e-ISSN: 2587-1277 http://asujse.aksaray.edu.tr



Aksaray J. Sci. Eng. Volume 7, Issue 2, pp. 67-76.

DergiPark Available online at

# An Analysis of Butterfly Diversity in Kozluk District (Batman) and Their Preferences for Habitat and Altitude

Mehmet ASTAN<sup>1,0</sup>, Erdem SEVEN<sup>2,\*,0</sup>

<sup>1</sup>Batman University, Institute of Graduate Studies, Batman, Türkiye <sup>2</sup>Batman University, Faculty of Arts and Sciences, Department of Biology, Batman, Türkiye

**Keywords** Biodiversity, Butterfly, Ecology, Fauna, Lepidoptera

Article information Received: Dec 04, 2022 Revised: Jul 25, 2023 Accepted: Aug 14, 2023 Online: Nov 24, 2023

Abstract

Butterfly species are one of the indicator groups for biodiversity change and habitat monitoring. However, studies on butterfly species' habitat and altitude preferences have rarely been evaluated. A study was carried out on the species diversity of butterfly fauna in different habitats and altitudes from Kozluk district of Batman Province. The survey was conducted in 43 locations between 2020-2021. Evaluations were executed for 1.982 butterfly samples collected from the research area. 103 species are diagnosed in 7 families of butterfly; Argynnidae: 15, Libytheidae: 1, Lycaenidae: 34, Papilionidae: 4, Pieridae: 15, Satyridae: 19, Hesperiidae: 15. Among them, 64 species are newly recorded in Kozluk and 34 species in Batman. The species of Libythea celtis (Laicharting, 1782), together with its family Libytheidae, has been added to the fauna of Batman, and the number of butterfly species in Batman increased from 90 to 124. The altitude and habitat preferences of the specimens in the research area and the number of species in the locations of the families are presented and discussed. The majority of the species are determined in oak forests and riverside biotopes. Gecitalti is the location with the highest number of species. The butterflies are mostly detected between 600-1000 m altitudes with a rate of 72% in the research area. This study is utilizable both to the specification of the distribution areas of the species and to the learning of their ecology.

doi: 10.29002/asujse.1214266

#### 1. Introduction

The first studies on the determination of the Turkish Lepidoptera fauna were carried out by foreign researchers such as Zeller [1], Lederer [2], and Staudinger [3]. Hesselbarth et al. [4] conducted the most thorough study on butterflies in Turkey, and 365 taxa were classified as a result. Turkey is inhabited by 414 species of butterflies, including recently discovered and newly described species [4-10]. Besides, especially after the 2000s, studies have been carried out, mostly by local researchers, to reveal the butterfly fauna of the Southeastern Anatolia Region of Turkey [9, 11-27].

The first research on Papilionoidea and Hesperioidea fauna in Batman Province started in Kozluk district with daily studies. There is not any relevant literature on Kozluk district and its surroundings beyond these studies. Hesselbarth et al. [4] reported Hyponephele lupina (Costa, [1836]) from Kozluk in their study titled "The Butterflies of Turkey". In 2008, Kemal et al. [12] listed 44 butterfly species from the district and presented five of them as new records for the fauna of the province. After that, research in the district led to the listing of 50 butterfly species [17]. According to Turkey's faunistic checklist [8], Kozluk has 66 butterflies. Moreover, Seven [19] added 4 species, and then 15 species [20] to the butterfly fauna of Batman Province. From the region, including Batman, Pontia glauconome (Klug, 1829) received its first record for Turkey [9]. In the West Raman Region of Batman, Seven and Aykal [25] discovered 33 species in total, 5 of which were new records for the province. These results increase the overall number of butterflies in Batman to 90.

In this paper, butterflies' habitat and altitude preferences were interpreted along with species diversity in the area. The research region comprises mainly dense and sparse mountain oak forests and, samples were mostly collected from these habitats. Surveys on the species' habitat and altitude preferences are relatively limited. Butterfly diversity changes in relation to habitats and elevations are an interesting and well-covered topic in ecology, but the effects of aspects have rarely been interpreted. This research condunces to the clarification of the ecological preferences of the species.

<sup>\*</sup>Corresponding Author: •erdem.seven@batman.edu.tr 000000002-7587-5341



Articles in this journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

#### 2. Materials and Methods

Insect nets were used to catch the samples. The collected specimens were put into envelopes made of parchment paper after they were killed in jars containing ethyl acetate. The samples, which were enveloped at each location, were placed in packages with place names and dates. The materials were protected in naphthalene insect boxes. Then, the pinned and softened samples were stretched and dried as standard entomological museum material. Diagnoses were made based on external morphological features. For photographing the materials, the Fujifilm Finepix HS30 EXR camera was used. The specimens are preserved in the collection of the Entomology Laboratory in Batman University. Resources of Alberti [28], Evans [29], Hesselbarth et al. [4], Tolman [30], Tshikolovets [31] and, Wiemers et al. [32] were employed in diagnosis and terminology.

Materials were collected from 43 localities (Fig. 1, Table 1) ranging from approximately 600 m to 1700 m with field studies carried out 56 times between April 2020 and November 2021. The research was carried out in six habitat types: Agricultural land, mountain oak forest, creek edge, sparse oak barren, bush field, and stony areas (Fig. 2, Table 1). Some locations have been studied more intensively. Factors such as vegetation, road and safety conditions of the locations were effective in their studying rates.



Figure 1. Map of Kozluk district and studied locations (Scale: 1/10000, TKGM)



**Figure 2.** Some studied locations in Kozluk district: **a.** Geyikli, 980 m, 15.04.2021; **b.** Geçitaltı, 1290 m, 28.05.2021; **c.** Alıçlı, 740 m, 15.05.2021; **d.** Yenidoğan, 885 m, 29.08.2021 (Photographs: M. Astan)

| Location                            | Altitude (m) | Date                                           | Coordinates            | Habitat             |
|-------------------------------------|--------------|------------------------------------------------|------------------------|---------------------|
| 1. Bekirhan                         | 695          | 26.06.2020                                     | 38°10'01"N, 41°18'39"E | Agricultural land   |
| 2. Samanyolu                        | 625          | 03.07.2020                                     | 38°06'37"N, 41°13'46"E | Creek edge          |
| <ol><li>Geyikli (Cevizli)</li></ol> | 980          | 03.07.2020, 27.04.2021                         | 38°12'58"N, 41°26'27"E | Mountain oak forest |
| <ol> <li>Çaygeçit</li> </ol>        | 660          | 03.07.2020, 15.04.2021                         | 38°04'18"N, 41°29'18"E | Creek edge          |
| 5. Değirmendere                     | 800          | 14.07.2020                                     | 38°12'09"N, 41°28'38"E | Mountain oak forest |
| 6. Tosunpınar                       | 1075         | 25.07.2020, 25.09.2021                         | 38°13'54"N, 41°28'37"E | Mountain oak forest |
| 7. Armutlu                          | 1225         | 07.08.2020, 29.07.2021,<br>07.10.2021          | 38°15'46"N, 41°28'39"E | Mountain oak forest |
| 8. Geçitaltı                        | 1290         | 14.08.2020, 28.05.2021, 02.10.2021, 07.10.2021 | 38°17'01"N, 41°28'57"E | Creek edge          |
| 9. İnişli                           | 1200         | 21.08.2020, 04.09.2021                         | 38°14'18"N, 41°29'50"E | Sparse oak barren   |
| 10. Gümüşörgü                       | 1095         | 21.10.2020, 14.08.2021                         | 38°15'53"N, 41°23'27"E | Mountain oak forest |
| 11. Kumlupınar                      | 615          | 27.03.2021                                     | 38°08'13"N, 41°31'11"E | Creek edge          |
| 12. Çayhan                          | 700          | 07.04.2021                                     | 38°09'47"N, 41°36'04"E | Sparse oak barren   |
| 13. Taşlık                          | 960          | 10.04.2021                                     | 38°07'30"N, 41°35'05"E | Sparse oak barren   |
| 14. Ünsaldı                         | 690          | 12.04.2021                                     | 38°04'42"N, 41°25'03"E | Sparse oak barren   |
| <ol> <li>Yeniçağlar</li> </ol>      | 645          | 13.04.2021                                     | 38°08'51"N, 41°14'07"E | Stony area          |
| <ol><li>Kavakdibi</li></ol>         | 760          | 20.04.2021                                     | 38°10'10"N, 41°21'52"E | Sparse oak barren   |
| 17. Gündüzlü                        | 870          | 20.04.2021                                     | 38°11'41"N, 41°24'44"E | Bush field          |
| 18. Aşağıkıratlı                    | 890          | 21.04.2020                                     | 38°11'44"N, 41°22'42"E | Stony area          |
| <ol><li>Danagözü</li></ol>          | 965          | 21.04.2021                                     | 38°14'17"N, 41°19'08"E | Stony area          |
| 20. Yanıkkaya                       | 1080         | 21.04.2021, 08.09.2021                         | 38°14'52"N, 41°18'18"E | Stony area          |
| 21. Ulaşlı                          | 730          | 29.04.2021                                     | 38°10'45"N, 41°19'20"E | Sparse oak barren   |
| <ol><li>Tuzlagözü</li></ol>         | 895          | 15.05.2021                                     | 38°10'54"N, 41°34'20"E | Sparse oak barren   |
| 23. Kolludere                       | 880          | 15.05.2021                                     | 38°11'37"N, 41°32'58"E | Mountain oak forest |
| 24. Alıçlı                          | 740          | 15.05.2021                                     | 38°12'28"N, 41°31'29"E | Creek edge          |
| 25. Konaklı                         | 680          | 17.05.2021                                     | 38°09'16"N, 41°19'27"E | Sparse oak barren   |
| 26. Karaoğlak                       | 720          | 17.05.2021                                     | 38°06'31"N, 41°23'16"E | Sparse oak barren   |
| 27. Kamışlı                         | 695          | 17.05.2021                                     | 38°06'00"N, 41°21'27"E | Sparse oak barren   |
| 28. Yenidoğan                       | 885          | 10.06.2021, 29.08.2021                         | 38°16'26"N, 41°34'12"E | Mountain oak forest |
| 29. Beşkonak                        | 1390         | 26.06.2021                                     | 38°14'27"N, 41°37'19"E | Mountain oak forest |

## Table 1. Location data and habitat types

Astan, M. & Seven, E. (2023). Aksaray University Journal of Science and Engineering. 7:2, 67-76.

| Location                      | Altitude (m)              | Date                   | Coordinates            | Habitat             |
|-------------------------------|---------------------------|------------------------|------------------------|---------------------|
| 30. Akçakışla                 | 1100 29.06.2021 38°15'47" |                        | 38°15'47"N, 41°36'33"E | Mountain oak forest |
| 31. Yazılı                    | 815                       | 08.07.2021, 22.08.2021 | 38°15'08"N, 41°32'43"E | Mountain oak forest |
| 32. Akçalı                    | 1720                      | 13.07.2021             | 38°18'41"N, 41°35'18"E | Mountain oak forest |
| <ol> <li>Kayadibi</li> </ol>  | 1400                      | 07.08.2021             | 38°15'54"N, 41°26'26"E | Mountain oak forest |
| 34. Yukarıkıratlı             | 1300                      | 08.09.2021             | 38°13'11"N, 41°23'18"E | Mountain oak forest |
| 35. Dereköy                   | 1280                      | 12.09.2021             | 38°13'32"N, 41°22'36"E | Mountain oak forest |
| 36. Yedibölük                 | 1280                      | 16.10.2021             | 38°14'08"N, 41°22'50"E | Mountain oak forest |
| 37. Bölükkonak                | 1100                      | 24.10.2021             | 38°13'21"N, 41°25'06"E | Mountain oak forest |
| <ol><li>38. Duygulu</li></ol> | 615                       | 03.11.2021             | 38°03'54"N, 41°19'53"E | Sparse oak barren   |
| 39. Yankılı                   | 690                       | 07.11.2021             | 38°06'20"N, 41°27'11"E | Sparse oak barren   |
| 40. Yapaklı                   | 645                       | 07.11.2021             | 38°05'52"N, 41°29'15"E | Creek edge          |
| 41. Oyuktaş                   | 610                       | 13.11.2021             | 38°02'49"N, 41°29'52"E | Bush field          |
| 42. Arıkaya                   | 675                       | 13.11.2021             | 38°04'12"N, 41°32'14"E | Sparse oak barren   |
| 43. Örensu                    | 600                       | 18.11.2021             | 38°01'38"N, 41°27'18"E | Sparse oak barren   |

# 3. Results and Discussion

In this paper, 103 species were found in 7 families from Kozluk district. The overall number of these species in Batman Province has increased from 90 to 124 as a result of the registration of 34 new species. *Libythea celtis*, which is represented by a single species in Libytheidae family in Turkey, is newly discovered in the province (Table 2, 3).

| Family       | Known species in<br>Batman | •   |    | The total number for<br>Batman |
|--------------|----------------------------|-----|----|--------------------------------|
| Argynnidae   | 15                         | 15  | 6  | 21                             |
| Libytheidae  | -                          | 1   | 1  | 1                              |
| Lycaenidae   | 29                         | 34  | 9  | 38                             |
| Papilionidae | 2                          | 4   | 2  | 4                              |
| Pieridae     | 12                         | 15  | 5  | 17                             |
| Satyridae    | 18                         | 19  | 4  | 22                             |
| Hesperiidae  | 14                         | 15  | 7  | 21                             |
| Total        | 90                         | 103 | 34 | 124                            |

Table 2. Comparison of the number of butterfly species in the families

Lycaenidae, with 34 species, has the greatest number of species in the research region. Satyridae family, which contains 19 species, is the next. Hesperiidae, Pieridae, and Argynnidae have 15, Papilionidae has 4, and Libytheidae has 1 species (Fig. 3).



Figure 3. Species number in the families

The study area includes mostly mountain oak forests and sparse oak biotopes (see Table 1). Therefore, the majority of the species were collected from *Quercus* spp. forests and streamside habitats. Argynnidae family was generally identified from mountainous and creekside sites. Specimens of *Libythea celtis* were detected in oak habitats and collected from altitudes between 1250-1800 m a.s.l. Members of Lycaenidae were mostly determined in mountainy, creek edge, and stony habitats. The captured butterflies in the family of Papilionidae were commonly found in natural and bush fields and, specimens were caught at 600-900 m a.s.l. Pieridae samples were diagnosed from mountain oak forests, creek edges, and sparse oak biotopes. The vertical distribution scale of the species in this family is high. Individuals belonging to Satyridae family were gathered from mountainous areas, streamside, and sparse oak barren. Hesperiidae specimens were largely caught in mountainous regions and near streams (Table 3).

| Table 3. Species list and their habitat and altitude preferences (1: Agricultural land, 2: Mountain oak forest, 3: Creek |
|--------------------------------------------------------------------------------------------------------------------------|
| edge, 4: Sparse oak barren, 5: Bush field, 6: Stony area, *: new records for Batman)                                     |

| Family      |            | Species                     | 1 | 2 | 3 | 4 | 5 | 6 | Altitude (m) |
|-------------|------------|-----------------------------|---|---|---|---|---|---|--------------|
|             | 1.         | Argynnis niobe*             |   |   |   |   |   |   | 1250-1500    |
|             | 2.         | A. pandora                  |   |   |   |   |   |   | 850-1750     |
|             | 3.         | A. paphia*                  |   |   |   |   |   |   | 800-900      |
|             | 4.         | Issoria lathonia* (Fig. 4a) |   |   |   |   |   |   | 750-1300     |
|             | 5.         | Limenitis reducta           |   |   |   |   |   |   | 800-1500     |
|             | 6.         | Melitaea collina*           |   |   |   |   |   |   | 750-850      |
| lae         | 7.         | M. ornata*                  |   |   |   |   |   |   | 800-900      |
| Argynnidae  | 8.         | M. persea                   |   |   |   |   |   |   | 750-850      |
|             | 9.         | M. phoebe                   |   |   |   |   |   |   | 750-850      |
|             | 10.        | M. syriaca                  |   |   |   |   |   |   | 800-900      |
| <b>₹</b>    | 11.        | Nymphalis xanthomelas       |   |   |   |   |   |   | 800-900      |
|             | 12.        | Polygonia c-album*          |   |   |   |   |   |   | 800-1000     |
|             | 13.        | P. egea                     |   |   |   |   |   |   | 1000-1100    |
|             | 14.        | Vanessa atalanta            |   |   |   |   |   |   | 600-1100     |
|             | 15.        | Vanessa cardui              |   |   |   |   |   |   | 600-1400     |
| Libytheidae | 16.        | Libythea celtis*            |   |   |   |   |   |   | 1250-1800    |
|             | 17.        | Celastrina argiolus         |   |   |   |   |   |   | 600-1100     |
|             | 18.        | Cigaritis uighurica         |   |   |   |   |   |   | 1250-1500    |
|             | 19.        | Cupido osiris*              |   |   |   |   |   |   | 600-700      |
|             | 20.        | Glaucopsyche alexis         |   |   |   |   |   |   | 750-900      |
|             | 20.        | G. lessei                   |   |   |   |   |   |   | 700-800      |
|             | 21.        | Lampides boeticus           |   |   |   |   |   |   | 700-1700     |
|             | 23.        | Lycaena alciphron           |   |   |   |   |   |   | 800-900      |
|             | 23.<br>24. | L. asabinus*                |   |   |   |   |   |   | 900-1700     |
|             | 24.        | L. kefersteinii             |   |   |   |   |   |   | 700-1400     |
|             | 25.<br>26. | L. kurdistanica             |   |   |   |   |   |   | 900-1400     |
|             | 20.        | L. phlaeas                  |   |   |   |   |   |   | 800-1300     |
|             | 27. 28.    | L. tityrus                  |   |   |   |   |   |   | 800-1300     |
|             | 28.        | Plebejus carmon             |   |   |   |   |   |   | 800-1300     |
|             | 30.        | Polyommatus alcedo*         |   |   |   |   |   |   | 800-1000     |
| dae         | 31.        | P. amandus                  |   |   |   |   |   |   | 1300-1500    |
|             | 32.        | P. agestis                  |   |   |   |   |   |   | 600-1700     |
| cac         | 33.        | P. bellargus                |   |   |   |   |   |   | 800-1100     |
| Lycaenidae  | 33.<br>34. | P. bellis*                  |   |   |   |   |   |   | 700-900      |
|             | 35.        |                             |   |   |   |   |   |   | 800-1000     |
|             | 35.<br>36. | P. demavendi<br>P. daphnis* |   |   |   |   |   |   | 800-1000     |
|             | 30.<br>37. | P. aapnnis*<br>P. icarus    |   |   |   |   |   |   | 800-1700     |
|             | 37.<br>38. | P. icarus<br>P. isauricus*  |   |   |   |   |   |   | 700-900      |
|             |            | P. isauricus*<br>P. loewii  |   |   |   |   |   |   |              |
|             | 39.<br>40. |                             |   |   |   |   |   |   | 700-1100     |
|             |            | P. poseidon*                |   |   |   |   |   |   | 600-1100     |
|             | 41.        | P. thersites                |   |   |   |   |   |   | 800-1000     |
|             | 42.        | Pseudophilotes vicrama      |   |   |   |   |   |   | 1300-1500    |
|             | 43.        | Satyrium abdominalis        |   |   |   |   |   |   | 800-1300     |
|             | 44.        | S. marcidum                 |   |   |   |   |   |   | 700-900      |
|             | 45.        | S. spini*                   |   |   |   |   |   |   | 1300-1500    |
|             | 46.        | S. zabni                    |   |   |   |   |   |   | 1100-1300    |
|             | 47.        | Tarucus balkanicus          |   |   |   |   |   |   | 800-1500     |

Aksaray J. Sci. Eng. 7:2 (2023) 67-76.

| -            | 10           | Asian, M. & Seven, E. (2025). Aksaray University |           |
|--------------|--------------|--------------------------------------------------|-----------|
|              | 48.          | Tomares callimachus*                             | 600-700   |
|              | 49.          | Turanana endymion                                | 800-1000  |
|              | 50.          | Zizeeria karsandra                               | 600-800   |
| lae          | 51.          | Archon apollinaris*                              | 600-700   |
| Papilionidae | 52.          | Iphiclides podalirius*                           | 800-900   |
| piliq        | 53.          | Papilio machaon                                  | 700-800   |
| Pa           | 54.          | Zerynthia deyrollei (Fig. 4b)                    | 600-900   |
|              | 55.          | Anthocharis cardamines                           | 700-1000  |
|              | 56.          | Aporia crataegi                                  | 1200-1500 |
|              | 57.          | Colias alfacariensis*                            | 800-1300  |
|              | 58.          | <i>C. crocea</i> (Fig. 4c)                       | 600-1500  |
|              | 59.          | Colotis fausta (Fig. 4d)                         | 600-700   |
|              | 60.          | Euchloe ausonia                                  | 600-800   |
| Pieridae     | 61.          | Gonepteryx farinosa                              | 1200-1500 |
| , ini        | 62.          | Pieris brassicae*                                | 800-1500  |
| Pie          | 63.          | P. ergane                                        | 600-1500  |
|              | 64.          | P. mannii                                        | 600-1100  |
|              | 65.          | P. persis*                                       | 800-1500  |
|              | 66.          | P. pseudorapae*                                  | 600-1500  |
|              | 67.          | P. rapae*                                        | 600-1500  |
|              | 68.          | Pontia chloridice                                | 700-1800  |
|              | 69.          | P. edusa                                         | 700-1500  |
|              | 70.          | Brintesia circe (Fig. 4e)                        | 800-1800  |
|              | 71.          | Chazara briseis*                                 | 1200-1300 |
|              | 72.          | Coenonympha pamphilus                            | 700-1800  |
|              | 73.          | C. saadi                                         | 700-1000  |
|              | 74.          | Hipparchia parisatis*                            | 1000-1200 |
|              | 75.          | H. syriaca                                       | 1000-1200 |
|              | 76.          | Hyponephele lupina                               | 1100-1500 |
| 9            | 77.          | H. lycaon                                        | 1100-1400 |
| da           | 78.          | H. wagneri                                       | 1100-1200 |
| ÿri          | 79.          | Kirinia roxelana                                 | 800-1800  |
| Satyridae    | 80.          | Lasiommata maera*                                | 1300-1800 |
| <b>0</b> 1   | 81.          | L. megera                                        | 800-900   |
|              | 82.          | Maniola jurtina                                  | 700-1800  |
|              | 83.          | M. telmessia                                     | 1300-1500 |
|              | 84.          | Melanargia grumi                                 | 800-1500  |
|              | 85.          | M. syriaca*                                      | 800-1500  |
|              | 86.          | Pararge aegeria (Fig. 4f)                        | 800-1800  |
|              | 87.          | Pseudochazara anthelea                           | 1100-1200 |
|              | 88.          | P. pelopea                                       | 1100-1800 |
|              | 89.          | Carcharodus alceae                               | 700-1500  |
|              | 90.          | C. lavatherae                                    | 1100-1500 |
|              | 91.          | C. orientalis                                    | 1300-1500 |
|              | 92.          | Erynnis marloyi                                  | 1100-1200 |
|              | 93.          | Muschampia nomas                                 | 1300-1500 |
| ae           | 94.          | M. poggei                                        | 600-1800  |
| üd           | 95.          | M. proteides*                                    | 1100-1500 |
| er           | 96.          | M. tersa*                                        | 1100-1300 |
| Hesperiidae  | 97.          | M. tessellum*                                    | 1300-1500 |
| Ĥ            | 98.          | Pyrgus armoricanus*                              | 1100-1300 |
|              | 99.          | P. serratulae*                                   | 700-1500  |
|              | 100.         | Spialia orbifer                                  | 700-800   |
|              | 101.         | S. phlomidis*                                    | 700-800   |
|              | 1011         |                                                  |           |
|              | 102.<br>103. | Thymelicus lineolus*                             | 1100-1500 |

Field studies in Kozluk district were carried out at 43 locations (see Table 1). Of these, Geçitaltı (Site: 8) is the habitat with the highest number of species. The number of studies and plant diversity are thought to be the reasons for the identified species diversity in this location. Moreover, Kayadibi (Site: 33), Yenidogan (Site: 28), Yazılı (Site: 31), and Tosunpınar (Site: 6) are rich in species diversity. Although Kayadibi was studied once, it attracted attention with the detection of a very high number of species (Table 4).

The butterflies are mostly found (at a rate of 72%) between 600-1000 m a.s.l. in the research area (Table 5). The considerable plant diversity between these meters can be used to explain this condition. The ecosystems between these altitudes typically consist of valleys and stream sides. There is a minor decrease in the number of species between 1000-

1400 meters, and there is a decrease in the number of species beyond 1400 meters. This condition is believed to be the result of less research and longer working hours in high-altitude settings. It turns out that whereas Argynnidae, Lycaenidae, Papilionidae, and Pieridae species are mostly seen at 600-1000 m a.s.l., Hesperiidae, Libytheidae, and Satyridae families are diagnosed at 1000-1400 m a.s.l.

| Site     | Arg | Lib | Lyc    | Рар | Pie | Sat | Hes | Total              |
|----------|-----|-----|--------|-----|-----|-----|-----|--------------------|
| 1        | -   | -   | 3      | -   | -   | -   | -   | 3                  |
| 2        |     |     | 5      |     | 2   |     | 1   | 3<br>8             |
| 3        | 3   | -   | -      | -   | 1   | 5   | -   | 9                  |
| 4        | 1   | -   | 5      | 2   | 4   | -   | -   | 12                 |
| 5        | -   | -   | 9      | -   | 4   | 1   | 1   | 15<br>27           |
| 6        | 1   | -   | 12     | -   | 7   | 5   | 2   | 27                 |
| 7        | -   | -   | 4      | -   | 7   | 3   | 2   | 16<br>47           |
| 8        | 4   | 1   | 16     | -   | 8   | 9   | 9   | 47                 |
| 9        | 1   | 1   | 11     | -   | 6   | 1   | 4   | 24<br>21<br>5<br>8 |
| 10       | 2   | -   | 7      | -   | 7   | 5   | -   | 21                 |
| 11       | 1   | -   | 1      | -   | 3   | -   | -   | 5                  |
| 12       | -   | -   | 2      | -   | 2   | 3   | 1   | 8                  |
| 13       | -   | -   | 4      | -   | 1   | 2   | -   | 7                  |
| 14       | 1   | -   | 2      | 2   | 2   | -   | -   | 7                  |
| 15       | 1   | -   | 2<br>2 | -   | 2   | -   | -   | 5                  |
| 16       | 2   | -   | 2      | 1   | 4   | -   | -   | 9                  |
| 17       | -   | -   | 5      | -   | 4   | -   | -   | 5<br>9<br>9<br>9   |
| 18       | 2   | -   | 1      | 1   | 5   | -   | -   | 9                  |
| 19       | -   | -   | 6      | -   | 2   | -   | - 4 | 8<br>20            |
| 20       | 1   | -   | 9      | -   | 6   | -   |     | 20                 |
| 21<br>22 | 1 3 | -   | 2<br>3 | 1   | 4 2 | -   | 2   | 10                 |
| 22       |     | -   |        | -   |     | -   |     | 10                 |
| 23<br>24 | 1   | -   | 2<br>5 | - 1 | 1 3 | - 3 | - 1 | 4<br>13            |
| 24<br>25 | 4   | -   | -      | 1   | 3   | 1   | 1   | 13                 |
| 25<br>26 | 4   | -   | 3      | 1   | 1   | 1   | 1   | 6                  |
| 20<br>27 | 1   | -   | 1      | -   | 4   | -   | - 1 | 7                  |
| 28       | 4   | -   | 11     | - 1 | 6   | 8   | -   | 30                 |
| 20<br>29 | 2   |     | 4      | -   | 6   | 4   | - 1 | 17                 |
| 30       | -   | _   | 4      | _   | 3   | 1   | 1   | 17<br>9            |
| 31       | 5   | -   | 8      | -   | 6   | 6   | 1   | 26                 |
| 32       | 1   | 1   | 4      | -   | 3   | 7   | -   | 16                 |
| 33       | 3   | -   | 10     | -   | 8   | 3   | 6   | 30                 |
| 34       | 2   | -   | 5      | -   | 3   | 2   | 1   | 30<br>13           |
| 35       | 1   | -   | 6      | -   | 2   | 2   | 3   | 14                 |
| 36       | 1   | -   | 4      | -   | 3   | 3   | 1   | 12                 |
| 37       | 2   | -   | 2      | -   | 3   | 1   | 2   | 10                 |
| 38       | 2   | -   | 1      | 1   | 4   | -   | -   | 10<br>8            |
| 39       | -   | -   | -      | 1   | 3   | -   | -   | 4                  |
| 40       | -   | -   | -      | 2   | -   | -   | -   | 4<br>2             |
| 41       | -   | -   | -      | -   | 2   | -   | -   | 2                  |
| 42       | -   | -   | -      | -   | 4   | -   | -   | 2<br>4<br>5        |
| 43       | -   | -   | 1      | -   | 4   | -   | -   | 5                  |

| Table 4. | e species number of families in locations (Arg: Argynnidae, Lib: Libytheidae, Lyc: Lycaenidae, Pa | ap: |
|----------|---------------------------------------------------------------------------------------------------|-----|
|          | apilionidae, Pie: Pieridae, Sat: Satyridae, Hes: Hesperiidae, for sites see Table 1)              |     |

 Table 5. Numerical distribution of species depending on the altitude (Arg: Argynnidae, Lib: Libytheidae, Lyc: Lycaenidae, Pap: Papilionidae, Pie: Pieridae, Sat: Satyridae, Hes: Hesperiidae)

| Altitude (m) | Arg            | Lib          | Lyc            | Pap          | Pie            | Sat            | Hes            | Total          |
|--------------|----------------|--------------|----------------|--------------|----------------|----------------|----------------|----------------|
| 600-1000     | 13<br>(% 12,6) | - (% 0)      | 30<br>(% 29,1) | 4<br>(% 3,8) | 12<br>(% 11,6) | 9<br>(% 8,7)   | 6<br>(% 5,8)   | 74<br>(% 71,6) |
| 1000-1400    | 6<br>(% 5,8)   | 1<br>(% 0,9) | 21<br>(% 20,3) | - (% 0)      | 11<br>(% 10,6) | 16<br>(% 15,5) | 13<br>(% 12,6) | 68<br>(% 65,7) |
| 1400-1800    | 3<br>(% 2,9)   | 1<br>(% 0,9) | 9<br>(% 8,7)   | - (% 0)      | 9<br>(% 8,7)   | 11<br>(% 10,6) | 10<br>(% 9,7)  | 43<br>(% 41,5) |

The research region's fauna was not represented well in earlier studies. The number of butterflies in Kozluk and the province as a whole was far from being accurately given by the data collected through daily studies and for specific species. That is why a thorough program has been used to study the topic. It is believed that the Papilionoidea and Hesperioidea superfamilies will contribute to the fauna of Batman Province and the Turkish fauna in this regard. The study's findings are crucial for comprehending the richness of butterflies in Batman Province. In addition to these, it will help determine the habitat and altitude preferences of species as well as the areas where the species are found.

## Acknowledgments

This study was produced from the MSc thesis of the first author. The project BTUBAP-2021-YL-011 of Batman University's Scientific Research Projects Unit provided funding for this survey. We would like to thank Batman General Directorate of Land Registry and Cadastre (TKGM) for supplying the Kozluk district map.



Figure 4. Stretched some butterfly species with upperside (left) and underside (right) (Photographs: E. Seven)

#### References

- [1] Zeller, P.C. (1847). Verzeichniss der vom Prof. Loew in der Türkei und in Asien gesammelten Lepidoptera, Isis von Oken, 1, 3-39.
- [2] Lederer, J. (1865). *Excursion Lepidopteroloqiue en Anatolie*, Annales de la Société Entomologique de Belgique, 9, 49-81.
- [3] Staudinger, O. (1881). Lepidopterenfauna Kleinasien's, Horae Societatis Entomologicae Rossicae, 16, 65-135.
- [4] Hesselbarth, G., Van Oorschot, H., Wagener, S. (1995). Die Tagfalter der Türkei unter Berücksichtigung der angrenzenden Länder, Verlag Goecke & Evers, Bochum. Band 3, 1-848.
- [5] Kemal, M., Koçak, A.Ö. (2013). Notes on the subgenus Polyommatus (Neolysandra) Koçak in East Turkey, with descriptions of new taxa (Lycaenidae, Lepidoptera), Miscellaneous Paper, 160, 5-6.
- [6] Seven, S. (2014). A new species of blue from Turkey, Neolycaena soezen Seven, sp. n. (Lepidoptera: Lycaenidae), SHILAP Revista de lepidopterología, 42(166), 311-317.
- [7] Carbonell, F. (2015). Un nouvel Agrodiaetus de Turquie (Lepidoptera, Lycaenidae), Bulletin de la Société entomologique de France 120(4) 463-464. DOI: 10.3406/bsef.2015.2287
- [8] Koçak, A.Ö., Kemal, M. (2018). A synonymous and distributional list of the species of the Lepidoptera of Turkey, Centre for Entomological Studies, Memoirs, 8, 1-487.
- [9] John, E., Başbay, O., Seven, E., Kaymaz, N. (2020). Pontia glauconome Klug, 1829 (Lepidoptera: Pieridae, Pierinae) in south-eastern Turkey: confirmation of breeding populations, with notes on the biology of early stages and on a species of the larval parasitoid Hyposoter Förster, 1869 (Hymenoptera: Ichneumonidae, Campopleginae), Entomologist's Gazette, 71(1), 27-44. DOI: 10.31184/G00138894.711.1722
- [10] Çalışkan, S., Hasbenli, A. (2022). The first record of endangered Lycaena helle ([Denis & Schiffermuller], 1775) for Turkey (Lepidoptera: Lycaenidae), SHILAP Revista de Lepidopterologia, 50(197), 51-55. DOI: 10.57065/shilap.185
- [11] Akın, K. (2008). Studies on the fauna and ecology of Papilionoidea and Hesperioidea (Lepidoptera) in Ceylanpınar district (Şanlıurfa). Msc Thesis, Yüzüncü Yıl University, Turkey. pp. 1-107.
- [12] Kemal, M., Koçak, A.Ö., Akın, K. (2008). Butterflies of Batman Province (East Turkey) (Lepidoptera), Cesa News, 17, 1-7.
- [13] Kemal, M., Aydın, M. (2008). List of the Lepidoptera of Diyarbakır Province (East Turkey), Cesa News, 15, 1-6.
- [14] Kemal, M., Seven, E. (2008). Spring aspect of the diurnal Lepidoptera fauna of Şirvan District (Siirt Province) (South East Turkey), Cesa News, 10, 1-14.
- [15] Kemal, M., Koçak, A.Ö. (2006). List of the butterflies of Urfa Province (South Turkey) (Lepidoptera, Papilionoidea, *Hesperioidea*), Miscellaneous Paper, 94, 3-8.
- [16] Kemal, M., Koçak, A.Ö. (2006). List of the butterflies of Mardin Province (South Turkey) (Lepidoptera, Papilionoidea, Hesperioidea), Miscellaneous Paper, 96, 1-7.
- [17] Kemal, M., Koçak, A.Ö. (2008). Second attempt for determining the Lepidoptera fauna of Kozluk with notes on some other insects of the District (Batman Prov., East Turkey)-II, Cesa News, 23, 1-4.
- [18] Seven, E. (2010). Studies on the fauna and ecology of Papilionoidea and Hesperioidea (Lepidoptera) in Şirvan district (Siirt), Priamus (Supplement), 20, 1-118.
- [19] Seven, E. (2016). *New Records for the Lepidoptera Fauna of Batman Province*, International Ecology Adnan Aldemir Symposium, 16-19 May, Kars, Turkey, pp. 36-37.
- [20] Seven, E. (2019). First comprehensive faunistic list on the Lepidoptera species of Batman Province (Southeastern *Turkey*), Munis Entomology & Zoology, 14(2), 439-447.

- [21] Aydın, M. (2012). Studies on the fauna and ecology of Papilionoidea and Hesperioidea (Lepidoptera) of the Valley Sarim (Kulp, Diyarbakir), Msc Thesis, Yüzüncü Yıl University, Turkey. pp. 1-87.
- [22] Koçak, A.Ö., Kemal, M. (2007). Synonymical and distributional List of the species of Şırnak Province (South East Turkey) (Lepidoptera), Miscellaneous Paper, 127, 1-8.
- [23] Koçak, A.Ö., Kemal, M. (2017). Some vernal Lepidoptera SE Turkey faunistical results of a short trip made in 2017 with some taxonomic and bionomic notes, Cesa News, 133, 1-16.
- [24] Seven, E., Yıldız, C. (2018). On the Butterflies of Savur District (Mardin Province, Southeastern Turkey), Sakarya University Journal of Science, 22(6), 1907-1916. DOI: 10.16984/saufenbilder.392685
- [25] Seven, E., Aykal, A. (2019). A Faunistic Investigation on Butterflies (Lepidoptera: Rhopalocera) of Batı Raman Region in Batman Province, Turkey, International Engineering and Science Symposium, 20-22 June, Siirt, Turkey, pp. 8-13.
- [26] Genç, V., Seven, E., Kaymaz, N. (2021). Determination of Butterflies' Potential in Tourism Diversification Based on a Route-Planning Case Study in Botan Valley National Park, Turkey, Journal of Hospitality and Tourism Issues, 3(2), 104-123. DOI: 10.51525/johti.997125
- [27] Akbaba, E., Akın, K. (2022). Papilionoidea and Hesperioidea Fauna of Hizan District (Bitlis), Journal of Agriculture and Nature, 25(5), 1028-1035. DOI: 10.18016/ksutarimdoga.vi.928366
- [28] Alberti, B. (1955). Zur Kenntnis der Gattung Carcharodus Hbn., mit einer Betrachtung zum Art, und Gattungsbegriff, Zeitschrift für Lepidopterologie, 3, 105-142.
- [29] Evans, W.H. (1949). A Catalogue of the Hesperiidae from Europe, Asia and Australia in the British Museum, Natural History, London.
- [30] Tolman, T. (1997). Butterflies of Britain and Europe, Harper Collins Publishers, London.
- [31] Tshikolovets, V.V. (2011). Butterflies of Europe and the Mediterranean Area, Pardubice, Tshikolovets Publications.
- [32] Wiemers, M., Balletto, E., Dincă, V., Fric, Z.F., Lamas, G., Lukhtanov, V., Munguira, M.L., van Swaay, C.A.M., Vila, R., Vliegenthart, A., Wahlberg, N., Verovnik, R. (2018). An Updated Checklist of the European Butterflies (Lepidoptera, Papilionoidea), ZooKeys, 81, 9-45. DOI: 10.3897/zookeys.811.28712