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ABSTRACT: One significant source of renewable energy is wind power, which has the potential to generate 
sustainable energy. However, wind turbines have many challenges, such as high initial investment costs, the 
dynamic nature of wind speed, and the challenge of locating wind-efficient energy regions. Wind power prediction 
is crucial for effective planning of wind power generation, optimization of power generation, grid integration, and 
security of supply. Therefore, highly accurate forecasts ensure the efficient and sustainable operation of the wind 
energy sector and contribute to energy security, economic stability, and environmental sustainability. This study 
proposes a deep learning (DL) approach based on recurrent neural networks (RNNs) for long-term wind power 
forecasting utilizing climatic data.  The input data that forms the basis of this study is obtained directly from a 
wind turbine system operating under real-world conditions. The proposed model in this study is based on a 
multilayer back-propagation neural network (RNN) architecture specifically designed to effectively handle 
complex data sets and time-dependent series. The architecture of the model is built on an RNN consisting of four 
separate layers, each with 50 hidden neurons, carefully structured to increase its capacity to capture complex 
features. To improve the robustness of the model and avoid overlearning, each RNN layer is followed by a dropout 
(regularizing) layer that randomly deactivates 20% of the neurons to enhance the generalization ability of the 
network. To finalize the prediction capability of the model, a linear function was chosen in the last layer to directly 
match the actual values. Evaluating the model performance metrics, the proposed architecture achieved a 
prediction accuracy of 91% R2 on the test dataset. The findings indicate that the proposed method based on 
multilayer RNN can successfully capture the relationships between the sequential data of the wind turbine. 

 
Keywords: Recurrent Neural Networks, Machine learning, Wind power forecasting, Regression. 
 
 
1. INTRODUCTION 

 
The world is focusing on generating electricity using renewable energy and regulating energy 
demand [1, 2]. This method is crucial for creating an ecological and sustainable electricity 
system [3]. Wind energy stands out as a promising renewable resource for electricity 
generation. However, price fluctuations in energy use [4], changes in demand, and the 
instability of renewable energy production are foreseen as major problems in this field [5]. 
Therefore, it is critical to make highly accurate short- and long-term forecasts in the energy 
sector using historical meteorological data. For this, it is necessary to propose a model that 
helps make the right decisions. Such a model can increase stability by making energy projection 
more accurate [6, 7]. 
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The use of wind energy is rising day by day. Many countries aim to reduce their carbon footprint 
and lower overall energy production costs by increasing green and renewable energy sources 
[8]. However, wind power generation is inherently variable and fluctuating. This is a factor that 
seriously affects the electricity grid [9]. In addition, it is necessary to ensure the balance between 
the amount of energy produced and consumption and to solve demand management problems 
[10]. In this study, a machine learning architecture is proposed to forecast the power generation 
of a wind power plant. In the proposed architecture, an RNN-based prediction model is trained 
with data from a real wind turbine.  The performance results of the suggested architecture are 
analyzed using various metrics. In summary, the following objectives are aimed at in the study: 

 Examining the performance of the suggested DL-based architecture for wind energy 
forecasting, 

 Traditional machine learning-based methods may encounter difficulties due to 
performance degradation when faced with large datasets. Therefore, to improve 
prediction accuracy by developing a DL-based architecture, 

 To clearly demonstrate the effectiveness of RNN-based architecture in power estimation 
with statistical performance indicators, 

The rest of the paper has been structured into four sections. Section 2 summarizes the literature 
survey. Then, Section 3 presents the methodology applied to elaborate on the proposed RNN-
based architecture. Then, the results are shown and discussed in Section 4. Section 5 concludes 
by summarizing the findings and conclusions of this study. 
 
2. LITERATURE REVIEW 

A successful forecasting model aims to perform the forecasting process with maximum 
accuracy [11, 12]. Forecasts for wind power contribute to better planning of energy systems 
and more efficient distribution of energy. Accurate forecasting of wind power is critical to 
avoiding technical and financial risks in advance [13]. Proposed models for actual power 
forecasting can be generally categorized into two main categories: machine learning-based or 
statistical methods [14]. In a study, four different models for power estimation were evaluated. 
There are two statistical and two machine-learning-based models. The findings demonstrated 
the improved prediction capabilities of machine learning algorithms [15]. Methods such as 
support vector machines (SVM) [16], decision trees [17], and artificial neural networks (ANNs) 
[18], which process data using predefined features and algorithms, are referred to as classical 
machine learning. In a study based on the SVM-based regression method, wind energy was 
successfully predicted. Shabbir et al. (2019) included variables such as wind speed and weather 
forecasts in their method. They compared the obtained results with convolutional time series 
analysis techniques. The simulation results indicated that the SVM-based model outperformed 
the other methods by approximately 30% [19]. 
 
ANNs are computer programs that mimic the learning and decision-making mechanisms of the 
human brain [20]. ANNs can be trained to learn the relationships between their inputs and 
outputs. They can also use this information to make predictions for new inputs [21, 22]. Mason 
et al. (2018) demonstrated that the ANN-based forecasting method demonstrated highly 
accurate forecasting performance by addressing output power differences due to wind speed 
differences between wind generators [23]. Similarly, in another study, ANN-based methods 
were used to predict wind power generation and electricity demand. It was observed that the 
proposed method was able to make successful forecasts up to approximately 2.5 hours in 
advance. However, the study concluded that the data set should be low-noise for the neural 
network-based model to be successful [24]. A new intelligent algorithm has been developed to 
predict wind energy power in each period using extreme learning machines [25] and self-
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adaptive evolutionary extreme learning machines (SAE-ELM). The results demonstrated the 
great efficacy of SAE-ELM-based models in this forecasting procedure [26]. 
 
These classical machine-learning-based methods have some problems. First, they lack 
advanced modeling methods to better understand the relationships between input data. Also, 
they may not provide the desired performance for large datasets [27, 28]. DL-based models can 
be used to solve these problems. DL is a sub-branch of machine learning that learns complex 
structures and patterns in large datasets using ANNs [29]. It has been effectively used in 
numerous fields, such as image recognition [30], energy prediction [31], healthcare [32], and 
construction [33]. DL consists of several sub-branches such as convolutional neural networks 
[34], recurrent neural networks (RNNs) [35], and transfer learning [36]. Time series data is a 
subset of sequential data [37]. Recurrent models such as RNNs adopt a sequential approach to 
processing the input values. Therefore, they can capture the temporal dependence between 
sequential data well [38, 39]. Research has demonstrated that recurrent models, as opposed to 
other well-liked machine learning methods like SVM and multilayer feed-forward neural 
networks, may predict sequential data more accurately [40]. RNN is known as an effective 
method for processing sequential data and time series analysis [41]. In another study, an RNN-
based method is suggested to predict wind speed. In this way, long-term wind speed and power 
forecasts were obtained by using some meteorological data and RNN [42]. In another study, it 
was observed that the RNN-based model achieved a very small RMSE error value for turbine 
power output power prediction [43]. In this study, a multilayer RNN architecture is proposed 
to predict the actual power of the turbine. 
  
When the results obtained from the above studies are evaluated, it can be deduced that machine 
learning techniques outperform statistical techniques in the prediction of energy. However, this 
success is closely related to the reliability of the data set. If sufficient and reliable data is 
available, machine learning-based algorithms can be quite successful in predicting energy 
output. 
 
3. METHODS 
 
3.1. Dataset Description 
 
When using machine learning-based methods to predict turbine actual power, selecting the 
related features, which can be useful in solving problems, is a critical process. Therefore, it is 
necessary to carefully consider the factors affecting the turbine. The dataset used in this study 
belongs to a wind turbine in Turkey [44]. The proposed architecture uses data such as wind 
speed and wind direction as environmental factors as input. The dataset was recorded in 10-
minute periods between 01.01.2018 and 31.12.2018. The dataset consists of 50530 records and 
five features. These attributes consist of wind speed (m/s), wind direction (°), theoretical power 
(kW), active power (kWh), and Date/Time. 
 
The rated power of a turbine refers to the maximum amount of power that the turbine can 
produce at the ideal wind speed. This value is defined as the highest achievable power output 
(kW) at a given wind speed (8–12 m/s), which is specified in the design of the turbine. Figure 
1 shows a graph of monthly wind power variation for one year. The red line on the graph shows 
the annual average power value (1492.18 kW). 
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Figure 1. One-year theoretical power curve of the turbine 

 
The actual power that can be obtained from a wind turbine is basically based on the principle 
that it is directly proportional to the kinetic energy of the wind, as shown in Eq. (1). Betz's law 
limits the maximum power that a wind turbine can extract from the wind, and this theoretical 
limit is defined as approximately 59.3% of the kinetic energy of the wind [9, 45]. 
 

𝑃௪ =
1
2 .ρ.𝐴.C௣(𝜆, 𝛽)𝑉ଷ (1) 

 
In this equation, A stands for the turbine blade area (m2), Cp represents the coefficient of 

performance, Pw signifies the turbine power, V denotes the wind speed (m/s), ρ represents the 
air density (1.225 kg/m³), β stands for the blade angle (°), and λ indicates the blade speed ratio. 
The blade area can be represented as in Eq. (2). 
 

𝐴 = 𝜋𝑅ଶ/4 (2) 

 
The coefficient of performance, which is another important parameter, varies depending on the 
blade speed ratio λ, wind speed V, angular rotational speed ω, and blade radius R. The blade 
speed ratio is shown in Eq. (3). The coefficient of performance can be determined using the 
equations in Eq. (4) and Eq. (5). 
 

𝜆 =
𝑅𝜔
𝑉  (3) 

𝐶௣(𝜆, 𝛽)=Cଵ(
𝐶ଶ
𝜆௜

− 𝐶ଷ ⋅ 𝛽 − 𝐶ସ)𝑒ି஼ఱ
ఒ೔ + 𝐶଺𝜆 (4) 

1
𝜆௜

=
1

𝜆 + 0.08𝛽 −
0.035
𝛽ଷ + 1 (5) 

 
In Eq. (4), the coefficients are C1 = 0.5176, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21, and C6 = 0.0068 
[9]. However, this theoretical power calculation assumes the existence of a wind environment 
with an unlimited area coming from exactly the right direction to the wind blades. The 
efficiency of the turbine is reduced because of aerodynamic losses, mechanical friction, 
electrical losses, and other factors that reduce the actual power. Therefore, less than the 
theoretical power expected from a turbine is generated. The actual power is also expressed by 
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the power coefficient (Cp) of the turbine, which is usually below the Betz limit (59.3%). Figure 
2 shows the actual power curve obtained from the turbine for one year. When the graph is 
analyzed, it is seen that the average annual energy amount produced by the turbine is 1307.68 
kW.  
 

 
Figure 2. Actual power curve obtained from the turbine for one year 

 
Considering the above information, an average annual power loss of approximately 185 kW 
occurs. In this case, more than 12% more power loss has occurred than the theoretically 
expected value. Figure 3 shows the theoretical (red) and actual power (blue) change curves 
against wind speed. When the graph is analyzed, it is seen that the actual power generated is 
variable and not compatible with the theoretical power from time to time. 
 

 
Figure 3. Theoretical & actual power curves against wind speed 

 
3.2. Impact Factors Analysis 
 
It is important to identify and quantify the impact of the characteristics in the dataset on actual 
wind energy production. Given the influence of various components on energy production, it is 
necessary to understand the relationships between these components. It may be useful to use a 
correlation matrix to examine these connections. The Pearson coefficient is a statistical term 
that measures the connection between two variables. This coefficient can determine the linear 
relationship between two variables and the strength of that relationship. It takes a value between 
-1 and +1 to explain the relationship between variables. As the coefficient value approaches 0, 
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the relationship between the variables decreases. +1 represents a full positive relationship, while 
-1 represents a negative relationship. To measure the linear correlation between two continuous 
variables, the Pearson coefficient is defined as in Eq. (6) [46]: 
 

𝑟௫௬ =
∑(𝑥௜ − 𝑥̅)∑(𝑦௜ − 𝑦ത)

ඥ∑(𝑥௜ − 𝑥̅)ଶඥ∑(𝑦௜ − 𝑦ത)ଶ
 (6) 

 
Where 𝑥‾ = ଵ

௡
∑௜ୀଵ

ே  𝑥௜ points to the mean of x and 𝑦‾ = ଵ
௡

∑௜ୀଵ
ே  𝑦௜ points to the mean of 𝑦 and the 

𝑟௫௬ is Pearson correlation coefficient.  The correlation relationship between the variables can be 
analyzed on a heat map (Figure 4). There is a high and positive correlation between power 
generation and wind speed. The correlation coefficient is 0.91. However, there is a negative 
relationship between power and wind direction. In this case, the correlation coefficient between 
the two variables (-0.063) indicates a very weak negative relationship between the two 
variables. 
 

 
Figure 4. Actual power and impact factors 

 
The parameters used for actual power estimation models can take different vector values. 
Therefore, standardizing these input vectors offers many advantages before entering the DL 
layers. For this purpose, the input features, or tensors, are scaled between 0 and 1 using a min-
max scaler. The normalized value of an input value is calculated by Eq. (7). [47]: 
 

𝑥ᇱ =
𝑥 − 𝑥௠௜௡

𝑥௠௔௫ − 𝑥௠௜௡
 (7) 

 
Where 𝑥ᇱ represents the value to be normalized. 𝑥௠௜௡ symbolizes the minimum value of the 
series, and 𝑥௠௔௫  represents the maximum value in the series. The normalization process helps 
to evaluate different features on the same scale and allows the model to learn better. 
 
3.3. Simple RNN 
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RNN is a machine learning technique that takes sequential data as input. Unlike other machine 
learning methods, it uses a recurrent connection architecture. This structure means that the 
current output of a cell is related to the input of the previous cell. In this way, the network could 
store information from previous outputs. Let x= {𝑥1, 𝑥2,…,𝑥𝑡} be the input time series. And ℎ𝑡 
the final state, 𝑦𝑡 the predicted value to demonstrate the function of the RNN unit at time step 
t. Then, the hidden state ℎ𝑡 is expressed by Eq. (8) [48]: 
 

ℎ௧ = 𝑓(ℎ௧ିଵ, 𝑥௧) (8) 
 
Where ℎ𝑡 is recalculated with the input 𝑥𝑡. This process involves adding the product of the 
weight matrix 𝑊𝑥ℎ and the previous state ℎ𝑡-1. Then, the sum of the weighted values is calculated 
by multiplying the weight 𝑊ℎℎ. Finally, the sum is activated by a transfer function 𝑓. This 
equation can be calculated as shown in Eq. (9): 
 

ℎ௧ = 𝑓(𝑊௛௛ ⋅ ℎ௧ିଵ + 𝑊௫௛ ⋅ 𝑥௧) (9) 
 
The output 𝑦𝑡 is calculated by multiplying the ℎ𝑡 by the output weight 𝑊ℎ𝑦. This calculation can 
be shown as in Eq. (10). 
 

𝑦௧ = 𝑓൫𝑊௛௬ ⋅ ℎ௧൯ (10) 
 
To obtain error information, the predicted output is compared to the target. After that, input is 
used to modify the weights in each layer until an acceptable error value is obtained. The RNN 
architecture is shown in Figure 5 [49]. 
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Figure 5. RNN cell architecture [49] 

 
The approach suggested in this research consists of a four-layer RNN architecture. Each layer 
has 50 cells, and the "tanh" activation function is applied. To prevent overfitting, a 20% 
reduction is applied at the end of each layer. The last layer of the model is the dense layer, 
which produces a single prediction output. This layer uses the "linear" activation function 
(Table 1). 
 

Table 1. RNN structure parameters 
Layer Output shape Parameter 
RNN  (,50,50) 2600 
Dropout (,50,50) 0 
RNN (,50,50) 5050 
Dropout (,50,50) 0 
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RNN (,50,50) 5050 
Dropout (,50,50) 0 
RNN (, 50) 5050 
Dropout (, 50) 0 
Dense (,1) 21 
Total Parameter  17801 

 
3.4. Error Metrics 
 

In this study, various statistical metrics are examined to evaluate the prediction results of 
the proposed DL-based architecture. These metrics include commonly used error measures 
such as RMSE (root mean square error), MSE (mean squared error), and MAE (mean 
absolute error). In addition, R2 regression is used to determine the prediction accuracy of 
the model. In here: 
 RMSE (Root Mean Square Error) computes the square root of the mean of the square 

root differences between the predicted and actual results. 
 MAE calculates the mean results of the absolute differences between predicted and 

actual results. 
 MSE calculates the mean square root of the squares of the prediction errors. 
 R2 measures the ability of the model to explain the observed outputs. The R2 value 

ranges between 0 and 1. A higher R2 value means that the data fits the regression line 
better. 

The aim of the study is to demonstrate the successful prediction accuracy of the architecture by 
achieving lower MAE, MAPE, and RMSE values. In addition, the R2 aims to measure the extent 
to which the independent variables explain the change in the dependent variables. Eq. (11–14) 
refers to R2, RMSE, MSE, and MAE metrics, respectively [50, 51]. 
 

𝑅ଶ =
(∑ (𝑥௜

∗ − 𝑥ప
∗തതതே

௜ୀଵ )(𝑥௜ − 𝑥పഥ ))ଶ

∑ (𝑥௜
∗ − 𝑥ప

∗തതതே
௜ୀଵ )ଶ ∑ (𝑥௜ − 𝑥పഥ )ே

௜ୀଵ
ଶ (11) 

𝑅𝑀𝑆𝐸 =  ඩ1
𝑁 ෍(𝑥௜

∗ − 𝑥௜)ଶ
ே

௜ୀଵ

 (12) 

𝑀𝑆𝐸 =
1
𝑁 ෍(𝑥௜ − 𝑥௜

∗)ଶ
ே

௜ୀଵ

 (13) 

𝑀𝐴𝐸 =  
1
𝑁 ෍|𝑥௜ − 𝑥௜

∗|
ே

௜ୀଵ

 (14) 

 
Where 𝑥௜ is the predicted, 𝑥௜

∗ is the true value, 𝑁 is the sample size, xనഥ  is the average estimated 
value, xన

∗ഥ  is the average actual value. 
 
4. RESULTS AND DISCUSSION 
 
In this section, the performance findings of the proposed RNN-based energy prediction model 
are analyzed. The analysis of the results is important to evaluate how well the model works and 
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how accurate the energy prediction is. This analysis will help us understand how effective the 
model is in real-world applications. 
 
4.1. Experimental Settings 
 
This study was carried out with the Python 3.10.12 programming language and the TensorFlow 
2.12 library. The system has a 2199 MHz 4-core 64-bit processor and 32 GB of memory. 
 
4.2. Hyperparameter and Optimization Techniques 
 
The data set was subdivided into 20% tests, 20% validation, and 60% training. In this way, a 
total of 30318 samples were used for training, 10106 samples for validation, and 10106 samples 
for testing. Settings that have an effect on the performance results of the model are called 
hyperparameters. For the optimum determination of these settings, the model was evaluated 
with different parameters, and the best-performing values were selected. Firstly, the learning 
coefficient of the model was initialized as 1e-3. Adam Optimizer was used to improve the 
coefficient. The training was set to 200 epochs. The hyperparameters used in the proposed 
model are shown in Table 2. 
 

Table 2. Training hyperparameters 
Hyperparameter Parameter 
Learning rate  1e-3 
Optimizer Adam 
Batch size 32 
Loss function MSE 
Number of epochs 200 
Re-scaling MinMaxScale [0,1] 

 
A linear regression plot visually illustrates the relationship between two variables. Figure 6 
shows the linear regression plot of the proposed method. As can be seen from the figure, the 
proposed method accurately predicted the test data set. When the graph is analyzed, it is seen 
that the proposed DL-based method has achieved high accuracy performance with an R2 value 
of 0.9168. 
 

 
Figure 6. Regression plot of test and predicted data 
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Due to the large number of samples in the test data, it may be difficult to show the predicted 
values and our test set on the same graph in terms of graph readability. For this reason, a cross-
section of test data and predicted values can be used to analyze the prediction outcomes of the 
model. Figure 7 shows the distribution of the test data and the values predicted by the proposed 
model for the date range of 18.10.2018–21.10.2018. When the graph is analyzed, it is seen that 
there is a harmonious relationship between the prediction and the test values. 
 

 
Figure 7. Comparison of test data and prediction results 

 
Figure 8 shows the theoretical, actual, and predicted power values of the turbine in response to 
the wind speed. When the graph is analyzed, it is seen that the estimated power curve, the actual 
power curve, and the theoretical power curve have a similar distribution. 
 

 
Figure 8. Graph of theoretical, actual, predicted power and wind speed 

 
The results of a model should be analyzed in terms of statistical methods. According to the 
results presented in Table 3, the proposed method showed high performance with an R2 value 
of 94.14% on the training dataset. In addition, MAE, MSE, and RMSE values of 0.0231, 0.0051, 
and 0.0716, respectively, have very low error rates. It also achieved an R2 score of 91.63% on 
the test dataset, which demonstrates the model is able to represent the relationship between the 
newly encountered data well. The MAE, MSE, and RMSE values for the test dataset were 
0.0276, 0.0074, and 0.0863, respectively. The statistical measurement results show that the 
proposed architecture produces high-accuracy predictions with low error metrics. 
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Table 3. Performance results of the propesed methos 
 Training Dataset Testing Dataset 
MAE 0.0231 0.0276 
MSE 0.0051 0.0074 
RMSE 0.0716 0.0861 
R2 0.9414 0.9163 
Training time (min.) 23.02 min.  

 
5. CONCLUSION 
 
Wind energy is slowly being integrated into modern grids with the rise of low-cost turbines. As 
wind turbines become more widespread, various methods and approaches have been proposed 
in the literature to evaluate the potential contribution of artificial intelligence methods to wind 
turbine energy prediction. However, most techniques have considered short- or long-term 
forecasts separately and have not focused on real-time forecasts. However, real-time forecasts 
of turbine output energy are extremely important for turbine energy management and safety. 
Therefore, in this research, the proposed RNN-based architecture is trained based on real-time 
data. The results and performance metrics show that the model can achieve high success rates. 
RNN is superior to classical machine learning methods in analyzing sequential data with its 
ability to recall information from previous time steps. This feature enables meaningful use of 
data from previous time steps. It also helps to better capture the patterns in the time series. 
Thanks to this capability, the proposed DL-based method has achieved high prediction 
accuracy. In addition, this method offers the ability to make both real-time, short-term, and 
long-term forecasts of the output power of wind turbines with a single tool. This provides high 
forecasting performance without the need to use more than one technique. This study provides 
an effective approach to energy production and management by making significant progress in 
the wind energy sector. However, RNN-based machine-learning methods have some 
limitations. The gradients in RNN structures can shrink over time. This may make it difficult 
to appropriately convey information from previous time steps during training. This may limit 
the learning ability of the model. Therefore, in future studies, it is planned to use more advanced 
RNN variation methods such as LSTM (long short-term memory) and GRU (Gated recurrent 
unit) for analyzing sequential data. 
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