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ABSTRACT 
Network Function Virtualization could be a quickly advancing innovation that guarantees to revolutionize 

the way networks are planned, sent, and overseen. However, as with any modern innovation, there are 
potential security risk that must be tended to guarantee the security of the network. Misuses attacks are one 

such risk that can compromise the security and integrity of NFV frameworks. 

In recently years , data mining has risen as a promising approach for recognizing misuses attacks in NFV 
systems. The novelty of this systematic mapping study is ponders points to supply an overview of the existing 

research on misuses attack detection based on data mining in NFV. Particularly, the study will recognize and 

analyze the research conducted in this region, counting the sorts of data mining methods utilized, the types 
of misuses attacks identified, and the assessment strategies utilized. 

The results of this study will give experiences into the current state of investigate on misuses attack detection 

based on data mining in NFV, as well as recognize gaps and openings for future research in this range. Also, 
the study will serve as an important asset for analysts and professionals looking for to create successful and 

effective methods for recognizing misuses attacks in NFV frameworks 
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1. Introduction 

Network Function Virtualization (NFV) is a technology that enables the deployment of network functions as software-based 

services that can run on standard servers and cloud infrastructure. NFV promises to reduce costs, improve network flexibility, 

and accelerate service delivery. However, the use of NFV also introduces new security challenges that need to be addressed 

[1]. 

One of the primary security concerns in NFV systems is the threat of misuses attacks. Misuses attacks occur when an attacker 

misuses a legitimate access point or privilege to gain unauthorized access to the network or its resources [2]. These attacks 

can result in data breaches, service disruptions, and other serious security incidents. To address the threat of misuses attacks 

in NFV systems, researchers have explored the use of data mining techniques for detecting such attacks. Data mining is a 

process of discovering patterns and knowledge from large datasets using statistical and computational techniques [3]. 

The use of data mining for detecting misuses attacks in NFV systems has several advantages. It allows for the detection of 

previously unknown attacks, can identify complex attack patterns, and can be used to analyze large amounts of network data 

in real-time [4].  

This systematic mapping study aims to provide an overview of the existing research on misuses attack detection based on 

data mining in NFV [5]. The study will identify the types of data mining techniques used, the types of misuses attacks 

detected, and the evaluation methods employed in previous research [6]. The results of this study will help researchers and 

practitioners to develop more effective and efficient techniques for detecting misuses attacks in NFV systems, thereby 

enhancing the security and resilience of these systems. 

 

http://saucis.sakarya.edu.tr/
https://orcid.org/0000-0002-8486-5719
https://orcid.org/0000-0001-9514-6763
https://orcid.org/0009-0007-0087-3038
mailto:dr.ahmed.k.abbas@uodiyala.edu.iq
https://doi.org/10.35377/saucis...1379047


 

 N.J. Ibrahim, A.K. Abbas and F.H. Khorsheed          Sakarya University Journal of Computer and Information Sciences 6 (3) 2023 

240 

2. Literature Review 

Misuses attacks are one of the most significant security threats in NFV systems. As NFV systems are designed to be flexible 

and scalable, they are vulnerable to a wide range of misuses attacks that can compromise their security and integrity. 

Therefore, researchers have been exploring various techniques to detect misuses attacks in NFV systems. 

Shilan S. Hameed et al 2021 designed a systematic review that explores the role of machine learning approaches in addressing 

the security requirements of IoT devices and systems. The authors created a list of research questions, the authors searched 

for relevant papers from different databases including IEEE, Web of Science, Springer Link, Scopus, and Science Direct. 

The most specific and relevant papers were extracted to answer the research questions. Later on, the selected papers were 

comprehensively screened and analyzed. Finally, the results were presented using different methods [7]. 

In another study, Zhang et al. (2020) proposed a misuses attack detection system for NFV based on ensemble learning 

techniques. The proposed system combined multiple classifiers to improve the accuracy of misuses attack detection in 

NFV[8]. 

Additionally, Mohamed Amine Ferrag, Lei Shu, Hamouda Djallel, and Kim-Kwang Raymond Choo discuss the importance 

of implementing effective intrusion detection systems in the agriculture industry to prevent Distributed Denial of Service 

(DDoS) attacks[9]. 

In [10] Nadra Guizani and Arif Ghafoor from Purdue University (2020) discussed a network function virtualization system 

for detecting malware in large IoT based networks and addressed the challenges posed by the exponential growth of IoT 

devices and the need for effective software-based security systems. 

Abdullah Emir Çil et al in 2021 proposed the use of a deep neural network (DNN) model to detect and classify DDoS attacks 

based on captured network traffic. The experiments conducted on a dataset of DDoS attacks showed a 99.99% success rate 

in detecting attacks and a 94.57% accuracy rate in classifying attack types. The study concludes that deep learning models, 

such as DNN, can be effectively used to combat DDoS attacks. Previous studies have also utilized deep learning models, 

such as Deep Belief Network (DBN), Stacked Autoencoders (SAE), Long Short-Term Memory (LSTM), and Deep 

Convolutional Neural Network (DCNN), for DDoS intrusion detection with high accuracy [30]. 

Overall, the literature suggests that data mining techniques have considerable potential for misuses attack detection in NFV 

systems. In [11] Sulaiman, N. S. et al.  (2021)  provide a comprehensive overview of various techniques used in detecting 

and preventing unauthorized access to computer systems. However, there is a need for further research to develop more 

effective and efficient techniques that can be applied to real-world NFV systems. The results of this systematic mapping 

study will help to identify gaps and opportunities for future research in this area. 

3. Research Questions  

The following are research questions that could guide a systematic mapping study for misuses attack detection based on data 

mining in NFV: 

Q1\\ What are the databases that used in this study? And what are the models that are used to build different perspectives?   

Q2\\ What Classification schemes have been used to assess the effectiveness of misuses attack detection based on data 

mining in NFV systems? 

Q3\\ What types of misuses attacks have been detected using data mining techniques in NFV systems? 

Q4\\ What are the types of data mining techniques that have been used for misuses attack detection in NFV systems? 

3.1 Search Statement  

The following is a search statement for a systematic mapping study on misuse attack detection based on data mining in 

Network Function Virtualization (NFV): 

(((("misuse attack" OR "misuse detection") AND ("data mining" OR "machine learning" OR "deep learning" OR "artificial 

intelligence")) AND ("network function virtualization" OR "NFV")) AND ("systematic mapping" OR "systematic review" 

OR "systematic literature review" OR "mapping study")) 

This search statement includes keywords related to misuse attack detection, data mining, machine learning, artificial 

intelligence, and NFV. The search statement also includes terms related to systematic mapping studies, which will help 

identify relevant research in this area. 

https://www.researchgate.net/profile/Abdullah-Cil-4?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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3.2 Search in databases  

There are many different databases and platforms used by publishers to manage their content and information. However, 

some of the most widely used publisher databases include: 

1. Scopus: A bibliographic database of scientific literature, including journals, books, and conference proceedings, 

published by Elsevier [12] 

2. ACM digital library: A digital library that provides access to thousands of academic journals, books, and primary 

sources in the humanities, social sciences, and sciences [13]. 

3. ProQuest: A provider of digital information and research tools, including databases of academic journals, 

newspapers, and dissertations [14]. 

4. IEEE Xplore: A digital library of scientific and technical content published by the Institute of Electrical and 

Electronics Engineers (IEEE) [15].  

5. Springer: is an international publisher that offers a wide range of opportunities for authors, customers, and partners. 

Springer is a leading scientific publisher that publishes in various fields [16].  

We collected the papers in this study depending on the databases above (Appendix A). 

4. Screening of Papers  

In a systematic mapping review, the screening process typically involves several stages to identify relevant papers that will 

be included in the review [17]. The following are the general steps involved in the screening process. The figure below 

explains these steps: 

 

 

Figure 1. Systematic review process 

4.1 Use various models to build different perspectives 

We can explain any schema or description of any topic by constructing schemas. Define an overall vision for the article on 

each topic and approach it with some options. In this article, we show how to use these scenarios as we explain below. 

A. Distribution of studies according to years 

This graph shows the distribution of the number of studies per year and the percentage of publications per year, it focuses on 

which papers have full pages or short pages. 
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Figure 2. The distribution of studies in each year 

B. Distribution of studies according to Publication type 

The chart offers researchers a different perspective. Distribute papers by year, number of short or full-page papers, and paper 

type for conferences and journals.  

 

Figure 3. The Distribution of studies according to publication type 

C. Distribution of studies according to Country  

This chart shows the distribution of the number of studies per country.  
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Figure 4. Distribution of studies according to country 

5. Classification schemes  

Systematic reviews are an important tool for synthesizing and summarizing the available evidence on a particular topic[18]. 

When it comes to classification schemes for systematic reviews of misuses attack detection based on data mining in NFV, 

there are a few different approaches that could be taken. Here are a few possibilities: 

A. Type of attack:  

One approach to classification could be to focus on the different types of attacks that are being detected using data mining 

techniques in NFV. This could include things like DDoS attacks, malware infections, phishing attempts, and so on. 
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Misuse attacks are a type of attack that involves exploiting vulnerabilities or weaknesses in a system by using legitimate 

functionality in an unauthorized or unintended way[19]. Misuse attacks can take many different forms, and the specific types 

of attacks that are relevant for misuses attack detection based on data mining in NFV may vary depending on the specific 

security domains and architectures being considered. 

However, here are some common types of misuse attacks that could be relevant for misuses attack detection based on data 

mining in NFV: 

1. Denial-of-Service (DoS) attacks: These attacks involve overwhelming a system or network with traffic or requests 

to make it unavailable to users. DoS attacks can be launched from multiple sources and can be difficult to detect and 

mitigate[20]. 

2. Injection attacks: These attacks involve injecting malicious code or data into a system or network, such as SQL 

injection or cross-site scripting (XSS) attacks. Injection attacks can bypass security measures and enable attackers 

to steal data or take control of systems[21]. 

3. Malware attacks: These attacks involve infecting systems or networks with malware, such as viruses, worms, or 

trojans. Malware can be used to steal data, disrupt operations, or launch further attacks[22]. 

4. Brute-force attacks: These attacks involve guessing passwords or other authentication credentials through trial and 

error. Brute-force attacks can be time-consuming but can be successful if passwords are weak or easily 

guessable[23]. 

5. Evasion attacks: These attacks involve attempting to bypass or evade security measures, such as by exploiting 

weaknesses in firewalls or intrusion detection systems. Evasion attacks can be difficult to detect and mitigate because 

they are designed to avoid detection[24]. 

The other attacks are:  

- Unauthorized access. Unauthorized access refers to attackers accessing a network without receiving permission. 

- Man in the middle attacks. 

- Code and SQL injection attacks. 

- Privilege escalation. 

- Insider threats. 

These are just a few examples of the types of misuse attacks that could be relevant for misuses attack detection based on data 

mining in NFV. The specific types of attacks will depend on the context and the security domains being considered. 

B. Data mining techniques:  

Another approach could be to classify the different data mining techniques that are being used to detect misuses attacks in 

NFV. For example, one review might focus on studies that use decision trees, while another might focus on those that use 

neural networks or support vector machines. 

There are several data mining techniques that can be used for misuses attack detection based on data mining in NFV. Here 

are some examples: 

1. Decision Trees: Decision trees are a popular data mining technique for classification tasks. In the context of misuse 

attack detection in NFV, decision trees can be used to classify network traffic as either normal or malicious based on 

various features or attributes, such as packet size, protocol, or source IP address[25]. 

2. Neural Networks: Neural networks are another popular data mining technique that can be used for classification and 

prediction tasks. In the context of misuse attack detection in NFV, neural networks can be trained on historical network 

traffic data to identify patterns and anomalies that are indicative of malicious activity[26]. 

3. Support Vector Machines (SVMs): SVMs are a type of machine learning algorithm that can be used for classification 

and regression tasks. In the context of misuse attack detection in NFV, SVMs can be used to classify network traffic 

as either normal or malicious based on a set of features or attributes[27]. 

4. Clustering: Clustering is a data mining technique that involves grouping similar data points together based on their 

characteristics. In the context of misuse attack detection in NFV, clustering can be used to identify groups of network 

traffic that exhibit similar patterns or behaviors, which can then be analyzed further for potential malicious activity[28]. 

5. Association Rule Mining: Association rule mining is a data mining technique that involves identifying relationships 

or associations between different variables or attributes in a dataset. In the context of misuse attack detection in NFV, 
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association rule mining can be used to identify patterns or relationships between different network traffic features or 

attributes that are indicative of malicious activity[29]. 

Table 1. The intersection between types of misuse attack with data mining techniques. 

Types of  misuse 

attack 

Denial of Services (DoS) 

attacks 

Injection 

attacks 

Malware 

attacks 

Brute-force 

attacks 

Evasion 

attacks 
Others 

Decision Tree 

1,2,3,5,6,7,15,17,19,20,

21,12,23,2,26,33,35,47,

50,51,52,53,56,57,59,60

,62,63,65,69,70,71,73,7

5,78,81,85,87,88,89,90,

94,99,100,101,102,103,

107,111,112,113,114,11

5, 116 

17,25,26,52

,57,70,71,8

5,99 

17,19,21,23,

30,31,47,50,

52,60,62,63,

65,69,75,85,

89,90,99,10

5,114 

1 3,75 
10,6,29,123

,148 

Neural Networks 

1,6,8,14,15,19,20,21,13,

14,17,23,25,26,33,34,35

,36,41,42,46,47,49,50,5

1,52,53,55,56,57,58,59,

60,62,63,65,67,69,71,73

,74,75,76,78,79,81,83,8

5,87,88,89,90,92,94,96,

99,100,101,102,103,107

,110,111,112,113,114,1

15,116 

14,25,26,32

,42,46,48,4

9,52,57,71,

85,99 

8,13,14,19,1

7,21,23,30,3

1,35,41,42,4

3,46,47,50,5

2,56,60,62,6

3,65,69,75,7

9,83,85,89,9

0,92,96,99,1

05,110,114 

1,56 75,83 
,29,10,61,8

2,116 

Support Vector 

Machine (SVM) 

1,2,6,14,15,17,20,21,12,

23,26,29,33,34,35,45,46

,47,49,50,51,52,53,54,5

5,56,57,58,59,62,62,63,

67,70,71,73,74,77,78,79

,85,87,88,89,90,91,92,9

4,99,101,102,103,104,1

07,111,112,114,115,116 

14,26,32,46

,48,49,52,5

7,70,71,77,

85,99 

12,14,18,21,

23,29,30,35,

46,47,50,52,

56,60,62,63,

77,79,85,89,

90,92,99,11

4 

1,56  ,10,6 

Clustering 

1,6,8,7,19,20,21,11,13,2

3,29,33,35,37,41,50,51,

52,55,58,59,60,62,63,65

,70,71,73,76,77,78,85,8

8,89,90,91,99,100,101,1

04,110,114,115,116 

37,32,52,70

,71,77,85,9

9 

12,19,13,21,

23,29,30,31,

35,37,50,52,

60,62,63,65,

77,79,85,89,

90,99,110,1

14 

1  
6,5,10,12,2

9,116 

Association Rule 

Mining 

20,33,59,63,71,79,90, 

104 
71 30,63,79   10,12 

 

Table 1 above represents the intersection between Data mining techniques and types of misuse attacks and Figure 5 below 

represents facet 1 (Types of misuse attacks with data mining techniques). 
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Figure 5. Types of misuse attack with data mining techniques 

6. Conclusion and Comments  

In conclusion, this systematic mapping study focused on the detection of misuses attacks in Network Function Virtualization 

(NFV) using data mining techniques. Through a comprehensive analysis of the existing literature, we identified and 

synthesized relevant studies, highlighting the various approaches, methodologies, and tools employed in this domain. The 

findings reveal that data mining plays a crucial role in the detection of misuses attacks in NFV, enabling the identification of 

anomalous patterns and the timely mitigation of potential threats. In this study, we apply different approaches like Type of 

attack and Data mining techniques as a classification schema and we note that most studies were used the Denial of Services 

(DoS) attacks with Decision Tree, Neural Networks, Support Vector Machine (SVM) and Clustering  and at a lower frequency 

between Malware attacks and Decision Tree, Neural Networks, Support Vector Machine (SVM) and Clustering While attacks 

of Injection attacksو Brute-force attacks and Evasion attacks with data mining techniques this types have been studied very 

little compared to other types. The study also emphasizes the need for further research to address existing gaps, such as the 

development of more robust and efficient algorithms, the consideration of real-time detection, and the exploration of novel 

data sources. Ultimately, this systematic mapping study provides a valuable foundation for future researchers, practitioners, 

and stakeholders, serving as a reference point for advancing the field of misuses attack detection in NFV through data mining 

methodologies. 
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