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ABSTRACT 

Manipulator is an important part of a whole robot assembly, forming the mechanical infrastructure of a mechatronic system. 
Selection of the manipulator affects a broad area extending from modelling to design, from control to operation and 

furthermore from accuracy to its economy. This study aimed methods of design and operation of a parallel planar robotic 
assembly have been demonstrated. Modules of the assembly with two degrees of freedom have been designed on a two-
point, two-velocity and three point-position bases. Ways of actuating and controlling the motion of the assembly have been 
shown. Efficiency and effectiveness of the approaches have been illustrated numerically.  
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1. INTRODUCTION 

 

Manipulator is an important part of a whole robot 
assembly, forming the mechanical infrastructure of a 
mechatronic system. Selection of the manipulator affects 
a broad area extending from modelling to design, from 
control to operation and furthermore from accuracy to its 
economy. Manipulator can be constructed by bringing 
together rotary and/or sliding elements or a combination 
of these in a suitable manner. Within this context, open or 

closed kinematic chains formed as such will result in the 
so-called serial or parallel robotic structures, (Duffy, 
1996).  

The most fundamental manipulator types like 
cartesian, cylindrical, spherical, articulated arm and scara 
are the most widespread examples of serial manipulator. 
Most classical works rely upon the serial manipulator, 
which is based on the open chain, (Koren, 1987; Stadler, 

1995; Fu et al., 1987, Groover et al., 1986). Although 
serial manipulators have a high maneuverability within a 
large workspace, they are subject to significant 
limitations. First of all, they have limited load carrying 
capacities due to their highly deformable structures, 
which are prone to vibrations under large velocities. 
Additionally, it is probable that the fact that an actuator is 
needed at each joint, for a serial manipulator having many 

joints in an open chain, might lead to a rise in the initial 
and operating costs of the robotic assembly. On the other 
hand, most of the issues mentioned above are solved by 
using parallel manipulators facing only the limitation of 
having small workspaces. Thus, such advantages have 
invited the research attention on parallel manipulators in 
recent years, (Innocenti and Castelli, 1990; Bernier et al., 
1995, Harris, 1995; Liu, 1995). 

Since the workspace of a parallel manipulator is 
limited, the problem of overlapping the actual space in 
which the physical tasks like welding, cutting conveying 
etc. Are to be fulfilled with that of the manipulator 
becomes significant. The solution of the problem passes 
through the accurate positioning of the manipulator. 
Thus, determining optimum values of all the adjustable 
parameters in a robot assembly constitutes a design task. 

Here in this work, approaches to the design of a 

parallel planar manipulator with two degrees of freedom 
have been shown. The design of the manipulator has been 
reduced to the design of modules which considerably 
dissolve the complexity of the original assembly, 
mathematically and physically, thus always assuring 
closed-form solution. Then how actuators may be utilized 
to operate the assembly and to form an analog robot have 
been demonstrated.                    

 

 2. THEORY 

 
The kinematic scheme of the parallel manipulator in 

consideration is drawn in Fig. 1. 
It can be seen that the parallel manipulator in question 

can be constituted by bringing together two of the basic 
module shown in Fig. 2. 

 
Fig. 1. Kinematic scheme 
  

 
Fig. 2. Module parameters 
 

The fundamental problem here is to determine the 
most appropriate values of the module parameters 
involved such that the end point C of the module follow a 

desired trajectory y (x) within x0, xn domain. To this 
end, the following can be written from Fig. 2: 

 

 sincos)(1 sdarx +−+=          (1) 

 

 cossin)(2 sdary −−+=           (2) 

 

If (a-d) is designated by b and s is eliminated from the 
above equations, then a displacement function G(x, y, )

characterizing the motion of the module on the trajectory 
is obtained: 
   

0sincoscossin),,( 21 =−−−+= brrxyyxG    (3) 

 
Considering that the robot arm will rotate about O 

according to the ' motion variable starting from an 

initial position 
0 , the following relationships can be 

written to meet the motion co-ordination requirements:  
 

'0  +=            (4) 

 

)(' 0xxrx −=           (5) 
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,/ xrx =  ,0 −= n 0xxx n −=        (6) 

 
where 

n is the final position of the robot arm 

corresponding to the point ( )nx of the given trajectory. 

Evaluating the above relationships together with the 

trigonometric identities and rearranging will yield the 
following expression: 
 

)'sin'cos(sin)',,,,,,( 0021  xybrryxG −=  

 

)'coscos'sinsin(sin)'cos'sin(cos 1  ooo rxy −+++  

 

0)'sincos'cos(sin2 =−+− br oo         (7) 

 
Now, it is possible to obtain velocity relationships by 

taking the first derivative of the displacement function G 
with respect to time: 
 

dt

d

d

dG

dt

dG 


.=           (8) 

 
If the velocities of the end point of the manipulator in 

the x and y directions are represented by Vx and Vy, 
respectively, and the angular speed of the rotating arm is 

designated by , then the following will come out of (8): 

 

)'cos'sin'sin'cos(sin.
1

0 








xy
VV

dt

dG xy
−−−=   

)'sin'cos'cos'sin(cos 0 





 xy
VV

xy
−+++  

)'cossin'sin(cos 001  ++ r

0)'coscos'sin(sin 002 =−+ r        (9) 

 
where 

 

dt

d

dt

d '
 ==

; 
dt

dy
Vy =

; 
dt

dx
Vx =

      (10) 

 
Examination of the basic displacement and velocity 

functions (7) and (9) will reveal that there are four 
available parameters ( ),,, 021 brr  for formulating a 

design. One approach for a formulation of manipulator 
design is to require that the end point of the manipulator 
fit to specified two-position and two-velocity values. In 
such a context, if Precision-Point or Accuracy-Point 
(Hartenberg and Denavit, 1964) Subdomain (Akçalı and 
Dittrich, 1989a) and Galerkin (Akçalı and Dittrich, 
1989b) methods are applied to displacement and velocity 
functions, then the following will result as the basic 
design equations: 

 

0.)()()( 02010 =−−+ iiii bEQrRrP   2,1=i      (11) 

 

0)()()( 02010 =++  iii RrQrH  2,1=i        (12) 

 
where: 

 

000 cossin)(  iii CDQ += ;

000 cossin)(  iii DCR −=  

 

000 cossin)(  iii LKH += ;

000 cossin)(  iii BAP +=    2,1=i                (13) 

 
The coefficients contained in (13) are defined is 

accordance with each method as follows: Accuracy-Point 
method takes into account points xi  i =1,2: 
 

'' sincos iiiii xyA −= ; '' cossin iiiii xyB  +=  

 
'sin iiC =   ; 'cos iiD = ; 

0.1=iE            i = 1,2       (14) 

iii

x

ii

y

i BC
V

D
V

K −−= )()(


; 

ii

x

ii

y

i AD
V

C
V

L ++= )()(


 

 

Subdomain Method considers subintervals xi-1, xi i 
= 1,2: 
 


−

−=
'

'
1

')'sin'cos(
i

i

dxyAi




     ;    


−

+=
i

i

dcyBi






'
1

')'cos'sin(  

                          i = 1,2 


−

−== −

'

'
1

''

1 coscos''sin
i

i
iii dC




   ;  

'

1

' sinsin''cos
'

'
1

−
−

−== iii

i

i

dD 



 

 


−

−−==
'

'
1

'

1

''
i

i
iii dE




 ; 

 ')'sin'cos(
1'

'
1







dxy

dt

d
K

i

i
i −




= 

−

 i = 1,2                (15) 

 

 ')'cos'sin(
1'

'
1







dxy

dt

d
L

i

i
i +




= 

−

 

 
The coefficients appearing in (13) are evaluated by 

Galerkin method, with reference to selected weighting 
functions wi i = 1,2 as shown below:  
 

 −=
'

'
0

')'sin'cos(
n

dwxyA ii




  ; 

 +=
'

'
0

')cos''sin(
n

dwxyB ii




  

=
'

'
0

''sin
n

dwC ii




 ; =

'

'
0

''cos
n

dwD ii




  

=
'

'
0

'
n

dwE ii




      i = 1,2                                 (16) 
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 ''cos'sin'sin)('cos)(
'
0

'





dwxy

w

V

w

V
K i

xy

i
n
 



−−−=

       

 ''sin'cos'cos)('sin)(
'
0










dwxy

VV
L i

n
xy

i 






−++=  

 

In the solution phase of design formulation, which 
consists of four non-linear equations, b, r2 and r1 are 
eliminated, reducing the set (11)-(12) to the following: 
 

0coscossinsin 0

2

000

2 =++  ccscss PPP (17) 

 
In the general case, there are two solutions given by: 

 

)
2

)4(
(tan

2/12

1

0
ss

ccssscsc

P

PPPP −−
=

−

+−
−
+

                    (18) 

 
where: 

 
''

12

''

21 RPRPP ssssss −=  ; ''

12

''

21 RPRPP scscsc −= ;

''

12

''

21 RPRPP sccccc −=            (19) 

 
 

12211 EAEAA −=  ; 
1221

'

1 EBEBB −=  

                  (20)

12211 ECECC −=  ; 
1221

'

1 EDEDD −=  

     
    

jjj DDCCR '

1

'

1

" +=  ; 
jjjss KDCAP '

1

'

1 +=  

          2,1=j    (21) 

jjjjjsc LDKCDACBP '

1

'

1

'

1

'

1 ++−−=  ; 
jjjcc DBLCP −= '

1

'

1
 

 
Since for a given tangent value, there exist two angles 

separated by 180o, four possible angles might satisfy 
equation (17). Thus, in order to decide on the technically 

meaningful ones as well as on the quality of outcome, a 
motion analysis should be carried out. 

If the actuation of the manipulator is based upon (
, s) which are computed by (4)-(6) and (22) given below, 
then position error e is evaluated by means of (1), (2), (22) 

and (23),  where thx , thy , acx , acy  are theoretical and 

actual co-ordinates, respectively,  

 

 2/122

2

2

1 )()( bryrxs thth −−+−=                  (22) 

 

 2/122 )()( acthacth yyxxe −+−=     (23) 

 

In order to determine error in velocity, first theoretical 
velocities Vxth, Vyth and Vth, then actual velocities Vxac, 
Vyac and Vac are calculated with reference to (24)-(26), 
finally ending in (27).   
 

 
2/1

22 )()(;
1

).(;
1












+===



ythxthth

x

yth

x

xth
VVV

rdx

dyV

r

V      (24) 

 



1








−+−=



yth

th
xth

th

V
ry

V
rx

sdt

ds
)()(

1
21

     (25) 
  







cossin)(
1

sin s
dt

ds
b

Vxac ++−=  

    







sincos
1

)(cos s
dt

ds
b

Vyac
+−=  ;   

2/12 )( yacxac
ac VV

V
+=


                     (26) 

 

 2/122 )()( yacythxacxth
v VVVV

e
−+−=


        (27) 

  

3. SIMPLIFIED APPROACH 
 

By letting a = d or b = 0 in Fig. 2, and by requiring 
that three point-positions on the specified trajectory be 
satisfied in the sense of Accuracy-Point, Subdomain and 
Galerkin methods, by the end point of the robot arm, a 
simplified approach can be made to the problem. In that 
case, the displacement function G becomes: 
 

0tan)(),,( 12 =−−−=  rxryyxG     (28) 

 
Then the design equations take the form of a set of 

three linear equations as shown below: 

 

0210 =++− tDtCtBA iiii
i = 1,2      (29) 

 

where: 
 

;tan 00 =t ;0211 taat +=
2012 atat −=      (30) 

 
Coefficients in Accuracy-Point Method are as 

follows: 
 

;tan '

iiii xyA −= ;tan '

iiii yxB += ;tan '

iiC =

1=iD                         (31) 

 
These in Subdomain Method are: 

 

 −
−=

''

1
;')'tan(

ii

i
i dxyA




  −

+=

''

1
;')'tan(

ii

i
i dyxB






 −
=

''

1
;''tan

ii

i
i dC




   −

=
'

1
'

i

i
i dD




                (32) 

 
In Galerkin Method, the coefficients are defined as 

such: 
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 −
−=

'

1
;')'tan(

i

i
ii dwxyA






 −
+=

'

1
;')'tan(

i

i
ii dwyxB






 −
=

'

1
;''tan

i

i
ii dwC




  −

=
'

1
'

i

i
ii dwD




    (33) 

 
Solution of the design equations yields the sought set 

(
021 ,, rr ) as given below: 

 

)(tan 0

1

0 t−= ; )1/()( 2

02012 ttttr +−= ;
0211 trtr −=  

   (34) 
 

where: 
 

''/''0 BAt −= ;
iCAtBt /)( '

20

'

21 −= ; 

  1

'

2

'

2

'

210112 //)( DCABCtBAt −−+−=            (35) 

 

kkj ADADA 11

' −= ; 
kkj BDBDB 11

' −=  ;

kkj CDCDC 11

' −=    j = 1,2  

k = j + 1                       (36) 
 

'

2

'

1

'

1

'

2'' ACACA −=  ; 
2

'

1

'

1

'

2'' CBCBB −=                      (37) 

 
To secure a pair of solutions needed in the 

manipulator, the solution process is implemented twice 
by a change in method or some input parameters like the 
amount of arm rotation or the sense of rotation, if 
necessary. 

 

4. ACTUATION POSSIBILITIES 
 

The basic module is, in fact, a serial manipulator, Fig. 

2, while the manipulator constructed out of two or 
possibly more basic modules will be of parallel type, 
securing more stiffness by its mechanical structure. One 
disadvantage of the serial manipulator is that one actuator 
should be available at each joint to the loss of payload 
capacities of the robot assembly. Thus, the advantageous 
feature of the parallel robot, namely having less actuators 
than the number of joints, offers possibilities of using 

analogously programmable actuators attached to the 
ground. Since actuation of the manipulator under 
consideration depends on slider displacement (s) and arm 

rotation (  ), possible analogously programmable 

actuators are either a function generating four-bar or an 
inverted slider-crank mechanism, the dimensions of 

which are continuously adjustable according to the design 
of the generator, which changes by trajectory (y), Fig. 3 
(a), (b). 
 

 
(a) 

 
(b) 

 

Fig. 3. Actuators of a parallel manipulator 
 

The functions of the 4-bar OKML in Fig. 3(a) and the 
inverted slider-crank QOD in Fig. 3(b) are to provide the 

necessary rotation   required about M and the needed 

slider displacement (s) along AB at the right time for the 
fulfilment and control of the trajectory task, just like the 
supply of right voltages at the right time in the case of 
electrical drive. In other words, two-degree –of-freedom 

manipulator receives one rotary actuation ( ) from the 

motor at ground pivot O, and the other actuation either at 

ground pivot M through OKML 4-bar (  ) angle 

generator, instead of a motor, Fig. 3(a), or along motion 

direction AB through QOD slider-crank (s) displacement 
generator instead of a hydraulic or pneumatic drive on the 
moving arm, Fig. 3(b). In this manner, the dimensions of 
the 4-bar or the slider-crank function generators can be 
viewed as an information storage medium transforming 
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input data like trajectory, manipulator design values and 

motor rotation into new actuation variables like  or s in 

accordance with the following mathematical relationships  
 





cos

sin2 ybr
s

−+
=                       (38) 

CB

CBAA

+

−+
=

−

+

222

2
tan


                     (39) 

 

with cos)( 4 yrA −= ; coshC −= ; 

brrryB −−+−=  cos)(sin)( 132
           (40) 

 
where (r3, r4, h) are the parameters of the second serial 

manipulator like (r1, r2, b) in the first serial manipulator. 
From the discussion above, it is to be understood that 

next to the rotary actuator at O, if the two-degree-of-
freedom robot assembly is to be brought into motion to 
follow a trajectory y by means of a programmed motion 
of the slider, then the slider-crank is designed with a 
suitable method like (Akçalı, 1987) such that functional 
relationship (38) is generated between the reverse 

rotations (- ) of the motor at O and slider translation (s). 

If two-rotary actuators are to be used for the same 
purpose, in that case a 4-bar is designed by means of 
(Akçalı and Dittrich, 1989b) to generate (39) function 

between  and  in place of a motor at M in addition to 

the one located at O. Of course, in construction of the 4-
bar or the inverted slider-crank, adjustability of 
dimensions is foreseen. 

One advantage of these analogous designs is that the 

sense of actuation (  , ) will be kept same within long 

intervals as opposed to possibly frequent changes in the 
sign of actuation in digital applications. In the direct 

kinematic analysis, corresponding to (  , ) actuation, 

the following (x,y) trajectory co-ordinates will be 
generated: 

 

)]cos(sin)(cos)[(
)sin(

sin
cos 24131 




 −−+−+−

−
++= bhrrrrbrx

         

 
         (41)

)]cos(sin)(cos)[(
)sin(

cos
sin 24132 




 −−+−+−

−
−+= bhrrrrbry

                                                              (42) 

 

5. ON APPLICATIONS 

 
The design and operation of the manipulators 

proposed here are primarily based on analogous variables. 
As is well known, analogous variables are continuous in 
contrast with the discrete nature of digital variables, 
(raven 1987). Hence there are no zigzags in the 
functioning of actuators in driving the manipulators 
considered here. This aspect is consistently taken into 
considerations when applying the techniques presented 
here. Take, for instance, the problem of transporting an 

article from the point with ( 00 , yx ) co-ordinates on a 

conveyor moving with velocity 0V  to the point with (

nn yx , ) co-ordinates on another conveyor with a linear 

velocity of  
nV . In order to associate this problem with 

both general theory and simplified approach, it is 

sufficient to find a trajectory function )(xy  satisfying 

the velocity and the given end points. For instance, the 
cubic polynomial  

 

dcxbxaxy +++= 23
                 (43) 

 

with the following computed coefficients ( dcba ,,, ) 

will be an answer to the requirements. 
 

1)( 20
0 −=


xrV

m ; 1)( 2 −=


xn
n

rV
m       (44) 

0

0

0
xx

yy
c

n

n

−

−
=  ;

2

00

2

1 xxxxc nn ++= ;  
02 xxc n +=

         (45)
   

1

2

01 3 cxk −= ;
202 2 cxk −= ;

1

2

1 3 cxl n −= ;

22 2 cxl n −=                        (46) 

 

1221

02002 )()(

lklk

cmkcml
a n

−

−−−
=   ; 

2112

01001 )()(

lklk

cmkcml
b n

−

−−−
=                     (47)

  

210 bcaccc −−= ;
nnnn cxbxaxyd −−−= 23

     (48) 
 

where ,xr are selected as required in the 

techniques.  
 

6. NUMERICAL RESULTS AND 

DISCUSSION  

 
Analytical thoughts developed have been 

transformed into computer programs under Fortran 77 
coding. Utilizing these programs, comprehensive 
illustrations are presented here to review the numerical 

results and to discuss their significance.  
 

Example 1   A trajectory described by y = 0.5 x+ 0.5 0 

x  1 is to be followed under a uniform velocity 
requirement matching a 10s. travel on the part of a two-
arm manipulator with the sliding directions passing 
through the fixed revolute joints. 
 

The solution lies in the implementation of the 
simplified approach twice. Data for the first 
implementation are in case of Precision-Point Method xi, 

i=1,2,3 being [0.2;0.6;1.0] in case of Subdomain Method 
subintervals being [xi-1,xi] i = 1,2,3 [0.0;0.40],[0.40;0.75], 
[0.75;1.00] and finally for Galerkin Method weighting 
functions wi  i =1,2,3 being [x,x2,x3]. The amount of arm 

rotation  is taken to be 45o, for every method. The 
numerical results are displayed in Table 1, indicating also 
max absolute error, emax.   
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Table 1. First Robot Arm for Trajectory y = 0.5 x+ 0.5 

10  x  

 
Method 

1r  2r  )(0

o  
Emax 

Precision-

Point 

-0.0155 2.0311 -90.44 0.0035 

Subdomain -0.0768 2.0064 -87.74 0.0060 

Galerkin -0.0414 2.0306 -89.47 0.0042 

 
Input for the second implementation are in Precision-

Point Method xi = 1, 2, 3 being [0.03;0.40;0.62] in 

Subdomain Method subintervals being 0.00;0.35, 0.35; 

0.40, 0.40; 1.00; in Galerkin Method weighting 

functions wi = 1, 2, 3 being x, x2, x3. Arm rotation angle 

() has been taken as 45o in Precision-Point and 
Subdomain Methods but in Galerkin Method as 42o. The 
outcome has been presented in Table 2. When the two 
arms are put together to form the parallel manipulator in 
question, then the maximum absolute (emax) error turns 
out to be 0.0034 in Precision-Point, 0.0056 in Subdomain 

and 0.0489 in Galerkin methods. Theoretical velocity on 
the trajectory is supposed to be 0.1118, constant 
throughout the motion. Maximum velocity errors in 
Precision-Point, Subdomain and Galerkin designs 
become 0.0152; 0.0183 and 0.0165, respectively.  
 
Table 2. Second Robot Arm for Trajectory y = 0.5 x+ 0.5 

0x1 
 

Method 
3r
 

4r  )(0

o  emax 

Precision-

Point 

-0.3934 1.8573 -74.90 0.0681 

Subdomain -0.1794 1.9583 -83.66 0.0163 

Galerkin -0.0891 2.1232 -87.82 0.0036 

 

Example 2 Requirements of Example 1 are to be met by 
the general parallel manipulator of Fig. 1. 
 

General theory is applied once, here. When data for 
precision points xi, i=1,2, [0.4,0.7], for subdomains, [xi-

1,xi], [0.2;0.6],[0.6;0.9] for weighting functions 

wi,i=1,2;[sin x,cos x] and =45o are taken into account, 
the results shown in Table 3 are obtained. 
 

Table 3. Modules For Trajectory y = 0.5 x+ 0.5  0x1 
 

Method 1r  
2r  )(0

o  b maxe  

Precision-

Point 

-0.7203 3.3156 -88.18 2.8405 0.0035 

-0.8205 2.0423 -24.75 1.3698 0.0653 

Subdomain -0.7082 3.3087 -88.49 2.8290 0.0026 

-0.8216 2.0405 -25.50 1.3870 0.0514 

Galerkin -0.7529 3.2559 -85.94 2.8022 0.0006 

-0.5659 1.9826 -22.50 1.0708 0.2228 

 
Two significantly different module designs are 

brought together for the construction of the parallel 
manipulator. After this process, b values are slightly 

affected, leading to 1.4439, 1.3496 and 1.0902, in 
Precision-Point, Subdomain and Galerkin methods, 
respectively, leaving all others same. Maximum errors in 
the resulting parallel manipulators become 0.0026, 
0.0026, 0.0007 in the aforementioned methods, 

respectively. Maximum deviations from the constant 
0.1118 velocity value in Precision-Point, Subdomain and 

Galerkin methods turn out to be 0.0023, 0.0024, 0.0013, 
respectively.  

If the results of two examples above are compared, it 
will be seen that the chances of getting more refined 
designs are always much more in the general theory 
against simplified approach. While more than one 
application is needed in the simplified approach for the 
formation of a parallel manipulator, only one 

implementation of general theory is sufficient. Another 
advantage of the general theory is that the mirror-image 

manipulator (with + ) is a good alternative when space 

for the manipulator (with - ) is not appropriate, since they 
both produce the same trajectories with the same end 
velocities. 

The robotic assembly designed in this work differs 
from the classical constrained-motion mechanisms in that 
it has a flexible structure. While a classical one-degree of 
frecdom mechanism generates only one and constant 
curve, the robotic assembly under consideration can 

produce as many curves as the intervals of adjustability 
of parameters permit. If a change in the positions of fixed 
pivots of the two manipulators is not seen practical, then 
following the design of manipulators, the dimensions of 

the function-generating four-bar relating ’
c rotations of 

the first manipulator to the ’
c  rotations of the second one 

can easily be made adjustable. In that case, the design of 
the function-generating 4-bar is realised with respect to a 

transformed function (’
c, ’

c) corresponding to trajectory 

cy  ( cx ) in a co-ordinate system cc yx −  located at the 

ground pivot (O) of the first manipulator in the following 

way : First, )]/()[tan 1324
1 rrrrM −−= −  is computed, then 

co-ordinate transformations xc=(x-r1)cosM+(y-r2)sinM, 

yc= -(x-r1)sinM+(y-r2)cosM 0'
ccc  −= , 

0'
ccc  −=  

,where 
Mc  −= 0

0 ,
Mc  −= 0

0  and 

22

11 costan

cc
c

c
c

yx

b

x

y

+
+= −−

,

c

c
c

xOM

y

−
−= −1tan

−

+  

1cos −

22 )( cc yOMy

h

−+

 

2/12
24

2
13 ])()[( rrrrOM −+−=  are carried out. To 

demonstrate the practical nature of the proposition, an 
experimental model based on the simplified approach has 
been constructed, Fig. 4. A synchronous motor with 1 rpm 
located at O and controlled by a timer is used together 
with light aluminium arms. The pen attached to the 
generating-point (C) draws desirable curves with 
insignificant, unnoticeable errors always remaining 
inside the thickness of the line. By the presence of a 

mechanical drive, 4-bar, a motor is saved from the second 
manipulator. Hence, the assembly is suitably termed as 
analog robot. Two illustrations are shown in Fig. 5, in 
which straight lines between points having co-ordinates 
(10, 30) and (24.5, 18) in the first one and between (10, 
24) and (24, 28.5) co-ordinates in the second one are 

traced. Relevant adjustable parameters ( ),,, 6321 xxxx  

turn out to be (8.5161, 29.9633, 16.0945, 35.0000) in the 
first design and (33.1220, 11.3563, 14.9201, 35.0000) in 
the second one. 
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Conclusively, all numerical results and experimental 
work indicate that methods of design for a parallel robotic 

assembly work very well, leading to optimum results.     
 

 
Fig. 4. Experimental model   

 
 
 

 

 
 

Fig. 5. Two illustrations 
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