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Abstract 

In this paper, dark soliton solutions have been obtained for the (2+1)-dimensional reaction-

diffusion equation, the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (gBKP) 

equation and the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation using the 

solitary wave ansatz. Ansatz approach is utilized to carry out this integration. The constraint 

relations for each of the equations are given for the existence of dark soliton solutions. 
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1. INTRODUCTION 

 Nonlinear partial differential equations (NLPDEs) that are studied in the fields of physics and 

applied mathematics there are significant advances and across the globe many aspects of 

NLPDEs that are studied by various scientists. Some of them are the integrability aspects, 

symmetry issues, conservation laws. There has been quite thoroughly understood is the 

integrability aspect of the governing equations of the solitary waves in (2+1)-dimensional as 

well as in (3+1)-dimensional equations. For a long time, there are many new results related this 

aspects that are published in several area [1-6]. More commonly used methods of integrability 

are the He's variational iteration method, the hirota bilinear method, the homotopy perturbation 
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method, the first integral method, the modified tanh--coth method, the modified sine-cosine 

method, the ansatz method and many others [7-12]. Among the methods mentioned above, the 

ansatz method is one of the most efficient method to determine solutions of NLPDEs [13-22]. 

It was originally developed by Anjan Biswas [23-25]. 

In nonlinear dynamical systems, propagation of nonlinear waves has been a fundamental 

objects of nature. Nonlinear waves emerge to in a great array of contexts such as, solid state 

physics, hydrodynamics, nuclear physics, plasmas, nonlinear optics and many other nonlinear 

phenomena. In this paper, we apply the ansatz method to obtain dark soliton solutions of the 

following (2+1)-dimensional reaction-diffusion equation, the (3+1)-dimensional gBKP 

equation and the (3+1)-dimensional BLMP equation. Dark soliton solutions is one of the fastest 

growing research fields in the context of wave phenomena [26, 27]. 

2. THE (2+1)-DIMENSIONAL REACTION-DIFFUSION EQUATION  

Let us consider the following reaction-diffusion equation in two dimensions, 

(ψt – Dψxx + αψ³ + βψ² + γψ)x + kψyy  = 0,     (2.1) 

where D, α, β, γ and k are real constants, D is also called diffusion coefficient. In [28], Yun-

Quan and Jun investigated the explicit analytical solutions for this equation (2.1) by using the 

first integral method. 

For k=0, equation (2.1) is a reaction-diffusion equation arising in chemical reaction or ecology 

and other fields of physics. The choice D = 1, β = 0 and γ = –α leads Eq. (2.1) to the two-

dimensional Chaffee-Infante equation, 

 (ψt – ψxx + αψ³ – αψ)x + kψyy  = 0,     (2.2) 

the choice D = 1, γ = 0 and α = –β = 1 leads Eq. (2.1) to the two-dimensional Huxley equation, 

 (ψt – ψxx + ψ³ – ψ)x + kψyy  = 0,      (2.3) 

and if taking D = 1, α = 1, β = – (a+1) and γ = a in Eq. (2.1), we can obtain the following two-

dimensional Fitzhugh--Nagumo equation: 

 (ψt – ψxx + ψ³ – (a+1)ψ² + aψ)x + kψyy  = 0.     (2.4) 

In order to get its solution, the following ansatz is assumed [24, 29], 

 ψ(x,t) = λtanhpτ,       (2.5) 

and 

 τ = ax + by – vt,       (2.6) 

where the λ, a and b are the free parameters, and v is the velocity of the soliton. From Eqs. (2.5) 

and (2.6), we have: 
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   –pλva{(p+1)tanhp+2τ – 2ptanhpτ + (p–1)tanhp-2τ}  

– Dλpa³{(p–1)(p–2)(tanhp-3τ – tanhp-1}τ)  

+ (p+1)(p+2)(tanhp+1τ – tanhp+3τ) + 2p²(tanhp+1τ – tanhp-1τ) }    (2.7) 

   +3αλ³pa{tanh3p-1τ – tanh3p+1τ}+2βλ²pa{tanh2p-1τ – tanh2p+1τ} 

   +γλpa{tanhp-1τ – tanhp+1τ}+kλpb²{(p-1)tanhp-2τ – 2ptanhpτ+(p+1)tanhp+2τ} = 0. 

  By equating the highest exponents of tanh3p+1τ and tanhp+3τ terms in Eq (2.7), we 

obtain 

 3p+1  = p+3,       (2.8) 

 p  = 1.        

The same value of p can yield when the exponents pairs 2p+1 and p+2, 2p-1 and p are equate 

with each other. Furthermore, set the coefficients of the linearly independent terms to zero. By 

setting the corresponding coefficients of tanh3p+1τ and tanhp+3τ terms to zero we get 

 Dλp(p+1)(p+2)a³ – 3αλ³pa = 0,       (2.9) 

after some calculations we obtain 

λ = ±a√
(p+1)(p+2)D

3α
,     (2.10) 

which implies that is necessary to have Dα>0. 

Setting the coefficient of tanhp-1τ  terms in Eq. (2.7), to one obtains 

 2p³Dλa³ + γλpa = 0,        (2.11) 

which gives  

a = ±√
γ

2p²D
  .      (2.12) 

Thus from (2.12) it is possible to conclude that the topological solitons will exist for γD<0. 

Again from (2.7), matching the exponents of tanh2p+1τ and tanhp+2τ to zero yields 

 –p(p+1)λva – 2βλ²pa + kλp(p+1)b² = 0,          (2.13) 

we obtain 

 v  = 
2βλa−k(p+1)b²

(p+1)a
 .       (2.14) 

Hence, we obtain the topological soliton solution for the equation (2.1) when we substitude 

(2.8), (2.10), (2.12), (2.14) in (2.5) as 

 ψ(x,y,t) = λtanh(ax + by – vt),       (2.15) 

which exist provided that γD<0 and Dα>0.  
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Figure 1. Shock wave ψ(x,1,t) with γ = –8, α = 2, β = 1, k = 2, D = 1, b = 1. 

 

3. THE (3+1)-DIMENSIONAL GENERALİZED B-TYPE KADOMTSEV 

PETVIASHVILI (gBKP) EQUATION 

Now we consider the (3+1)-dimensional gBKP equation [30], 

 ψxxxy + α(ψxψy)x + β(ψx + ψy + ψz)t + γ(ψxx + ψzz) = 0,     (3.1) 

where α, β and γ are real-valued constant. This is a nonlinear wave equation in three spatial 

(x,y,z) and one temporal coordinate (t). Khalique and Abudiab studied the generalized BKP 

equation and derived some exact solutions using the multiple-exp function and simplest 

equation methods. Also, the conservation laws for the BKP equation are constructed by using 

the multiplier method by them. In [31], a new form of the (3+1)-dimensional BKP equation 

given by (3.1) was investigated and it was shown, using the simplified form of the Hirota 

method, that one- and two-soliton solutions exist for (3.1). Also, specific constraints were 

developed that guarantee the existence of multiple soliton solutions for (3.1). The (3+1)-

dimensional nonlinear gBKP equation 

ψyt  – ψxxxy  – 3(ψx ψy )x + 3(ψxx + ψzz) = 0,     (3.2) 

was studied in [32-35] by different approaches. 

The other variant of a generalized (3+1)-dimensional BKP equation given by 

ψxxxy  –– 3(ψx ψy )x + ψtx + ψty – ψzz = 0,     (3.3)  

In [36], Ma and Abdeljabbar has computed a bilinear Bäcklund transformation for Eq. (3.3) and 

in [37], Wronskian and Grammian formulations are established for this equation. Ma and Zhu 
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[38], applied the multiple exp-function algorithm to this equation. In [39],Wazwaz studied three 

variants of a generalized (3+1)-dimensional BKP equation in the form 

ψzt  – ψxxxy  – 3(ψx ψy )x + 3ψxx  = 0,           (3.4) 

    ψyt  – ψxxxz  – 3(ψx ψz )x + 3ψyy  = 0,     

              ψxt  – ψxxxy  – 3(ψx ψy )x + 3ψzz  = 0,  

and multiple-front wave solutions of Eq. (3.4) have been obtained by using the simplified form 

of the Hirota's method. Also, in [40] Ma and Fan studied the first (3+1)-dimensional gBKP 

equation and presenting its particular exact multiple wave solutions. 

In order to construct dark soliton solutions, we use 

ψ(x,y,z,t) = λtanhpτ,       (3.5) 

and 

 τ = ax + by +cz – vt,       (3.6) 

where λ, a, b and c are free parameters and v is the velocity of the soliton. From Eq. (3.5) and 

(3.6), we have 

   λpa³b{(p-1)(p-2)(p-3)tanhp-4τ - 4(p-1)(p²-2p+2)tanhp-2τ + 2p(3p²+5)tanhpτ 

- 4(p+1)(p²+2p+2)tanhp+2τ + (p+1)(p+2)(p+3)tanhp+4τ} + αλ²p²a²b{(2p-2)tanh^{2p-3}τ 

- (6p-2)tanh2p-1τ + (6p+2)tanh2p+1τ-(2p+2)tanh2p+3τ}        (3.7) 

   - βpλv(a+b+c){(p+1)tanhp+2τ - 2ptanhpτ + (p-1)tanhp-2τ} 

   + γpλ(a²+c²){(p-1)tanhp-2τ - 2ptanhpτ+(p+1)tanhp+2τ} = 0. 

When we match the exponents of tanh2p+3τ and tanhp+4τ terms in Eq (3.7), we obtain 

2p+3  = p+4,       (3.8) 

                                  p  = 1.                  (3.9) 

 By setting the coefficients of tanh2p+3τ and tanhp+4τ  terms to zero we get 

 λp(p+1)(p+2)(p+3)a³b - 2αλ²p²(p+1)a²b = 0,      (3.10) 

so that 

 λ  = 
(p+2)(p+3)a

2αp
 .       (3.11) 

Again, by equating the coefficients of tanh2p+1τ and tanhp+2τ terms to zero 

  -4λpa³b(p+1)(p²+2p+2) + αλ²p²(6p+2)a²b - βp(p+1)λv(a+b+c) + γp(p+1)λ(a²+c²) = 0.     (3.12) 
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Solving the equation (3.12) with by using (3.11) 

 v  = 
−4(𝑝+1)(𝑝²+2𝑝+2)𝑎³𝑏+𝛼(3𝑝+1)(𝑝+2)(𝑝+3)𝑎³𝑏+𝛾(𝑝+1)(𝑎²+𝑐²)

𝑝(𝑝+1)𝛽(𝑎+𝑏+𝑐)
 .    (3.13) 

The relations (3.11) and (3.13) introduce the restrictions given by 

 α ≠ 0,         (3.14) 

 β(a+b+c)  ≠ 0.        

Dark soliton solution for the equation (3.1) is given by 

 ψ(x,y,z,t) = λtanh(ax + by + cz - vt),      (3.15) 

where the free parameter λ is given by (3.11) and velocity of the solitons v is given in (3.13). 

In (3.13) v is dependent on the other free parameters a, b and c.  

 
Figure 2. Shock wave Eq.(3.1) with γ = 1, α = 10, β = 10, a =  1, b= 10, c = 10, p = 1 

 

4. THE (3+1)-DIMENSIONAL BOITI-LEON-MANNA-PEMPINELLI EQUATION 

For initial data decaying rapidly at infinity, Boiti, Leon, Manna and Pempinelli have developed 

an inverse scattering scheme to solve the Cauchy problem of a (2+1)-dimensional 

generalization of the shallow water wave equations:  

 ψyt + ψxxxy - 3ψxxψy - 3ψxψxy = 0,       (4.1) 

Eq. (4.1), it is also known (2+1)-dimensional BLMP equation has been studied in detail by 

many scientists. For example, Song-Hua and Jian-Ping obtained various exact solutions which 
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include solitary wave solution and by selecting appropriate functions, they investigated some 

novel localized excitations such as multi dromion-solitoffs and fractal-solitons. Eq. (4.1) has 

been considered as a (2+1)-dimensional generalization of the shallow water wave equations in 

[41]. Painlevé analysis, Lax pair and some exact solutions of Eq. (4.1) have been given in [42] 

and some soliton-like solutions have been obtained through the symbolic-computation-based 

method in [43]. Gao an Tian studied this equation and derived some new soliton-like solutions 

using the symbolic computation with the generalized tanh method [44]. 

Now, we introduce an extension to Eq. (4.1) by adding the last three terms with y replaced by 

z. This extension enables us to establish a BLMP equation as 

ψ yt + ψ zt + ψxxxy + ψxxxz – 3ψx(ψxy + ψxz) – 3ψxxψy – 3ψxxψz = 0,      (4.2) 

In [45], Darvishi et al. have obtained single-wave, double-wave and multi-wave solutions of 

Eq. (4.2) by the multiple exp-function method. Similarly, in order to construct dark soliton 

solutions for Eq. (4.2), we use an ansatz solution of the form (3.5) and (3.6). From Eq. (3.5) 

and (3.6), we have 

–pλv(b+c){(p+1)tanhp+2τ – 2ptanhpτ+(p-1)tanhp-2τ} + λpa³(b+c){ (p-1)(p-2)(p-3)tanhp-4τ 

–4(p-1)(p²-2p+2)tanhp-2τ+2p(3p²+5)tanhpτ – 4(p+1)(p²+2p+2)tanhp+2τ 

+(p+1)(p+2)(p+3)tanhp+4τ} – 6λ²p²a²(b+c){ (p-1)tanh2p-3τ-(3p-1)tanh2p-1τ     (4.3) 

+(3p+1)tanh2p+1τ – (p+1)tanh2p+3τ }=0. 

By equating the exponents of tanh2p+3τ and tanhp+4τ terms in Eq (4.3), 

2p+3  = p+4,       (4.4)  

we get 

                                  p  = 1.                  (4.5) 

Furthermore, set the coefficients of the linearly independent terms to zero. 

 λp(p+1)(p+2)(p+3)a³(b+c) + 6λ²p²(p+1)a²(b+c) = 0,      (4.6) 

   -p(p+1)λv(b+c) – 4λa³(b+c)p(p+1)(p²+2p+2) – 6λ²p²(3p+1)a²(b+c) = 0.    (4.7) 

Solving the above system of equations and also set p=1, then it can be written 

λ = –2a,        (4.8) 

 v = 4a³.        (4.9) 
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Further, the Eqs. (4.6) and (4.7) imply that the solution will exist for b+c≠0. Therefore the dark 

soliton solution or topological 1-soliton solution of (3+1)-dimensional BLMP equation (4.2) is 

given by 

 ψ(x,y,z,t) = –2a.tanh(ax + by + cz – 4a³t),       (4.10) 

Remark: Solution (4.10) is also solution of the (2+1)-dimensional BLMP equation. 

 
Figure 3. Dark soliton solution Eq.(4.2) with a = 1, p = 1 

5. CONCLUSION 

In this paper; dark soliton solutions of the (2+1)-dimensional reaction-diffusion, the (3+1)-

dimensional generalized B-type Kadomtsev-Petviashvili (BKP) and the (3+1)-dimensional 

BLMP equations are obtained by ansatz method. The ansatz method was employed to carry out 

the integration. The dark soliton solutions also introduced several constraint conditions that 

must remain valid in order for these solutions to exist. 
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