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Abstract 
The goal of this research is to introduce inversion with respect 

to an ellipse which is a generalization of the classical circular 

inversion in taxicab plane and to investigate general properties 

and basic concepts of this transformation in taxicab geometry. 

The cross ratio is preserved under the elliptic inversion in taxicab 

plane though this transformation is not an isometry. Thus some 

properties such as cross ratio and harmonic conjugates of the 

elliptic inversions in ℝ𝑇
2  are also studied. 

 
Anahtar Kelimeler Inversion; Elliptic inversion; Taxicab metric; Cross 

ratio; Harmonic conjugates 

Öz 

Bu çalışmanın amacı klasik çembersel inversiyonların bir 

genelleştirmesi olan elipse göre inversiyonları taksi düzleminde 

çalışmak ve bu dönüşümün genel özelliklerini ve temel yapılarını 

taksi geometride araştırmaktır. Bu dönüşüm bir izometri olmasa 

da çapraz oran taksi düzleminde eliptik inversiyonlar altında 

korunur. Bu yüzden bu araştırmada eliptik inversiyonların çapraz 

oran ve harmonik eşlenik gibi bazı özellikleri üzerine de ℝ𝑇
2  de 

çalışılmıştır. 

 
Keywords İnversiyon; Eliptik inversiyon; Taksi metriği; Çapraz oran; 

Harmonik eşlenik 

  

 

1. Introduction 

A family of metrics; 𝑙𝑝-metric (also known as the 

Minkowski distance) was published in (Minkowski 1967) 

by Minkowski. This family of metrics includes taxicab (also 

known as 𝑙1 or Manhattan), and Euclidean (also known as 

𝑙2) metrics as special cases. Later, Menger introduced the 

taxicab plane geometry in (Menger 1952). Krause 

subsequently developed the taxicab geometry in (Krause 

1975) and this geometry has been studied by many 

authors, for some of the studies on taxicab geometry see 

(Djvak 2000, Akça and Kaya 1997, Schattschneider 1984, 

Chen 1992, So 2002, Ho and Lıu 1996, Laatsch 1982, 

Reynolds 1982, Tian et al. 1997, Kaya 2004, Özcan and 

Kaya 2002). Taxicab plane geometry is derived simply by 

substituting the metric 

𝑑𝑇(𝑃1, 𝑃2) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|                  (1) 

with the well known Euclidean metric 

𝑑𝐸(𝑃1, 𝑃2) = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2            (2) 

for the distance between any two points 𝑃1 = (𝑥1, 𝑦1) 

and 𝑃2 = (𝑥2, 𝑦2) in the analytical plane, thus taxicab 

plane is denoted by ℝ𝑇
2 .  

Taxicab plane geometry is a Minkowski geometry. 

Minkowski geometry is a non- Euclidean geometry in a 

finite number of dimensions that is different from elliptic 

and hyperbolic geometry (and from the Minkowskian 

geometry of space-time). In this geometry the linear 

structure is the same as the Euclidean one but the 

distance is not “uniform” in all directions. Instead of the 

usual sphere in Euclidean space, the unit ball is a general 

symmetric convex set (Thompson 1996). That is, 

Euclidean and taxicab planes have the same points, lines 

and the way of measuring the angles. Since the only 

difference of the taxicab geometry from the Euclidean 

geometry is the distance function, it is interesting to study 

the taxicab analogues of issues that include the distance 

concept in Euclidean geometry. One of these concepts is 

inversion. Since it reveals difficult questions and many 

challenging problems in geometry and many problems 

become much manageable when it is applied, inversion is 

one of the most gripping transformation in the plane. As 

it has been stated in (Patterson 1933) this transformation 

was probably first introduced by Apollonious of Perga in 

his last book Plane Loci and systematically investigated by 

Jakob Steiner in the 1820s. This transformation would be 

used to study on several theorems and problems in 

geometry as Ptolemy’s theorem, Steiner porism, the 

problem of Apollonius, the Pappus chain, etc. 

When an inversion is considered the first thing that comes 

to mind is an inversion with respect to a circle, but 

Childress introduced inversions with respect to the 
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central conics in real Euclidean plane in (Childress 1965) 

and authors studied inversions with respect to an ellipse 

in real Euclidean plane in (Ramirez 2014) and (Ramirez 

and Rubiano 2014). In (Bayar and Ekmekçi 2014) and 

(Nickel 1995) inversions with respect to taxicab circles 

and in (Gelişgen and Ermiş 2019) inversions with respect 

to circles in alpha plane (alpha plane includes taxicab 

plane as a special case) are investigated. 

In this paper first, the inversion in an ellipse in taxicab 

plane (ℝ𝑇
2 ) is introduced. Then general properties and 

basic concepts are investigated and some illustrations of 

taxicab elliptic inversion for particular conditions via 

GeoGebra are given as examples. Furthermore some 

properties related with this inversion such as cross ratio 

and harmonic conjugates are studied. 

 
2. Preliminaries 

2.1 Some Basics of Taxicab Plane  

In this section some properties of taxicab plane and some 

relations between Euclidean and taxicab planes are given 

without proofs which are briefly taken from (Gelişgen 

2007). 
 

Proposition 2.1.1 Taxicab distance function  

𝑑𝑇: ℝ × ℝ → (0,∞] is defined as  

𝑑𝑇(𝑃, 𝑄) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| for any points points  

𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) in ℝ𝑇
2  and 𝑑𝑇 is a metric. 

 

Proposition 2.1.2 Each of Euclidean translations is an 

isometry of ℝ𝑇
2 . 

 

Proposition 2.1.3 Let 𝑃1 and 𝑃2 be two points on a line 𝑙  

with the slope 𝑚 in the analytical plane and 𝑑𝐸  denotes 

the Euclidean distance function, then  

𝑑𝐸(𝑃1, 𝑃2) =
√1+𝑚2

1+|𝑚|
𝑑𝑇(𝑃1, 𝑃2).                (3) 

Corollary 2.1.4 For any three collinear points 𝑃1, 𝑃2 and 𝑋 

in ℝ2, 𝑑𝐸(𝑃1, 𝑋) = 𝑑𝐸(𝑃2, 𝑋)  if and only if 𝑑𝑇(𝑃1, 𝑋) =

𝑑𝑇(𝑃2, 𝑋). 

 

Corollary 2.1.5 For any three collinear points 𝑃1, 𝑃2 and 𝑋 

in ℝ2, 𝑑𝐸(𝑃1, 𝑋)/𝑑𝐸(𝑃2, 𝑋) if and only if 𝑑𝑇(𝑃1, 𝑋)/

𝑑𝑇(𝑃2, 𝑋). 

 
2.2 Preliminaries about Inversions  

In this section definition of inversion in Euclidean plane as 

have been stated in (Blair 200) is given and basic 

properties of this mapping are mentioned. 

Definition 2.2.1 Let 𝐶 be a circle with the center 𝑂 and 

radius 𝑟. If 𝑃 is any point other than 𝑂, then inverse of 𝑃 

with respect to 𝐶 is the point 𝑃′ on the ray 𝑂𝑃⃗⃗⃗⃗  ⃗ such that 

the product of the distances of 𝑃 and 𝑃′ from 𝑂 is equal 

to 𝑟2; that is, 

𝑑𝐸(𝑂, 𝑃). 𝑑𝐸(𝑂, 𝑃) = 𝑟2.                        (4) 

The inversion mapping defined above is a conformal 
mapping. Obviously 𝑃 and 𝑃′ are the inverses of each 
other. Also by a little observation the mapping shifts the 
interior and exterior of 𝐶 and points on 𝐶 are fixed. This 
shifting excepts 𝑂, since 𝑂 has no image, and no point of 
the plane is mapped to 𝑂. Note also that points close to 
𝑂 are mapped to the points far from 𝑂, and vice versa. 
Thus to include 𝑂 in the domain and range of an inversion, 
one "ideal point", or "point at infinity" would be adjoined 
to the Euclidean plane. 

 
3. Taxicab Elliptic Inversion 
 

In this section, taxicab elliptic inversions are examined. 

First, inversion with respect to an ellipse in taxicab plane 

is introduced and basic properties of this inversion are 

given. Then inversions of lines and ellipses in ℝ𝑇
2  are 

investigated. In addition, properties of taxicab elliptic 

inversion, such as cross ratio and harmonic conjugates are 

given. 
 

Definition 3.1 Let 𝐹1 and  𝐹2 be two points in ℝ𝑇
2  . The 

taxicab ellipse ℰ with the center 𝑂 = (𝑎, 𝑏), the constant 

𝑘 and foci 𝐹1 and 𝐹2 in ℝ𝑇
2  is the set of points 

{𝑃 = (𝑥, 𝑦): 𝑑𝑇(𝑃, 𝐹1 ) + 𝑑𝑇(𝑃, 𝐹2 ) = 𝑘, 𝑃 ∈ ℝ𝑇
2 , k

≥ 𝑑𝑇(𝐹1, 𝐹2 ) }. 

There are two types of taxicab ellipses according to the 
slope of the line through foci of the ellipse. If the slope of 
the line is 0 or ∞ then the ellipse is a hexagon otherwise 
the ellipse is an octagon. 

 

Definition 3.2 Let ℰ be an ellipse centered at the point 

𝑂 = (𝑎, 𝑏) with foci 𝐹1 and 𝐹2 and constant 𝑘 in ℝ𝑇
2   and 

let the ideal point enclosed to the taxicab plane is 𝑃∞. 

In ℝ𝑇
2   the taxicab elliptic inversion with respect to ℰ is the 

mapping 

𝐼ℰ(𝑂, 𝑘): ℝ𝑇
2  ∪ {𝑃∞} → ℝ𝑇

2  ∪ {𝑃∞} 

defined by 𝐼ℰ(𝑂, 𝑘)(𝑂) = 𝑃∞, 𝐼ℰ(𝑂, 𝑘)(𝑃∞) = 𝑂 and 

𝐼ℰ(𝑂, 𝑘) (𝑃) = 𝑃
′ , where 𝑃′ lies on the ray 𝑂𝑃⃗⃗⃗⃗  ⃗ for 𝑃 ≠ 𝑂 

and  

𝑑𝑇(𝑂, 𝑃). 𝑑𝑇(𝑂, 𝑃
′) = [𝑑𝑇(𝑂, 𝑄)]

2,              (5) 

where 𝑄 is the intersection of the ray 𝑂𝑃⃗⃗⃗⃗  ⃗ with the ellipse 

ℰ. 𝑂 is named by the center of the inversion, ℰ is named 
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by the ellipse of the inversion, the point 𝑃′  is named by 

the inverse of the point 𝑃 with respect to the ellipse ℰ, 

and the positive real number ℰ:= 𝑑𝑇(𝑂, 𝑄) is said to be 

the radius of the inversion, see Figure 1. 

 
Figure 1. Taxicab elliptic inverse of a point 

 

Unlike the circular inversions in taxicab plane (and in 

Euclidean plane), the radii of taxicab elliptic inversions are 

not constant. Also it is obvious that the only invariant 

points under 𝐼ℰ(𝑂, 𝑘) are the points on the ellipse ℰ since 

𝐼ℰ(𝑂, 𝑘)  is an involution like reflections. 
 

Lemma 3.3 Let 𝐼ℰ(𝑂, 𝑘) be a taxicab elliptic inversion in 

the ellipse ℰ with the center (𝑂, 𝑂) and constant 𝑘.  

𝐼ℰ(𝑂, 𝑘) shifts the interior and exterior of ℰ. 

Proof. Let 𝑃 is a point in the interior of ℰ, then 

𝑑𝑇(𝑂, 𝑃) <  𝑑𝑇(𝑂, 𝑄).                          (6) 

Since 𝑃′ = 𝐼ℰ(𝑂, 𝑘)(𝑃), by using (5) and (6) we get 

[𝑑𝑇(𝑂, 𝑄)]
2 = 𝑑𝑇(𝑂, 𝑃). 𝑑𝑇(𝑂, 𝑃

′)

< 𝑑𝑇(𝑂, 𝑄). 𝑑𝑇(𝑂, 𝑃
′)

            (7) 

and thus 

𝑑𝑇(𝑂, 𝑃
′) >  𝑑𝑇(𝑂, 𝑄).                        (8) 

So 𝑃′ is in the exterior of ℰ. The proof for the case that 𝑃 

is in the exterior of ℰ is similar. 
 

Proposition 3.4 Let 𝐼ℰ(𝑂, 𝑘) be a taxicab elliptic inversion 

in the ellipse ℰ with foci 𝐹1 = (𝑥1, 𝑦1) and 𝐹2 = (𝑥2, 𝑦2), 

the center 𝑂 = (0,0) and the constant 𝑘. If 𝑃 = (𝑥, 𝑦) 

and 𝑃′ = (𝑥′ , 𝑦′) are inverse points according to 

𝐼ℰ(𝑂, 𝑘) ,then

(𝑥′, 𝑦′) =

{
 
 
 

 
 
 (

𝑘2𝑥

4(𝑥+𝑦)2
,

𝑘2𝑦

4(𝑥+𝑦)2
) ,  𝑖𝑓 |

2𝑦1

𝑘−2𝑦1
| < 𝑚 < |

𝑘−2𝑥1

2𝑥1
|

(
(𝑘−2𝑥1)

2𝑥

4𝑦2
,
(𝑘−2𝑥1)

2

4𝑦
) ,  𝑖𝑓 |

𝑘−2𝑥1

2𝑥1
| < |𝑚|

(
𝑘2𝑥

4(𝑥−𝑦)2
,

𝑘2𝑦

4(𝑥−𝑦)2
) ,  𝑖𝑓 − |

𝑘−2𝑥1

2𝑥1
| < 𝑚 < − |

2𝑦1

𝑘−2𝑦1
|

(
(𝑘−2𝑦1)

2

4𝑥
,
(𝑘−2𝑦1)

2𝑦

4𝑥2
) ,  𝑖𝑓 𝑚 < |

2𝑦1

𝑘−2𝑦1
|

     (9) 

where 𝑥𝑖 ≠ 0, 𝑦𝑖 ≠ 0, 𝑥1 > 𝑦1 and 𝑚 is the slope of the 𝑂𝑃⃗⃗⃗⃗  ⃗. Note that if 𝑥𝑖 ≠ 0, 𝑦𝑖 = 0 and 𝑥1 > 𝑦1 , then 

(𝑥′, 𝑦′) =

{
 
 

 
 (

𝑘2𝑥

4(𝑥+𝑦)2
,

𝑘2𝑦

4(𝑥+𝑦)2
) , 𝑖𝑓 0 < 𝑚 < |

𝑘−2𝑥1

2𝑥1
|

(
(𝑘−2𝑥1)

2𝑥

4𝑦2
,
(𝑘−2𝑥1)

2

4𝑦
) , 𝑖𝑓 |

𝑘−2𝑥1

2𝑥1
| < |𝑚|

(
𝑘2𝑥

4(𝑥−𝑦)2
,

𝑘2𝑦

4(𝑥−𝑦)2
) , 𝑖𝑓 − |

𝑘−2𝑥1

2𝑥1
| < 𝑚 < 0

             (10) 

and if 𝑥𝑖 = 0, 𝑦𝑖 ≠ 0, 𝑎𝑛𝑑 𝑥1 > 𝑦1, then 

(𝑥′, 𝑦′) =

{
 
 

 
 (

𝑘2𝑥

4(𝑥+𝑦)2
,

𝑘2𝑦

4(𝑥+𝑦)2
) , 𝑖𝑓 |

2𝑦1

𝑘−2𝑦1
| < 𝑚

(
𝑘2𝑥

4(𝑥−𝑦)2
,

𝑘2𝑦

4(𝑥−𝑦)2
) , 𝑖𝑓 𝑚 < − |

2𝑦1

𝑘−2𝑦1
|

(
(𝑘−2𝑦1)

2

4𝑥
,
(𝑘−2𝑦1)

2𝑦

4𝑥2
) , 𝑖𝑓 |𝑚| < |

2𝑦1

𝑘−2𝑦1
|

             (11) 

 

Proof. The central ellipse ℰ with foci 𝐹1 = (𝑥1, 𝑦1), 𝐹2 =

(𝑥2, 𝑦2) and the constant 𝑘 is the set  

{𝑄 ∈ ℝ𝑇
2 : ∣ 𝑥 − 𝑥1 ∣ +∣ 𝑦 − 𝑦1 ∣ +∣ 𝑥 − 𝑥2 ∣ +∣ 𝑦 − 𝑦2 ∣=

𝑘,𝑄 = (𝑥, 𝑦), k ≥ 𝑑𝑇(𝐹1, 𝐹2 ) }.                          (12) 

Assume that 𝑃 = (𝑥, 𝑦) and 𝑃′ = (𝑥′, 𝑦′) are inverse pair 

of points under 𝐼ℰ(𝑂, 𝑘), thus 𝑂𝑃⃗⃗⃗⃗  ⃗ and  𝑂𝑃′⃗⃗ ⃗⃗ ⃗⃗  ⃗ have the same 

direction since 𝑃, 𝑃′ and 𝑂 are collinear. Then                 

𝑂𝑃′⃗⃗ ⃗⃗ ⃗⃗  ⃗=   𝑡𝑂𝑃⃗⃗⃗⃗  ⃗ for 𝑡 ∈ ℝ+. Since 𝑃 and 𝑃′ are inverse points 

and by (5) we have 

𝑡 =
[𝑑𝑇(𝑂,𝑄)]

2

(|𝑥|+|𝑦|)2
                          (13) 

and by substituting the value of 𝑡 in (𝑥′, 𝑦′) = (𝑡𝑥, 𝑡𝑦) 

required results are obtained. For instance if                 

 
𝑘−2𝑥1

2𝑥1
< ∣ 𝑚 ∣, then 𝑑𝑇(𝑂, 𝑄) = (1+∣ 𝑚 ∣)(𝑘−2𝑥1

2𝑚
 ). Thus 

(𝑥′, 𝑦′) = (
(𝑘−2𝑥1)

2𝑥

4𝑦2
,
(𝑘−2𝑥1)

2

4𝑦2
).  

 
Corollary 3.5 Let 𝐼ℰ(𝑂, 𝑘) be a taxicab elliptic inversion in 

the ellipse ℰ with foci 𝐹1(𝑥1, 𝑦1) and 𝐹2 = (𝑥2, 𝑦2), the 

center 𝑂 = (𝑎, 𝑏), and the constant 𝑘 in ℝ𝑇
2 . If 𝑃′(𝑥′, 𝑦′) 

and 𝑃 = (𝑥, 𝑦) are inverse pair of points according to 

𝐼ℰ(𝑂, 𝑘), then  
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(𝑥′, 𝑦′) =

{
 
 
 

 
 
 (𝑎 +

𝑘2(𝑥−𝑎)

4(𝑥−𝑎+𝑦−𝑏)2
, 𝑏 +

𝑘2(𝑦−𝑏)

4(𝑥−𝑎+𝑦−𝑏)2
) ,  𝑖𝑓 |

2(𝑦1−𝑏)

𝑘−2(𝑦1−𝑏)
| < 𝑚 < |

𝑘−2(𝑥1−𝑎)

2(𝑥1−𝑎)
|

(𝑎 +
(𝑘−2𝑥1−2𝑎)

2(𝑥−𝑎)

4(𝑦−𝑏)2
, 𝑏 +

(𝑘−2𝑥1−2𝑎)
2

4(𝑦−𝑏)
) ,  𝑖𝑓 |

𝑘−2(𝑥1−𝑎)

2(𝑥1−𝑎)
| < |𝑚|

(𝑎 +
𝑘2(𝑥−𝑎)

4(𝑥−𝑎−𝑦+𝑏)2
, 𝑏 +

𝑘2(𝑦−𝑏)

4(𝑥−𝑎−𝑦+𝑏)2
) ,  𝑖𝑓 − |

𝑘−2(𝑥1−𝑎)

2(𝑥1−𝑎)
| < 𝑚 < − |

2(𝑦1−𝑏)

𝑘−2(𝑦1−𝑏)
|

(𝑎 +
(𝑘−2𝑦1−2𝑏)

2

4(𝑥−𝑎)
, 𝑏 +

(𝑘−2𝑦1−2𝑏)
2(𝑦−𝑏)

4(𝑥−𝑎)2
) ,  𝑖𝑓 𝑚 < |

2(𝑦1−𝑏)

𝑘−2(𝑦1−𝑏)
|

         (14) 

 

where 𝑥𝑖 ≠ 0, 𝑦𝑖 ≠ 0, 𝑥1 > 𝑦1 and 𝑚 is the slope of the 

ray 𝑂𝑃⃗⃗⃗⃗  ⃗. 

 

Proof. The result is obvious by the Proposition 2.1.2.  

 

The statements of the following theorem would be 

proven by the definition of 𝐼ℰ(𝑂, 𝑘), so it is given without 

proof but some conditions are illustrated. 

 

Theorem 3.6 

 

i. If a line passes through the center of inversion 𝑂, 
then it is invariant under 𝐼ℰ(𝑂, 𝑘). 
 

ii. If a line doesn’t pass through the center of inversion 

𝑂, then it is not mapped onto a taxicab ellipse 

centered at 𝑂 under 𝐼ℰ(𝑂, 𝑘), see Figure 2. 

 

iii. Inverses of taxicab ellipses centered at 𝑂 which are 

the same type of ellipse of the inversion under 

𝐼ℰ(𝑂, 𝑘) are same type of taxicab ellipses with the 

center 𝑂. 

 

iv. Inverses of taxicab ellipses centered at 𝑂 which are 

not the same type of ellipse of the inversion under 

𝐼ℰ(𝑂, 𝑘) are not taxicab ellipses with the center 𝑂, 

see Figure 3. 

 

v. Inverses of taxicab ellipses not passing through 𝑂 

under 𝐼ℰ(𝑂, 𝑘) are not any taxicab ellipses. 

 

vi. Inverses of taxicab ellipses passing through the 

center of inversion 𝑂 under 𝐼ℰ(𝑂, 𝑘) are not lines not 

containing the center 𝑂. 

 

 
Figure 2. Inverse of a line 𝑙 not passing through 𝑂 under 𝐼ℰ(𝑂, 𝑘) 

 

 
Figure 3. Inverse of a taxicab ellipse  ℰ1 centered at 𝑂 which is 

not the same type of the ellipse of the inversion 𝐼ℰ(𝑂, 𝑘) 

 

𝐼ℰ(𝑂, 𝑘) is not an isometry in ℝ𝑇
2  , thus distance is not 

invariant under 𝐼ℰ(𝑂, 𝑘). However the cross ratio is a 

concept that includes distance and it is preserved under 

inversion under some conditions. Thus next the cross-

ratio and harmonic conjugates under 𝐼ℰ(𝑂, 𝑘) are 

investigated. 

 

Proposition 3.7 Let ℰ be a taxicab ellipse of inversion with 

the center 𝑂 = (𝑎, 𝑏), foci 𝐹1 = (𝑥1, 𝑦1) and 𝐹2 =

(𝑥2, 𝑦2), and the constant 𝑘. If 𝑃1, 𝑃2 are two points 

collinear with 𝑂 in ℝ𝑇
2  and if {𝑃1, 𝑃1

′} and {𝑃2, 𝑃2
′}  are 

inverse pairs with respect to 𝐼ℰ(𝑂, 𝑘), then 

𝑑𝑇(𝑃1
′,  𝑃2

′) =
[𝑑𝑇(𝑂,𝑄)]

2𝑑𝑇(𝑃1,𝑃2)

𝑑𝑇(𝑂,𝑃1)𝑑𝑇(𝑂,𝑃2)
,             (15) 

where 𝑄 is the intersection point of the ray 𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the 

ellipse  ℰ , 𝑚 is the slope of the ray 𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

 
𝑑𝑇(𝑂, 𝑄) =

{
  
 

  
 |

𝑘

2(1+𝑚)
| (1 + |𝑚|),   𝑖𝑓 |

2(𝑦1−𝑏)

𝑘−2(𝑦1−𝑏)
| < 𝑚 < |

𝑘−2(𝑥1−𝑎)

2(𝑥1−𝑎)
|

|
𝑘−2(𝑥1−𝑎)

2𝑚
| (1 + |𝑚|),  𝑖𝑓 |

𝑘−2(𝑥1−𝑎)

2(𝑥1−𝑎)
| < |𝑚|

|
𝑘

2(𝑚−1)
| (1 + |𝑚|), 𝑖𝑓 − |

𝑘−2(𝑥1−𝑎)

2(𝑥1−𝑎)
| < 𝑚 < − |

2(𝑦1−𝑏)

𝑘−2(𝑦1−𝑏)
|

|
𝑘−2(𝑦1−𝑏)

2
| (1 + |𝑚|),  𝑖𝑓 𝑚 < |

2(𝑦1−𝑏)

𝑘−2(𝑦1−𝑏)
|

  

(16) 

 
Proof.  Suppose that 𝑂, 𝑃1, 𝑃2 are collinear and 𝑃1

′, 𝑃2
′   are 

inverses of 𝑃1 and 𝑃2 respectively. By the Definition 3.2  

𝑑𝑇(𝑂, 𝑃1). 𝑑𝑇(𝑂, 𝑃1
′) = [𝑑𝑇(𝑂, 𝑄)]

2 

                                       =  𝑑𝑇(𝑂, 𝑃2). 𝑑𝑇(𝑂, 𝑃2
′).                      (17) 
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By using Corollary 2.1.5 

𝑑𝑇(𝑃1
′,  𝑃2

′) = |𝑑𝑇(𝑂, 𝑃1
′) − 𝑑𝑇(𝑂,  𝑃2

′)|

= |
[𝑑𝑇(𝑂.𝑄)]

2

𝑑𝑇(𝑂,𝑃1)
−

[𝑑𝑇(𝑂.𝑄)]
2

𝑑𝑇(𝑂,𝑃2)
|

=
[𝑑𝑇(𝑂.𝑄)]

2𝑑𝑇(𝑃1,𝑃2)

𝑑𝑇(𝑂,𝑃1)𝑑𝑇(𝑂,𝑃2)
.

                  (18)                 

Clearly the equality (15) holds if the points 𝑃1, 𝑃2 and 𝑂 

are collinear, that is the equality isn’t valid for every 

points in ℝ𝑇
2 . The next proposition suggests under which 

other conditions an analogue of (15) is satisfied. 

 

Proposition 3.8 Let {𝑃1 , 𝑃2, 𝑂} is a set of any distinct, non-

collinear points in ℝ𝑇
2  and {𝑃1, 𝑃1

′}, {𝑃2𝑃2
′} are inverse 

pairs of points under 𝐼ℰ(𝑂, 𝑘). Let 𝑚𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑚𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   denote 

the slopes of 𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗  ⃗ respectively. If 𝑚𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑚𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∈

{𝑚: |
𝑘−2(𝑥1−𝑎)

2(𝑥1−𝑎)
| < |𝑚|} and 𝑃1 and 𝑃2 lie on the line with 

slope 0 or, if 𝑚𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑚𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∈ {𝑚:𝑚 < |
2(𝑦1−𝑏)

𝑘−2(𝑦1−𝑏)
|} and 𝑃1 

and 𝑃2 lie on the line with slope ∞, then 

 𝑑𝑇(𝑃1
′,  𝑃2

′) =
 𝑑𝑇(𝑂,𝑄1) 𝑑𝑇(𝑂,𝑄2)𝑑𝑇(𝑃1,𝑃2)

𝑑𝑇(𝑂,𝑃1)𝑑𝑇(𝑂,𝑃2)
 ,           (19) 

where 𝑄1 is the intersection point of the 𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the 

ellipse ℰ, and  𝑄2 is the intersection point of the 𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

the ellipse ℰ. 

Proof. Note that if                                                      

𝑚𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑚𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∈ {𝑚: |
𝑘−2(𝑥1−𝑎)

2(𝑥1−𝑎)
| < |𝑚|}, then                 

𝑃1 = (𝑥3, 𝑦0) and 𝑃2 = (𝑥4, 𝑦0) are mapped to  

𝑃1
′ = (𝑎 +

(𝑘−2𝑥1−2𝑎)
2(𝑥3−𝑎)

4(𝑦0−𝑏)
2 , 𝑏 +

(𝑘−2𝑥1−2𝑎)
2

4(𝑦0−𝑏)
) and  

𝑃2
′ = (𝑎 +

(𝑘−2𝑥1−2𝑎)
2(𝑥4−𝑎)

4(𝑦0−𝑏)
2 , 𝑏 +

(𝑘−2𝑥1−2𝑎)
2

4(𝑦0−𝑏)
), 

respectively. If 𝑚𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑚𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∈ {𝑚:𝑚 < |
2(𝑦1−𝑏)

𝑘−2(𝑦1−𝑏)
|}, then  

𝑃1 = (𝑥0, 𝑦3) and 𝑃2 = (𝑥0, 𝑦4) are mapped to 

𝑃1
′ = (𝑎 +

(𝑘−2𝑦1+2𝑏)
2

4(𝑥0−𝑎)
, 𝑏 +

(𝑘−2𝑦1+2𝑏)
2(𝑦3−𝑏)

4(𝑥0−𝑎)
2 ) and  

𝑃2
′ = (𝑎 +

(𝑘−2𝑦1+2𝑏)
2

4(𝑥0−𝑎)
, 𝑏 +

(𝑘−2𝑦1−2𝑏)
2(𝑦4−𝑏)

4(𝑥0−𝑎)
2 ), 

respectively. Thus for both conditions it can easily be 

shown that (19) holds. 

 

𝑑𝑇[𝑃1, 𝑃2] is used to indicate the taxicab directed distance 

from 𝑃1 to 𝑃2 in the taxicab plane. If 𝑃1 is the initial point 

of the ray and the side 𝑃2 is contained has the positive 

direction of orientation, then 𝑑𝑇[𝑃1, 𝑃2] = 𝑑𝑇(𝑃1, 𝑃2), 

and 𝑑𝑇[𝑃1, 𝑃2] = − 𝑑𝑇(𝑃1, 𝑃2) when the ray has the 

opposite direction. 

 

Let the four distinct points on an oriented line in the 

taxicab plane be 𝑃1, 𝑃2, 𝑃3 and 𝑃4, then their taxicab cross 

ratio (𝑃1𝑃2, 𝑃3𝑃4)𝑇   is defined by 

(𝑃1𝑃2, 𝑃3𝑃4)𝑇 =
𝑑𝑇[𝑃1,𝑃3]𝑑𝑇[𝑃2,𝑃4]

𝑑𝑇[𝑃1,𝑃4]𝑑𝑇[𝑃2,𝑃3]
 .             (20) 

If 𝑃3, 𝑃4 ∈ [𝑃1𝑃2] or 𝑃3, 𝑃4 ∉ [𝑃1𝑃2], then the taxicab cross 

ratio is positive and if pairs {𝑃1, 𝑃2} and {𝑃3, 𝑃4} seperate 

each other, then the taxicab cross ratio is negative. Also a 

taxicab elliptic inversion with respect to ℰ with a center 

which is different from 𝑃1, 𝑃2, 𝑃3 and 𝑃4 , and collinear 

with these four points, preserves the taxicab croos ratio. 

 

Theorem 3.9 Taxicab elliptic inversion preserves the 

taxicab croos ratio. 

 

Proof. Let the four points 𝑃1, 𝑃2, 𝑃3 and 𝑃4  are collinear 

in the taxicab plane and 𝑃1
′, 𝑃2

′, 𝑃3
′ and 𝑃4

′ be inverses 

of 𝑃1, 𝑃2, 𝑃3 and 𝑃4, respectively according to taxicab 

elliptic inversion 𝐼ℰ(𝑂, 𝑘). Observe that the seperation or 

non-seperation of the pairs {𝑃1, 𝑃2} and {𝑃3, 𝑃4} is 

invariant under taxicab elliptic inversion and also taxicab 

elliptic inversion reverses the taxicab directed distance 

from the point 𝑃1 to the point 𝑃2 along a line 𝑙 to taxicab-

directed distance from point 𝑃2
′  to the point 𝑃1

′. By 

considering these observations and Proposition 3.7 we 

have 

(𝑃1
′𝑃2

′, 𝑃3
′𝑃4

′)𝑇 =
𝑑𝑇[𝑃1

′, 𝑃3
′]. 𝑑𝑇[𝑃2

′, 𝑃4
′]

𝑑𝑇[𝑃1
′, 𝑃4

′]. 𝑑𝑇[𝑃2
′, 𝑃3

′]
 

                         =

[𝑑𝑇(𝑂,𝑄)]
2𝑑𝑇(𝑃1,𝑃3)

𝑑𝑇(𝑂,𝑃1)𝑑𝑇(𝑂,𝑃3)
.
[𝑑𝑇(𝑂,𝑄)]

2𝑑𝑇(𝑃2,𝑃4)

𝑑𝑇(𝑂,𝑃2)𝑑𝑇(𝑂,𝑃4)

[𝑑𝑇(𝑂,𝑄)]
2𝑑𝑇(𝑃1,𝑃4)

𝑑𝑇(𝑂,𝑃1)𝑑𝑇(𝑂,𝑃4)
.
[𝑑𝑇(𝑂,𝑄)]

2𝑑𝑇(𝑃2,𝑃3)

𝑑𝑇(𝑂,𝑃2)𝑑𝑇(𝑂,𝑃3)

       (21) 

=
𝑑𝑇(𝑃1 , 𝑃3)𝑑𝑇(𝑃2, 𝑃4)

𝑑𝑇(𝑃1 , 𝑃4)𝑑𝑇(𝑃2, 𝑃3)
 

                               = (𝑃1𝑃2, 𝑃3𝑃4)𝑇. 

 

Suppose that 𝑃1, 𝑃2, 𝑃3 and 𝑃4  are four points on a line 𝑙 

in ℝ𝑇
2  . If (𝑃1, 𝑃2, 𝑃3, 𝑃4)𝑇 = −1, then 𝑃1, 𝑃2, 𝑃3 and 𝑃4   

form a harmonic set and it is denoted by 𝐻(𝑃1𝑃2, 𝑃3𝑃4)𝑇 . 

That is, any pair 𝑃3 and 𝑃4 on 𝑙 is said to divide 𝑃1 and 𝑃2 

harmonically if 

𝑑𝑇[𝑃1,𝑃3]𝑑𝑇[𝑃2,𝑃4]

𝑑𝑇[𝑃1,𝑃4]𝑑𝑇[𝑃2,𝑃3]
= −1.                      (22) 

Then the points 𝑃3 and 𝑃4 are called taxicab harmonic 

conjugates with respect to 𝑃1 and 𝑃2. 
 

Theorem 3.10 Let ℰ be a taxicab ellipse with the center 𝑂, 

the constant 𝑘 and 𝑃1, 𝑃2 ∈ ℰ be any two points collinear 

with  𝑂 in ℝ𝑇
2  . Let 𝑃3, 𝑃4 be a pair of distinct points of the 

ray 𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗  ⃗ , which seperates {𝑃1, 𝑃2}. Thus, 𝑃3 and 𝑃4 are 

taxicab harmonic conjugates with respect to 𝑃1 and 𝑃2 if 

and only if 𝑃3 and 𝑃4 is a pair of inverse points under 

𝐼ℰ(𝑂, 𝑘). 

Proof. Let 𝑃3 and 𝑃4 are taxicab harmonic conjugates with 

respect to 𝑃1 and 𝑃2. So 
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(𝑃1𝑃2, 𝑃3𝑃4)𝑇 = −1                         (23) 

or 

   
𝑑𝑇[𝑃1,𝑃3]𝑑𝑇[𝑃2,𝑃4]

𝑑𝑇[𝑃1,𝑃4]𝑑𝑇[𝑃2,𝑃3]
= −1.           (24) 

Since 𝑃3 is between {𝑃1, 𝑃2}  and 𝑃3  is on the ray 𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 

𝑑𝑇(𝑂, 𝑄) = 𝑑𝑇(𝑂, 𝑃1) = 𝑑𝑇(𝑂, 𝑃2), 

𝑑𝑇(𝑃3, 𝑃2) = 𝑑𝑇(𝑂, 𝑄) − 𝑑𝑇(𝑂, 𝑃3)         (25) 

and 

𝑑𝑇(𝑃1, 𝑃3) = 𝑑𝑇(𝑂, 𝑄) + 𝑑𝑇(𝑂, 𝑃3).         (26) 

Since 𝑃4 is not between { 𝑃1, 𝑃2} and 𝑃4 is on the ray 𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗  ⃗  

and 𝑑𝑇(𝑂,𝑄) = 𝑑𝑇(𝑂, 𝑃1) = 𝑑𝑇(𝑂, 𝑃2), 

𝑑𝑇(𝑃1, 𝑃4) = 𝑑𝑇(𝑂, 𝑄) + 𝑑𝑇(𝑂, 𝑃4)        (27) 

and 

𝑑𝑇(𝑃2, 𝑃4) = 𝑑𝑇(𝑂, 𝑄) − 𝑑𝑇(𝑂, 𝑃3).         (28) 

Thus, 

(𝑑𝑇(𝑂,𝑄)+𝑑𝑇(𝑂,𝑃3))(𝑑𝑇(𝑂,𝑄)−𝑑𝑇(𝑂,𝑃4))

(𝑑𝑇(𝑂,𝑄)+𝑑𝑇(𝑂,𝑃4))(𝑑𝑇(𝑂,𝑄)−𝑑𝑇(𝑂,𝑃3))
= −1.   (29) 

By rearranging (29) 

(𝑑𝑇(𝑂, 𝑄) + 𝑑𝑇(𝑂, 𝑃3))(𝑑𝑇(𝑂, 𝑄) − 𝑑𝑇(𝑂, 𝑃4)) =

    (𝑑𝑇(𝑂, 𝑄) + 𝑑𝑇(𝑂, 𝑃4))(𝑑𝑇(𝑂, 𝑃3)−𝑑𝑇(𝑂, 𝑄))    (30) 

and by simplifying (30)  

𝑑𝑇(𝑂, 𝑃3). 𝑑𝑇(𝑂, 𝑃4) = (𝑑𝑇(𝑂, 𝑄))
2       (31) 

is obtained. So, 𝑃3 and 𝑃4 are the taxicab inverse points 

with respect to 𝐼ℰ(𝑂, 𝑘). The same conclusion would be 

obtained by similar calculations for the conditions 𝑃3 and 

𝑃4 are on the ray 𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗  ⃗. For the converse statement of the 

theorem the proof is similar. 

 

4. Discussion and Conclusion 

 

This study deals with a generalization of the classical 

circular inversion in Euclidean geometry. Inversion is a 

very important, popular and useful transformation of the 

analytical plane since not only it reveals challenging 

problems but also it makes many problems in geometry 

much manageable when it is applied. 

 

In this work inversions with respect to taxicab ellipses are 

introduced and some properties of these inversions are 

investigated. By this work we think that this 

generalization would provoke further studies by 

interested readers. 

Declaration of Ethical Standards 

The authors declare that they comply with all ethical standards. 

Declaration of Competing Interest 

The authors have no conflicts of interest to declare regarding the 

content of this article. 

 

5. References  

 

Akça, Z. and Kaya, R., 1997. On the Taxicab Trigonometry. 

Journal of Inst. of Math. & Comp. Sci., 10(3), 151-159.  

  

Bayar, A. and Ekmekçi, S., 2014. On Circular Inversions in 

Taxicab Plane. J. Adv. Res. Pure Math., 6, 33-39.  

 https://doi.org/10.5373/jarpm.1934.013114 
 

Blair, D., 2000. Inversion Theory and Conformal Mapping, 

Student Mathematical Library, American 

Mathematical Society. 
  

Chen, G., 1992. Lines and Circles in Taxicab Geometry, 

M.S. thesis, Department of Mathematics and 

Computer Science, Centered Missouri State 

University.  
  

Childress, N., 1965. Inversion with Respect to the Central 

Conics. Math. Mag., 38(3). 

 https://doi.org/10.1080/0025570X.1965.11975615 
 

Divjak, B., 2000. Notes on Taxicab Geometry. Scientific 

and Professional Information Journal of Croatian 

Society for Constructive Geometry and Computer 

Graphics (KoG), 5, 5-9. 
  

Gelişgen, Ö., 2007. On the Minkowski Geometries: A 

General Analysis About Taxicab, Chinese Checkers and 

-Geometries, Phd Thesis, Eskişehir Osmangazi 

University, 163.  
  

Gelişgen , Ö. and Ermiş, T., 2019. Some Properties of 

Inversions in the Alpha Plane. Forum Geometricorum, 

19, 1-9.  
  

Ho, Y. P. and Lıu, Y., 1996. Parabolas in Taxicab Geometry. 

Missouri J. of Math. Sci., 8, 63-72.  
  

Kaya, R., 2004. Area Formula For Taxicab Triangles. Pi Mu 

Epsilon, 12(4), 219-220.  
 

Krause, E.F., 1975. Taxicab Geometry, Addision-Wesley.  
 

Laatsch, R., 1982. Pramidal Sections in Taxicab Geometry. 

Mitt. Math. Magazine, 55, 205-212.  
 

Menger, K., 1952. You Will Like Geometry, Guildbook of 

the Illinois Institute of Technology Geometry Exhibit, 

Museum of Science and Industry, Chicago, IL. 
 

https://doi.org/10.1080/0025570X.1965.11975615


 Elliptic Inversions in Taxicab Geometry, CAN. 

272 

Minkowski, H., 1967. Gesammelte Abhandlungen, Chelsa 

Publishing Co. New York. 
 

Nickel, J. A., 1995. A Budget of inversion. Math. Comput. 

Modelling, 21, 87-93.  
 

Özcan, M. and Kaya, R., 2002. On the Ratio of Directed 

Lengths in the Taxicab Plane and Related Properties. 

Missouri Journal of Mathematical Sciences, 14(2), 107- 

117.  
 

Patterson, B.C., 1933. The origins of the Geometric 

Principle of Inversion. Isis, 19(1), 154 - 180. 
 

Ramirez, J., 2014. Inversions in an ellipse. Forum Geom., 

14, 107-115.  
 

Ramirez, J. and Rubiano, G. 2014. A Geometrical 

Construction of Inverse Points with Respect to an 

Ellipse. Int. J. Math. Ed. Sci. Tech., 45(8), 1254-1259. 

https://doi.org/10.1080/0020739X.2014.914255  
 

Reynolds, B.E., 1980. Taxicab Geometry. Pi Mu Epsilon 

Journal, 7, 77-88.  
  

Schattschneider, D. J., 1984. The Taxicab group. Amer. 

Math. Monthly, 91, 423-428.  

 https://doi.org/10.1080/00029890.1984.11971453 
 

So, S.S., 2002. Recent Developments in Taxicab Geometry. 

Cubo Mathematica Educational, 4(2), 79-96.  
  

Thompson, A. C., 1996. Minkowski Geometry, Cambridge 

University Press.  
 

Tian, S., So, S. S. and Chen, G., 1997. Concerning Circles in 

Taxicab Geometry. J. Math. Educ. Sci. Technol., 28, 

727-733. 

https://doi.org/10.1080/0020739970280509 

 

 

https://doi.org/10.1080/0020739X.2014.914255
https://doi.org/10.1080/00029890.1984.11971453
https://doi.org/10.1080/0020739970280509

