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Abstract

In this paper, we consider pseudosymmetric Lorentz Sasakian space forms admitting almost n—Ricci solitons
in some curvature tensors. Ricci pseudosymmetry concepts of Lorentz Sasakian space forms admits n—Ricci
soliton have introduced according to the choice of some special curvature tensors such as Riemann, concircular,
projective, .# —projective, W; and W,. Then, again according to the choice of the curvature tensor, necessary
conditions are given for Lorentz Sasakian space form admits n—Ricci soliton to be Ricci semisymmetric. Then
some characterizations are obtained and some classifications have made under the some conditions.
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1. Introduction

The notion of Ricci flow was introduced by Hamilton in 1982. With the help of this concept, Hamilton found the canonical
metric on a smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannian manifolds, especially
for those manifolds with positive curvature. Perelman used Ricci flow and it surgery to prove Poincare conjecture in [1, 2]. The
Ricci flow is an flow is an evolution equation for metrics on a Riemannian manifold defined as follows:

2 g()=-25(s(1).

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A solution to the Ricci flow is called Ricci soliton if it
moves only by a one parameter group of diffeomorphism and scaling.

During the last two decades, the geometry of Ricci solitons has been the focus of attention of many mathematicians. In
particular, it has become more important after Perelman applied Ricci solitons to solve the long standing Poincare conjecture
posed in 1904. In [3], Sharma studied the Ricci solitons in contact geometry. Thereafter Ricci solitons in contact metric
manifolds have been studied by various authors such as Ashoka et al. in [4, 5], Bagewadi et al. in [6], Ingalahalli in [7], Bejan
and Crasmareanu in [8], Blaga in [9], Chandra et al. in [10], Chen and Deshmukh in [11], Deshmukh et al. in [12], He and Zhu
[13], Atceken et al. in [14], Nagaraja and Premalatta in [15], Tripathi in [16] and many others.

¢ —sectional curvature plays an important role for Sasakian manifold. If the ¢ —sectional curvature of a Sasakian manifold
is constant, then the manifold is a Sasakian-space-form [17]. P. Alegre and D. Blair described generalized Sasakian space
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forms [18]. P. Alegre and D. Blair obtained important properties of generalized Sasakian space forms in their studies and
gave some examples. P. Alegre and A. Carriazo later discussed generalized indefinite Sasakian space forms [19]. Generalized
indefinite Sasakian space forms are also called Lorentz-Sasakian space forms, and Lorentz manifolds are of great importance
for Einstein’s theory of Relativity.

In this paper, we consider Lorentz Sasakian space form admitting almost 1] —Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of Lorentz Sasakian space form admits 11 —Ricci soliton have introduced according to the choice of
some special curvature tensors such as Riemannian, concircular, projective, .# —projective, W) and W,. Then, again according
to the choice of the curvature tensor, necessary conditions for Lorentz Sasakian space form admits 1 —Ricci soliton to be Ricci
semisymmetric are given. Then some characterizations are obtained and some classifications have been made

2. Preliminaries

Let N be a (2m + 1) —dimensional Lorentz manifold. If the N Lorentz manifold with (¢,&,7,g) structure tensors satisfies the
following conditions, it is called a Lorentz-Sasakian manifold

¢2Yl =-t+n (Yl)éﬂn (é) =1L (¢Yl) =0,
g(¢Yla¢Y2) :g(Y17Y2)+n (Yl)n (Y2)777 (Yl) = _g(Ylag)v
(Vr0)a=-g(M, o) E—n(Va)Y1, Ty & =—oY1,
where, v/ is the Levi-Civita connection according to the Riemannian metric g.
The plane section ITin 7y, N. If the IT plane is spanned by Y; and ¢Y, this plane is called the ¢-section. The curvature of
the ¢-section is called the ¢-sectional curvature. If the Lorentz-Sasakian manifold has a constant ¢-sectional curvature, this

manifold is called the Lorentz-Sasakian space form and is denoted by N (c). The curvature tensor of the Lorentz-Sasakian
space form N (c) is defined as

RN, Y)Y = () {g(1a,13)Y1 —g(Y1,Y3) Y}
+ () {e(M,9Y3) 92 — g (Y2,973) 91y

2.1
+2¢ (11,0Y2) oY3+ 1 (Y2)n (Y3) Y1 —n(Y1)n (Y3) Yz

+e(V1,13)n (12) € —g (Y2, Y3)n (V1) &},
forall Y1,Y»,Y3 € x (N).

Lemma 2.1. Let N (c) be the (2m+ 1)—dimensional Lorentz-Sasakian space form. The following relations are hold for the
Lorentz-Sasakian space forms.

Uy, & = —0Y1, (2.2)

(Vy,0) Y2 =—g(11,Y2) & —n (Y2) Y1,

(Vy,n) Y2 =g(¢Y1.Y2),

RMn)é=nM)Y1—nh)Y, (2.3)

NRM,)Y3) =g(n(¥1)Ya—n(Y2)1,13), 2.4)
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SN, 1) = {(mH)CZGmZ)]g(YI,Yz)
DD ),
s(Yl,é)=—{(c+1;_4m]n(Y1), 2.5)
or [(m+2)c;(3m—2)} . (c+1)2(m+l)n(Yl)é
0¢ = (U=

where R, S are the Riemannian curvature tensor, Ricci curvature tensor of N (¢), respectively.
Precisely, Ricci soliton on a Riemannian manifold (]V , g) is defined as a triple (g,&, k) on N satisfying
ng—FZS—‘rZKIg =0,

where L¢ is the Lie derivative operator along the vector field & and K is a real constant. We note that if £ is a Killing vector
field, then the Ricci soliton reduces to an Einstein metric (g, k1) . Futhermore, in [20], generalization is the notion of 11 —Ricci
soliton defined by J.T. Cho and M. Kimura as a quadruple (g,&, k1, k) satisfying

Leg+2S+2K18+2i0un@©n =0, 2.6)

where k1 and k; are real constants and 1) is the dual of & and S denotes the Ricci tensor of N. Furthermore if k; and x» are
smooth functions on N, then it called almost n—Ricci soliton on N [20].

Suppose the quartet (g, &, ki, k») is almost §—Ricci soliton on manifold N. Then,

-If x; < 0, then N is shrinking.

-If kK =0, then N is steady.

-If & > 0, then N is expanding.

3. Almost n—Ricci Solitons on Ricci Pseudosymmetric and Ricci Semisymmetric
Lorentz Sasakian Space Form

Now let (g,&, k1, k2) be an almost ) —Ricci soliton on Lorentz Sasakian space form. Then we have

(Leg) (11,Y2) = Leg (Y1,Y2) — g (L)1, Y2) — g (Y1, LeYa)

=8&g(1,12) —g([&. ], 1o) —g (11, (€. Y2])

=g(Ver,12) +¢ (11, Veha) —g (Vel1,Ya)

+2(Vy, &, 12) — ¢ (Veha, Y1) +¢ (Y1, VR €),
forall ¥;,Y, € I'(TM). By using ¢ is anti-symmetric and taking into account (2.2) we have

(Leg) (Y1,Y2) =0. 3.1

Thus, in a Lorentz Sasakian space form, from (2.6) and (3.1) we have

S(Y,12) +xi1g(Y1,12) +xon (Y1)n (Y2) = 0. (3.2)
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It is clear from (3.2) that the (2m + 1)—dimensional Lorentz Sasakian n—Ricci soliton (N*"*! ¢ & ki, k) is an n—Einstein
manifold.
For Y> = £ in (3.2) this implies that

S(é,Y])Z(Kl—Kz)T](Yl). (3.3)
Taking into account of (3.3) we conclude that
4m — 1
m_ngggig

Definition 3.1. Let N (c) be an (2m+ 1) —dimensional Lorentz Sasakian space form. If R-S and Q (g, S) are linearly dependent,
then the N (c) is said to be Ricci pseudosymmetric.

In this case, there exists a function L; on N (c) such that
R-S=1,0(g.5).

In particular, if L; = 0, the manifold N (c) is said to be Ricci semisymmetric.
Let us now investigate the Ricci pseudosymmetry case of the (2m + 1) —dimensional Lorentz Sasakian space form.

Theorem 3.2. Let N (c) be Lorentz Sasakian space form and (g, , k1, %) be almost n—Ricci soliton on N (c). If N (c) is a
Ricci pseudosymmetric, then

_ 2k1—(c+1)+4m
C dm -2k —(c+1)’
provided 2k #4m— (c+1).

Proof. Let be assume that Lorentz Sasakian space form N (c) be Ricci pseudosymmetric and (g, ki, k») be almost 1—Ricci
soliton on Lorentz Sasakian space form N (c). Then we have

(R(11,Y2)-S) (Y,Y5) = L10(8,S) (Ya,Y5:Y1,Y2)
for all ¥,Y»,Y4,Ys € I'(TN) . From the last equation, we can easily write

L

S(R(Y1,Y2)Yy,Ys) +S (Ya,R(Y1,Y2)Y5)

(3.4
=1 {S((Y] Ng Yg) Y4,Y5) —|—S(Y47 (Y] Ng Yz) Ys)} .
If we choose Y5 = & in (3.4) we get
SR, %2)Y4,E) +S (Ya,R(Y1,12) E)
=Li{S(g(¥2,Y4)Y1 —g(Y1,Ys) 12,&) (3.5)
+SYa,n()2—n(Y2)1)}.
If we make use of (2.3) and (2.5) in (3.5) we have
- {M] N (R(Y1,Y2)Ys) +S(Ya,n (Y2) Y1 =1 (V1) 2)
=L {- [ ey -n ()N 1) 3.6
+SYa,n(N)2—n(2)1)}.
If we use (2.4) in the (3.6), we get
- {W] gmM)a—n ()1, Ys)
+S(n ()Y —n (1) Yo, Ya)
3.7

=L {= [ g (r) Yo m (1) 1. Ya)

+SYa,n (Y1) ra—n(Y2) Y1)}
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If we use (3.2) in the (3.7), we can write

[(Kl - W) + (K] + (L-+1%,4m> L1} X

(3.8)
gm)2—n(¥2)¥1,Ys) =0.
It is clear from (3.8)
L— 2K *(C+1)+4m.
dm—2K; — (c+1)
This completes the proof. O

Thus we have the following corollaries.

Corollary 3.3. Let N (c) be Lorentz Sasakian space form and (g,&, k1, %2) be almost n—Ricci soliton on N (c). If N (c) is a

(c+1

Ricci semisymmetric, then N (c) is an n—Einstein manifold with k| = # and Ko = (¢c+1) —4m.

Corollary 3.4. Let N(c) be Lorentz Sasakian space form and (g, , k1, %) be almost —Ricci soliton on N (c). If N (c) is a
Ricci semisymmetric, then we observe that:

i) N (c) is expanding, if (c+1) > 4m.

ii) N (c) is shrinking, if (c+ 1) < 4m.

For a (2m+ 1) —dimensional semi-Riemannian manifold N, the concircular curvature tensor is defined as

C(Y1,Y2)Y3=R(Y,Y2) Y3 — (Y2, 3)Y1 —g(Y1,13)Ys]. (3.9)

r
2m(2m+1)
For a (2m+ 1) —dimensional Lorentz Sasakian space form, if we choose ¥3 = & in (3.9) we can write

r

CN,hh)é= {14'2”1(2"1_'_1)

} N (Y2)Y1 —n (Y1) Y], (3.10)

and similarly if we take the inner product of both sides of (3.9) by &, we get

r

n(C (Y, Rn)r) = {] +m

}8(77(Y1)Y2—11(Y2)Y1,Y3)~ (3.1D
Definition 3.5. Let N (¢) be a (2m+ 1) —dimensional Lorentz Sasakian space form. If C-S and Q (g,S) are linearly dependent,
then it is said to be concircular Ricci pseudosymmetric.

In this case, there exists a function L, on N (c) such that
C'S:LQQ(g7S).

In particular, if L, = 0, the manifold N (¢) is said to be concircular Ricci semisymmetric.
Let us now investigate the concircular Ricci pseudosymmetry case of the Lorentz Sasakian space form.

Theorem 3.6. Let N (c) be Lorentz Sasakian space form and (g,&, k1, k) be almost n—Ricci soliton on N (c). If N (c) is a
concircular Ricci pseudosymmetric, then

2K — (c+1)+4m][2m (2m+1) + 7]

b= o V= (c+ 1) —2x1]

provided 4m # 2k + (c+1).

Proof. Let be assume that Lorentz Sasakian space form N (c) be concircular Ricci pseudosymmetric and (g, €, ki, k») be almost
n—Ricci soliton on Lorentz Sasakian space form N (c). That is mean

(C(11,Y2)-S) (Ya,Y5) = L0(8,S) (Y4,Y5:Y1,Y2),
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for all ¥,Y»,Y4,Ys € I'(TN) . From the last equation, we can easily write

S(C(Y1,Y2)Y4,Y5)+ S (Y4,C (Y1,Y2)Ys5)

=L {S((Y1 N Y2) Y4, Ys5) + S (Ya, (Y1 N Y2) Y5) } .
If we choose Y5 = & in (3.12) we get
S(C(1,12)Ys,8) + S (¥a,C(Y1,2) §)

=L {S(g(V2, V1)1 —g(1,Y4) 1>, &)

+SYa,n(N)2—n(2)1)}.
If by using (2.5) and (3.10) in (3.13) we have

(1. [+ g | 021 —n () 1)
a {W] n(C(11,Y2)Ys)

=L~ S () n-n ()N, 1)

+S(Yy,m(X)a—n (Y2)11)}.
Substituting (3.11) in (3.14), we get

B {(ng_‘lm] [1 + 2m(2:n+]):| g Ya—n (Y)Y, Ya)

14 g | SO ()%~ () 12, )

=L2{— [W}g(n M)Y—n((Y2)%,Ys)

+SMM)—n(2)1,Ya)}

If we use (3.2) in the (3.15), we can write
Klq - (CH%%m) (1 + 2m<2;n+1)) + (K1 + (CH%%m) Lz} X

gMm)Y2a—n(Y2)Y1,Y) =0.
This implies that

2K — (c+1)+4m] 2m (2m+1) + 7]
2m(2m—+1)[4m— (c+1) —2kK]

This completes the proof.

L=

We can give the following corollaries.

(3.12)

(3.13)

(3.14)

(3.15)

Corollary 3.7. Let N (c) be Lorentz Sasakian space form and (g,&, K1, %2) be almost —Ricci soliton on N (¢). If N (c) is a

concircular Ricci semisymmetric, then N (c) is either manifold with scalar curvature r = —2m (2m+1) or kK =

(c+1)—4m

Corollary 3.8. Let N (c) be Lorentz Sasakian space form and (g,&, k1, %2) be almost —Ricci soliton on N (¢). If N (c) is a

concircular Ricci semisymmetric, then we conclude that:
i)Letr <2m(2m+1).

a) N (c) is expanding, if (c+1) > 4m.

b) N (c) is shrinking, if (c+1) < 4m.

ii) Let r > 2m(2m+1).

¢) N (c) is shrinking, if (c+ 1) > 4m.

d)N (c) is expanding, if (c+ 1) < 4m.
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For a (2m+ 1) —dimensional semi-Riemannian manifold N, the projective curvature tensor is defined as
1
P(Y1,Y2)Y3=R(Y1,}2) Y3 — m [S(Y2,Y3)Y1 —S(Y1,Y3) Y. (3.16)

For a (2m+ 1) —dimensional Lorentz Sasakian space form, if we choose ¥3 = & in (3.16) we can write

c+1
P(Y1,11)& = im

M) —n")T], 3.17)

and in the same way if we take the inner product of both sides of (3.16) by &, we get

1
NPT = S e (n () Yo =1 (1) .15). (318)

Definition 3.9. Let N (¢) be a (2m+ 1) —dimensional Lorentz Sasakian space form. If P- S and Q (g,S) are linearly dependent,
then the manifold is said to be projective Ricci pseudosymmetric.

In this case, there exists a function L3 on N (c) such that

In particular, if L3 = 0, the manifold N (c) is said to be projective Ricci semisymmetric.
Let us now investigate the projective Ricci pseudosymmetry case of the Lorentz Sasakian space form.

Theorem 3.10. Let N (c¢) be Lorentz Sasakian space form and (g,&, k1, k2) be almost n—Ricci soliton on N (¢). If N (¢) is a
projective Ricci pseudosymmetric, then

~ (e+1)[2K — (c+ 1) +4m]
2mdm—(c+1)—-2Ky] ’

provided 2x) #4m— (c+1).

Proof. Let be assume that Lorentz Sasakian space form N (c) be projective Ricci pseudosymmetric and (g, &, k1, k> ) be almost
n—Ricci soliton on Lorentz Sasakian space form N (c). That is mean

(P(Y1,12)-S) (Ys,Y5) = L30Q(g,S) (Ya,Y5:Y1,12),
forall Y1,Y5,Y4,Ys €T (TN ) . From the last equation, we can easily see

S(P(Y1,Y2)Y4,Y5) +S (Ya, P (Y1,12)Y5)

=L3{S((Y1 NgV2) Y4, Y5) + S (Ya, (V1 A Y2) ¥5) } . e
If we choose Y5 = & in (3.19) we get

S(P(M1,12)Ys,8) + 8 (Ya, P(11,Y2) &)

=L3{S(g(12,Ya)Y1 —g(V1,Y4) 12,§) (3.20)

+S(Ya,n (M) 2 —n(2)11)}
If we taking into account (2.5) and (3.17) in (3.20), then we have

S(Ya, St N () Y1 —n (M) 1))

- {W] n(P(Y1,Y2)Ys)

3.21)

_ 3{_ [W}g(n )Ya—n((Y2)h,Ys)

+SYa,n (Y1) ra—n(Y2) Y1)}
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If we use (3.18) in the (3.21), we get
- {W] (S s ()Y —n (o) 11, Y4)

+(E) S )Y —n (1) Y, Ys)
(3.22)

=L {- < smrn-nm)n.1)

+S(MM)Y2—n(Y2)Y1,Y4)}.

If we use (3.2) in the (3.22), we taking into account
[(Kl o (c+1%—4m> (%) + (Kl + (c+12)—4m> LS} v

g(mM)Y2—n(2)1,Ys) =0.
It is clear from (3.23)

(c+1)[2x1 —(c+1)+4m)
2m[4m—(c+1) —2x]

(3.23)

Ly =

This completes the proof. 0

We have the following corollaries.

Corollary 3.11. Let N (c) be Lorentz Sasakian space form and (g,&, k1, %) be almost n—Ricci soliton on N (c). If N (c) is a
projective Ricci semisymmetric, then N (c) is either real space form with constant section curvature c = —1 or k| = W.
Corollary 3.12. Let N (c) be Lorentz Sasakian space form and (g,&, k1, %2) be almost n—Ricci soliton on N (c). If N (c) is a
projective Ricci semisymmetric, then we conclude provided that ¢+ 1 # 0:

i) The soliton N (c) is expanding, if (c+1) > 4m.

ii) The soliton N (c) is shrinking, if (c+ 1) < 4m.

For a (2m+ 1) —dimensional semi-Riemannian manifold N, the .# —projective curvature tensor is defined as

M (Y1, 12)Y3=R(Y1,h) V3 — ﬁ [S(Y2,Y3) Y1 —S(Y1,13) 12

(3.24)
+8(Y2,Y3) QY1 — g (Y1,Y3) QY]
For a (2m+ 1) —dimensional Lorentz Sasakian space form, if we choose ¥3 = & in (3.24) we can write
M (V1) & =G ()Y —n (1) Y]
(3.25)
o [0 (Y2) QY1 — 1 (1) QY2).
On the other hand, if we take the inner product of both sides of (3.24) by £, we get
n (A (Y1,Y2)Y3) =SHe(n (Y1) a—n (2)Y1,Y3)
(3.26)

—S(M Y)Y —n (1) o, Y3).

Definition 3.13. Let N (c) be a (2m+ 1) —dimensional Lorentz Sasakian space form. If .4 -S and Q(g,S) are linearly
dependent, then it is said to be ./ —projective Ricci pseudosymmetric.

In this case, there exists a function Ly on N (¢) such that
M-S =1L140(g,S).

In particular, if L4 = 0, the manifold N (c) is said to be .# —projective Ricci semisymmetric.
Let us now investigate the .# —projective Ricci pseudosymmetric case of the Lorentz Sasakian space form admitting almost
1 —Ricci soliton.
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Theorem 3.14. Let N (¢) be Lorentz Sasakian space form and (g,&, k1, k2) be almost —Ricci soliton on N (¢). If N (¢) is a
M —projective Ricci pseudosymmetric, then

[, A [(c+1)—2m]— (c+1)[(c+ 1) —4m] — 4K}
4 4m 2K — (c+ 1) +4m] ’

provided 2x1 # (c+1) —4m.

Proof. Let be assume that Lorentz Sasakian space form N (c) be .# —projective Ricci pseudosymmetric and (g, &, ki, k) be
almost 1 —Ricci soliton on Lorentz Sasakian space form N (c). That is mean

(A (Y1,Y2)-S) (Ya, ¥5) = L4Q (8, S) (Ya,Y5:11,12)
for all Y1,Y,,Y4,Ys €T (TN) . From the last equation, we have

S( M (Y1,Y2) Yy, Ys) + S (Ya, A (Y1,Y2)Y5)
(3.27)
=Ly {S(N NgV2) Y, Y5) + S (Ya, V1 A Y2) ¥5) } .
If we choose Ys = & in (3.27) we get
S(A (Y1, Y2)Ya,E)+ S (Y, M (1,Y2) &)
=Li{S(g(2,u) "1 —g (1, Ya) 12, ) (3.28)
+SYa,n(N)2—n(2)1)}.
If we make use of (2.5) and (3.25) in (3.28), we have
- {W] n (A (Y1,Y2)Ys)
+S(Ya, S5 I ()Y —n (V) Y2
a1 [0 (Y2) OY1 — 1 (1) QY1) (329)
=L4{— [W} g h—n12)%,Y)
+SYa,n(N)2—n(2)1)}.
If we by using (3.26) in the (3.29), we get

—Wg(n () —n ()1, Yy)

g () (1K) Y —1 (V1) Ya, Ya)
+S (Yo, G N (M) Y1 =1 (V1) Y

(3.30)
+4 [0 (12) OY1 — 1 (1) QY2

= Ly{ = [ g (n (r) Yo - m (12) Y1, Ya)

+S(MM)2—n(Y2)Y1,Ya)}.
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If we use (3.2) in the (3.30), we can write

—Mé’(n (Y)Y —n(2)1,Ys)

8m

—Bllet D=t o () ¥, — 1 (V1) Ya, V)

4m

_%g (Y4a n (YZ)YI —-n (Yl) Yz)
(3.31)
—BLS( (R) Y1 —n ()Y, Ys)

=L4{— [W}g(n )Y —n ()%, Ya)

—x1g(Ya,n (M) "a—n (X2) 11,Ya) }.
Again, if we use (3.2) in the (3.31), we obtain

[Kl[(c+1)—4m] Ki(c+1)  (c+D)[(c+1)—4m]

4m + 4m 8m
2 —
_% ny ((c+l% 4m Kl)} % (3.32)

8(77 (YI)YZ_T’ (YQ)Y17Y4) =0.
It is clear from (3.32)

L [(c+1)=2m]—(c+1)[(c+1)—4m] —4K?
‘T 4m 2K — (c+ 1) +4m]

)

which proves our assertion O

We have the following corollaries.

Corollary 3.15. Let N (c) be Lorentz Sasakian space form and (g, , k1, %2) be almost n—Ricci soliton on N (¢). If N(c) is a
M —projective Ricci semisymmetric, then

(c+1)—4m
= 5 ,
or

c+1
K1 = 7

Corollary 3.16. Let N (c) be Lorentz Sasakian space form and (g,&, k1, %2) be almost n—Ricci soliton on N (¢). If N (c) is a
M —projective Ricci semisymmetric, then we observe that:

i) N (c) is shrinking, if ki is between M and <,
s R . _ (c+1)—4m
ii) N (c) is steady for x| = “———

and K1 = %,
iii) N (¢) is expanding for other cases of k.

For a (2m + 1) —dimensional semi-Riemannian manifold N, the W) —curvature tensor is defined as
1
W (1, Y2) Y3 =R(Y,Y2) Y3+ m [S(Y2,Y3)Y1 —S(11,Y3)Ya]. (3.33)

For a (2m+ 1) —dimensional Lorentz Sasakian space form, if we choose ¥3 = & in (3.33), we can write

8m—(c+1
W (512) = P D g ), (334
and similarly if we take the inner product of both sides of (3.33) by &, we get
8m—(c+1)

nWw (1, 12) 1) = gmM)h—n2)1,Ys). (3.35)

dm
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Definition 3.17. Let N(c) be a (2m+ 1) —dimensional Lorentz Sasakian space form. If Wy -S and Q(g,S) are linearly
dependent, then the manifold is said to be W) —Ricci pseudosymmetric.

In this case, there exists a function Ls on N (c) such that
Wi-S=LsQ(g.S).

In particular, if Ls = 0, the manifold N (c) is said to be W, —Ricci semisymmetric.
Let us now investigate the W) —Ricci pseudosymmetric case of the Lorentz Sasakian space form.

Theorem 3.18. Let N (c) be Lorentz Sasakian space form and (g, , k1, k») be almost —Ricci soliton on N (c). If N (c) is a
Wi —Ricci pseudosymmetric, then

[8m— (c+1)] [2k1 — (c+ 1) +4m]

L =
> dmfam—(c+1)—2K1]

provided 2x) #4m— (c+1).

Proof. Let be assume that Lorentz Sasakian space form N (c¢) be W) —Ricci pseudosymmetric and (g, &, k1, k2) be almost
n—Ricci soliton on Lorentz Sasakian space form N (c). That is mean

(W1 (1, Y2) - S) (Ya,Ys) = LsQ (g, S) (Ya,Ys5:Y1,Y2),
for all Y1,Y,,Y4,Ys €T (TN) . From the last equation, we have

S(Wy (Y1,Y2)Y4,Ys5)+S (Y4, W) (Y1,Y2) Y5)

(3.36)
=Ls {S((Yl Ng Yz) Y4,Y5) -|-S(Y47 (Yl Ng Yz) Ys)} .
If we choose Y5 = & in (3.36) we get
S(Wi (Y1,12)Y4,8) +S (Yo, W1 (Y1,12) §)
=Ls{S(g(V2, Y1) 1 —g(",Y4) 2,E) (3.37)
+SYa,n(N)2—n(2)1)}-
If we make use of (2.5) and (3.34) in (3.37), we have
5 (va, 2 I (v2) v - (1) 1))
- {W] n (Wi (Y1,Y2)Ys)
(3.38)
—Ls{~ < e -n (2)1,Y)
+SYa,n(N)2—n(2)1)}
If we use (3.35) in the (3.38), we get
[4m7(c+1)8]1[1§m7(6+1)]g(n (YI)Y2 -n (Yz)Yl,Y4)
+E s (n ()Y — 1 (Y)Y, Xa)
(3.39)

=L5{— [W}g(n Y)Y—n2)%,Ya)

+S(MM)2—n(Y2)Y1,Ya)}.
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If we use (3.2) in the (3.39), we can write

{8’";(,;“) [K‘l + 4’”1““)} +Ls {W + Kl} } x

(3.40)
gM)2—nX2)¥,Y4) =0
It is clear from (3.40)
L= Bm—(c+1)][2x1 — (c+ 1)+ 4m]
dm[4m— (c+1) —2xq]
This completes the proof. O

We can give the results obtained from this theorem as follows.

Corollary 3.19. Let N (c) be Lorentz Sasakian space form and (g,&, k1, %2) be almost n—Ricci soliton on N (¢). If N (c) is a
Wi —Ricci semisymmetric, then N (c) is either real space form with ¢ = 8m — 1 constant section curvature or K| = W.
Corollary 3.20. Let N (c) be Lorentz Sasakian space form and (g, k1,%2) be almost n—Ricci soliton on N (¢). If N (c) is a
Wi —Ricci semisymmetric, then we conclude that:

i)Let 8m>c+1.

a) N (c) is expanding, if (c+1) > 4m.

b) N (c) is shrinking, if (c+1) < 4m.

ii) Let 8m < c+ 1.

¢) N(c) is shrinking, if (c+1) > 4m.

d) N (c) is expanding, if (c+ 1) < 4m.

For a (2m + 1) —dimensional semi-Riemannian manifold N, the W —curvature tensor is defined as
1
W2 (N, 12) Y3 =R(11, 1) Y — - [g (12, Y3) QY1 — g (V1,13) QD] (341

For a (2m+ 1) —dimensional Lorentz Sasakian spacew form N (c), if we choose Y3 = & in (3.41), we can write

W (Y1,12)§ =[n(2)Y1 —n (1) Y]

(3.42)
—2: [N (1) QY2 —n (Y2) Q1]
Furthermore, if we take the inner product of both sides of (3.41) by &, we get
nW2(1,Y2)¥3) =g(n (1) Y2 —n (Y2) 1,Y3)
(3.43)

SN (Y1) Ya—1 (Y2)1,Y3).

Definition 3.21. Let N(c) be a (2m+ 1) —dimensional Lorentz Sasakian space form. If Wy -S and Q(g,S) are linearly
dependent, then the manifold is said to be Wo—Ricci pseudosymmetric.

In this case, there exists a function Lg on N (c) such that
Wy 8= LeQ(8,S).

In particular, if Lg = 0, the manifold N (¢) is said to be W>—Ricci semisymmetric.
Let us now investigate the W> —Ricci pseudosymmetric of the Lorentz Sasakian space form.

Theorem 3.22. Let N () be Lorentz Sasakian space form and (g,&, k1, k2) be almost n—Ricci soliton on N (c). If N (c) is a

W, —Ricci pseudosymmetric, then

ki (1—2m)+m[(c+1)—4m]+ Kk?
m2Kk; + (c+ 1) — 4m]

L=

3

provided 2x; 4m— (c+1).
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Proof. Let be assume that Lorentz Sasakian space form be W, —Ricci pseudosymmetric and (g, &, k7, k») be almost 1—Ricci
soliton on Lorentz Sasakian space form. That is mean

(W2 (Y1,12)-S) (Y4, Ys5) = LeQ (g,S) (Ya,Y5:Y1, 1),
for all 1,Y,,Ys,Ys € ' (TM) . From the last equation, we can easily write

S(Wa (Y1,Y2) Y4, Ys) + S (Ya, W2 (Y1,Y2) Y5)
(3.44)
=Le{S((Y1 NgY2) Y4, Y5) + S (Ya, (Y1 Ao Y2) Y5) } .

If putting Y5 = £ in (3.44), we get
SW2 (11,Y2)Y4,8) + S (Ya, W2 (11,12) §)

=Le{S(g(Y2,Ya) Y1 —g(Y1,Y4) V2, &) (3.45)

+S(Ya,n ()1 —n (1) Y2)}.
If we make use of (2.5) and (3.42) in (3.45), we have

- [#] n(Wa (Y1,Y2) Yy)
JrS(Y47 [’1 (Y2)Y1 -1 (Yl)Yz]

— 2 [n(n) Q¥ —n (1) o11]) (3.46)
:L6{_ [W} gmM)—n2)h,Ys)

+S(Yy,m(M)a—n (Y2)11)}.
If we use (3.43) in the (3.46), we get

[ e () 2 = n (1) Y1, 1)
+2:S (M (M) V2= (B)11,Ya)
+8(Ya,[n (2)Y1 —n (Y1) Vo] 3.47
— 5N (Y1) QY2 — 1 (Y2) OY1] -
=L {SYsn () Y—n(2)})
[ g v - (v

If we use (3.2) in the (3.47), we have

[Kl o W} gm)2—n(Y2) 1, Ys)
FaeS(M(N) Y2 —n(Y2)Y1,Ya) (3.48)
=—Le [KI + W] gm(r)—n ()1, Ys)

Again, if we use (3.2) in (3.48), we obtain

(3.49)
L (1 + ) g (n (1) Yo -0 (1) 1, 7a)
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It is clear from (3.49)

ki (1—2m)+m[(c+1)—4m]+ Kk?
m2x;+ (c+ 1) —4m] '

Leg =

This completes the proof. O

We can give a result of this theorem as follows.

Corollary 3.23. Let N (c) be Lorentz Sasakian space form and (g,&, k1, %2) be almost n—Ricci soliton on N (¢). If N (c) is a
W, — Ricci semisymmetric, then

1
Ki=—3 {—(Zm—l)—l—\/—4(c+2)m+20m2+1} ,

or

K :% {(Zm— 1)+\/—4(c—|—2)m+2()m2—|—1} .

Corollary 3.24. Let N (c) be Lorentz Sasakian space form and (g,&, k1, %) be almost n—Ricci soliton on N (¢). If N (c) is a
Wh—Ricci semisymmetric, then we observe that

i) N (c) is shrinking, if k is between — % [— (2m—1)+/—4(c+2)m+20m> + 1] and § {(Zm— 1) ++/—4(c+2)m+20m? + l] )
ii) N (c) is steady for —% [— (2m—1)+/—4(c+2)m+20m2 + 1}
and % |(2m— 1)+\/—4(c+2)m+20m2+1} ,

iii) N (c) is expanding for other cases of K.

4. Conclusion

In this paper, we consider pseudosymmetric Lorentz Sasakian space forms admitting almost 7 —Ricci solitons in some curvature
tensors. Ricci pseudosymmetry concepts of Lorentz Sasakian space forms admits 7—Ricci soliton have introduced according
to the choice of some special curvature tensors such as Riemann, concircular, projective, .# —projective, W) and W,. Then,
again according to the choice of the curvature tensor, necessary conditions are given for Lorentz Sasakian space form admits
n—Ricci soliton to be Ricci semisymmetric. Then some characterizations are obtained and some classifications have made
under the some conditions.
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