reliable 

protocol like TCP, or the Data Link layer protocol, a lost 

packet will be re-transmitted; however, such re-

transmission will not necessarily be placed back to the 

waiting queue as a new coming packet. Hence, longer delay 

will be experienced but it may not take the same amount of 
time as before. 

The values of delays are chosen from the positive integer 

set, and those of packet loss rates from the positive real 

numbers much smaller than 1. Followed from traditions, the 

delay of a routing path p is the sum of all delays over all 

edges along p. (Using product or sum depends solely on the 

nature of the metric because they are mathematically 

convertible to each other.) The definition of the packet loss 

rate of p is similar, because we assume that the product of 

the packet loss rates of any two edges is negligible. This 

assumption allows us to simply minimize the sum of packet 

loss rates in a path. Now, we argue that even without this 
assumption, we can still translate the packet loss rate into 

some other quantity and use this additive property again. 

For every edge with packet loss rate PL, define the packet 

transfer rate to be 1-PL, and the packet transfer rate of a 

path to be the product of all packet transfer rates of the 

edges along the path. Since each packet transfer rate is at 

most one, it can be rewritten as a non-positive power of 2 

(or e=2.716). Higher packet transfer rate can be achieved by 

pushing up the sum of all the powers along the path. This 

can be done by lowering the sum of the absolute values of 

the powers. The argument is complete. In short, for packet 
loss rate PL of an edge, we translate it into |log(1-PL)|. For 

the simplicity of discussion, we leave this transformation to 
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the engineers, and consider the sum of the packet loss 

rates along a path as a parameter for optimization. 

 

3. Constructing Composite Functions 
 

We divide this section into three subsections: Basic 

composite functions, a new composite function, and 

practicing the composite functions without constraints. 

 

3.1. Basic Composite Functions 
 
We now study the cost function of a routing path. If 

either the delay or packet loss rate is considered, we 

can directly apply Dijkstra's algorithm for finding the 

shortest path. However, mathematically, it is 

impossible to achieve optimality for two metrics 

simultaneously representing the delay and packet loss 

rate of each edge. Figure 1 is an example, which shows 

different paths from the source to destination based on 

different metrics. In other words, we can only find 

trade-offs between them. 

 

 
 

Figure 1. The edges with two metrics between the source and 
destination nodes  

 

A composite function of two metrics, namely x and 

y, can be defined as either an ordered pair (x,y) or a 

single value of a function of x and y. There are different 
advantages for each of these approaches. For using 

(x,y), each metric will be considered symmetrically, 

and the main difficulty of the research work will focus 

on the relationship between dimensionality and path 

optimality. Such work is rather algorithmic than 

practical, and extending the algorithm for more metrics 

is by no mean trivial. In this paper, we use a single-

value composite function, and therefore, the path 

optimality can be simply done by many existing 

algorithms, while the research will emphasize on how 

to construct the function with two metrics of different 
characteristics. Another advantage of using one single 

value is the feasibility of allowing more metrics for 

future research. The goodness of a composite function 

is measured by the ratio of the resulting cost to the 

optimal cost, for each metric. 

For the construction of a composite function, there 

are more to consider. First, when one metric is zero (or 

weighted zero), the format of the composite function 

must be linear and homogeneous to the cost of a 

routing path based on the other metric. Second, the 

weighting of the two metrics can be adjusted. There are 

two basic formats for the composite function (CF): 
 

PLCDCCF PLD                                   (1) 

                                                       

PLCDCPLDCCF PLDT * ,             (2) 

 

where CT, CD, and CPL are constants and designed by 

system designers. The notation CF(p) is used for the sum of 
all CF values of the edges along p. In using either equation, 

we need to minimize CF(p). From the point of constructing 

the function, we need to design two constants, CD/CT and 

CPL/CT, in Eqn (2), if CT≠0; however, only the fraction 

CPL/CD is needed in Eqn (1), if CD≠0. Therefore, using Eqn 

(1) is more convenient. For simplicity, we shall refer CF in 

Eqn (1) as CF1 and that in Eqn (2) as CF2.  

A similar function of CF1 was proposed by Jaffe [16] to 

meet different constraints in MCPP. According to his 

approximation, the minimization of that function may also 

give an optimal path that does not satisfy the constraints. 

CF1 differs in the bound of D, which is not in the range [0, 
1]. 

 

3.2. A New Composite Function 
 

We propose a new composite function with considering 

the Assumptions 1 and 2. With the assignment of the initial 

values to the delay and packet loss rate of each edge on a 

sample network, we introduce our composite function, 

which covers both metrics together. The aggregation of the 
two metrics from distinct ranges is the bottleneck in the 

literature. To solve this problem, a common range for the 

metrics is figured out to get a composite function as the 

edge cost function for the routing process. This common 

range is obtained by using ranking on the original metrics. 

However, it is still not a universal technique for data 

analysis due to its uncertain performance.  

Ranking has been used for removing noises on the 

original data, and has been verified successfully in many 

cases.  However, it can also remove some important 

features of a parameter.  To the extreme, we cannot judge 
the goodness of a ranking function; however, we believe 

that, in many cases, we can apply some statistical 

techniques to construct a better composite function. 

Suppose that we are given sets of data for different 

parameters, and a good basic composite function B which 

uses original data. We rank the data and study the 

relationship between the original values and their ranks. 

Since the ranking is a strict increasing bijective function of 

the original data, the inverse function can also be used for 

describing the relationship. We approximate this inverse 

function by some simple functions like polynomial and 

exponential functions. This approximate function is used 
for substituting the original parameter in function B. We do 

this for all parameters, and the resulting function is then 

rank-based. 

Now, the burden falls on experimental work for finding 

the approximate inverse function. 

Based on the above explanation of the ranking process, 

the new composite function basically covers the rank, 

which will be symbolized as R, for each metric value. In 

this subsection, we focus on delay and packet loss rate. Let 

De and PLe be the values of delay and packet loss rate, and 
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they have ranks 
eDR  and 

ePLR , respectively, for edge 

e. In this method we consider same ranks for the same 

values in each order. For example, if the delay 

sequence is 5, 10, 15, 15, 47 for five edges, then the 

delay ranks become 1, 2, 3, 3, 4, respectively. 

Mathematically, for each metric, our ranking is a 

bijective function Rank( ) from the set of values of all 

edges to an integer set {1, 2, ..., L}, for some positive L 

(where L is the number of different values in the 
domain), and Rank(De) < Rank(De') if and only if De < 

De'. After this ranking step, we do not need any other 

optimization technique for the metric ratings between 

the edges.  

After the computations of the ranks, we construct 

the composite function of two metrics from distinct 

ranges as 

                                                      

ePL

e

R

De BaseRCoefCF *          (3) 

 

where CFe is the numerical value of the composite 

function for e. For simplicity, we refer the function in 

Eqn (3) as CF3. According to the values of the packet 

loss rates which we use in the domain, each increment 

is a factor of 10. Ranking can then be considered as a 

base-10 logarithmic function of the original values. As 

optimality is measured by the sum of the original 

values along the routing paths, we use an exponential 

function of the ranks in the composite function, instead 

of the ranks themselves. For this reason, the Base value 
in CF3 is selected as 10 according to this relation 

between the packet loss rate and ranking. Experiments 

show that with this modification of ranking technique, 

we can adjust the weighting of delay and packet loss 

rate efficiently in order to seek for a balance of their 

performance. Note that Coef in CF3 is selected after 

some practical results, which will be mentioned in 

Section 3.3. 

CF3 gives the cost function of e to be used in the 

selection of the optimal path over a network by 

Dijkstra’s algorithm. The cost function of a path p with 

|E| edges can be calculated as 
                                                              

E

e

eCFpCF
1

)(         (4) 

 

3.3. Practicing the Composite Functions 
 

In this subsection, first we get CF1 and CF2 as the 

cost functions of an edge and then use Dijkstra’s 

algorithm to observe the best paths according to these 

functions. We refer these methods as Dijkstra(CF1) 

and Dijkstra(CF2) respectively. After finishing this 
step, we skip to CF3 practices and select the best Coef 

value to complete CF3 by referring this method as 

Dijkstra(CF3). Then we extend CF3 to get another 

function.  

In this paper, we computed all experimental results 

over the network represented in Figure 2. This network 

is a sample of mesh network and appropriate for the 

selections of the paths with the specified hop numbers in 

the comparisons. It covers 75 nodes and 100 full-duplex 

edges. 

 

 
 

Figure 2. The sample network 
 

Each edge e in the network was provided with numerical 
values of delay and packet loss rate. Delay values are 

between [1, 150] and the packet loss rates should be one of 

the values 0.000001, 0.00001, 0.0001, and 0.001. We 

assign the metric values of the whole network as behaving 

towards the normal distribution. 

We selected five source-destination node pairs for each 

hop number h, where h =2, 4, 6, 8, 10. h represents the 

minimum edge number obtained manually along a path, 

which starts from the predetermined source node and ends 

in the destination. All functions try to find several paths 

between two end nodes without considering their edge 

numbers. We executed the application 400 times for each 
node pair of each hop number. So we used 400 different 

metric validations of the edges in the network. We 

computed the average values of delay and packet loss rate 

of the 2000 different best paths for each hop number. 

For fine-tuning the performance, for convenience, we 

start with 1/ DPL CC  in Eqn (1). If the worst case ratio 

of delay is greater than that of packet loss rate, we decrease 

DPL CC / ; otherwise, increase it. The worst case ratio of a 

parameter is referred to the maximum (over all values of h) 

experimental performance ratio averaged over all 

experiments. The same experiment is also done for the 
terms in Eqn (2). To speed up, binary search can be used. 

The binary search can stop if the worst case ratios are less 

than a threshold, say 5%, apart from each other. We finally 

chose 185000/ DPL CC  for Dijkstra(CF1), 

10/1/ TD CC  and 185000/ TPL CC  for 

Dijkstra(CF2) to get the computational results in this 

subsection. 

The worst case ratios of delay and packet loss rate for 

Dijkstra(CF1) and Dijkstra(CF2) obtained for each hop 

number are stated as in Table 1. The worst case ratios occur 

around hop number 6 for both of the delay and packet loss 
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rate values. Both of the functions are in balance 

according to two metrics. 

 
Table 1. Worst case ratios 

 

We now skip to find the Coef value in CF3. 

Through the use of Eqn (4) as the path cost function in 

Dijkstra(CF3), the correlated CF3 appears concretely 

after implementing different Coef values and choosing 

the most effective one, which concludes the paths with 

the best aggregation of delays and packet loss rates. 

Figure 3 and Figure 4 show the last delays and packet 

loss rates provided by using different Coefs in CF3 

with the constant Base value of 10. We practiced 

several Coefs between 100 and 200 in Dijkstra(CF3) 
and determined that the best values are around 120 and 

125 according to the both of the metrics. The metric 

values measured with the Coefs between 120 and 125 

are represented in Table 2 for Hop Number=6. We 

chose this hop number because that the main difference 

between the Coefs can be seen clearly at that point. It 

can be easily extracted from Table 2 that Coef=120 is 

the best selection for CF3. 

 

 
 

Figure 3. Delays for different Coefs in CF3 
 

 
 

 

 

 

 
 

Figure 4. Packet loss rates for different Coefs in CF3 
 
 

Table 2. The metric values with Coef between [120, 125] 

 

Coef Delay Packet Loss 

Rate 

120 353,5145 0,000805 

121 353,3715 0,000806 

122 353,1195 0,000807 

123 352,2650 0,000811 

124 352,0160 0,000813 

125 351,5465 0,000816 

 

Consequently, we converted CF3 for each e with the 

selected Coef and Base values into  

                                                     

ePL

e

R

DRCF 10*1203
              (5) 

 

We now change only 
ePLR  computation to find another 

function. We match the packet loss rate values of the set 

{0.000001, 0.00001, 0.0001, 0.001} to an integer set {20, 

21, 22, 23} sequentially. We used the same Base 10 as in 

Eqn (5) and obtained  

                                        

ePL

e

R

DRCoefCF 10*4
              (6)      

 

where CF4 is a new cost function of an edge to be used in 

Dijkstra’s algorithm as Dijkstra(CF4). We practiced several 

Coefs between 104 and 108 in Dijkstra(CF4) and determined 

that the best value is 106 according to the both of the 

metrics. After this result, we converted Eqn (6) into  

                                                    

ePL

e

R

DRCF 10*104 6

                           (7) 

 
For any CFx (x=1,2,3 or 4), we use the pseudocode of 

Dijkstra(CFx) as illustrated in Figure 5. 

 

Hop 

Number 

Delay Packet Loss Rate 

 CF1 CF2 CF1 CF2 

2 1,101004 1,101004 1,628099 1,628099 

4 1,103260 1,103289 1,600887 1,600887 

6 1,150929 1,151819 1,731111 1,728889 

8 1,136208 1,136468 1,520000 1,520000 

10 1,145566 1,145517 1,713450 1,713450 
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Figure 5. Pseudocode of Dijkstra(CFx) 

 
 

A comparison between Dijkstra(CF1), 

Dijkstra(CF2), Dijkstra(CF3), and Dijkstra(CF4) is 

given in Figure 6 and Figure 7 against the related 

values of each single metric version as Dijkstra(D) or 

Dijkstra(PL). Dijkstra(CF1) and Dijkstra(CF2) overlap 

in Figure 6 and Figure 7. The results of Dijkstra(CF1), 

Dijkstra(CF2), and Dijkstra(CF3) are close to each 

other. Dijkstra(CF4) improves the PL results. This is 

very important for any network, especially for 

multimedia networks. 

The worst case ratios of the delay values for CF3 
and CF4 are both 1.1x. On the other hand, the worst 

case ratios of the packet loss rates are 1.7x and 1.6x 

respectively. It tells that CF4 is better than CF1, CF2, 

and CF3 according to the balance of two independent 

parameters. 

 

 
 

Figure 6. Delays for all functions 
 

 
 

 

 
 

Figure 7. Packet loss rates for all functions 
 

4. Conclusion 
 
In this study, we proposed some effective composite 

cost functions correlating two different metrics, namely 

delay and packet loss rate, and represented the way and 

rationale of their construction. We obtained the composite 

functions to find the best path according to the metrics on 

any arbitrary networks without any constraints. We 

compared the composite functions against Dijkstra’s 

algorithm with the individual metrics. The numerical results 

show that our composite functions are good when 

considering the balance between both metrics. The worst 

case ratios between two metrics in our functions are well 
balanced. The functions can also be extended to include 

more than two metrics. They may also cover bandwidth or 

jitter with supporting additional operations such as 

MAIN FUNCTION Dijkstra(CFx) 

for hop_number=2:2:10 

 for SourceDest_pair=1:5   

  for r=1:runs %runs=400 
   Get both metric validations of all edges from the source file. 

Compute 
eDR and 

ePLR for each edge. 

Compute 
eCF  value of each edge. 

Apply Dijkstra’s Algorithm based on the normalized 
eCF values to find the shortest path 

over the network.  

  end 

 end 

 Calculate average delay values of the shortest paths with the current hop_number. 

 Calculate average packet loss rates of the shortest paths with the current hop_number. 

end 
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exponentials used in several studies related with 

network traffic distributions. 
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