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Abstract 

There are many studies on Fibonacci quaternions and their generalizations. Recently, Şentürk and Ünal (2022) introduced 3-parameter 

generalized quaternions. The goal of this study is to introduce Fibonacci and Lucas 3-parameter generalized quaternions and to 

investigate their properties. After obtaining Binet formulas for these quaternions, generalizations of some well-known identities are 

presented. 
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Genelleştirilmiş 3-Parametreli Fibonacci Kuaterniyonları  

Öz 

Fibonacci kuaterniyonları ve bu kuaterniyonların genelleştirmeleri hakkında birçok çalışma göze çarpmaktadır. Geçtiğimiz günlerde 

Şentürk and Ünal (2022), 3-parametreli genellştirilmiş kuaterniyonları tanıtmışlardır. Bu çalışmada genelleştirilmiş 3-parametreli 

Fibonacci ve Lucas kuaterniyonları tanıtılmış ve özellikleri araştırılmıştır. Bu kuaterniyonlar için Binet formülleri elde edildikten 

sonra iyi bilinen bazı özdeşliklerin genelleştirmeleri sunulmuştur. 
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1. Introduction 

Fibonacci and Lucas numbers may be the most popular 

sequences among integer sequences. For  𝑛 > 1, Fibonacci 

numbers satisfy the second order recurrence relation 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

with the initial conditions 𝐹0 = 0 and 𝐹1 = 1. Lucas numbers 

also satisfy the same recurrence relation, namely, for 𝑛 > 1  

𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 

but the initial conditions are 𝐿0 = 2 and 𝐿1 = 1. Although there 

are many interesting relation between these two sequences, the 

most important one is the following identity 

𝐿𝑛 = 𝐹𝑛−1 + 𝐹𝑛+1. 

Generating functions fort he Fibonacci sequence {𝐹𝑛} and Lucas 

sequence {𝐿𝑛} are 

∑ 𝐹𝑛𝑥𝑛

∞

𝑛=0

=
𝑥

1 − 𝑥 − 𝑥2
 

and 

∑ 𝐿𝑛𝑥𝑛

∞

𝑛=0

=
2 − 𝑥

1 − 𝑥 − 𝑥2
 

respectively. Binet’s formulas for these are 

𝐹𝑛 =
𝛼𝑛 − 𝛽𝑛

𝛼 − 𝛽
  and  𝐿𝑛 = 𝛼𝑛 + 𝛽𝑏 

respectively, where 𝛼 =
1+√5

2
  and  𝛽 =

1−√5

2
 are roots of the 

equation 𝑥2 − 𝑥 − 1 = 0. The root 𝛼 is the golden ratio and it is 

a well-known real number among metallic ratios. We can refer to 

(Koshy, 2001) for more information about Fibonacci and Lucas 

numbers. 

Sir R. Hamilton introduced quaternions as an extension of 

complex numbers. A quaternion 𝑞 is shown 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 +
𝑑𝑘 where 𝑎, 𝑏, 𝑐, 𝑑 are reals and 𝑖, 𝑗, 𝑘 satisfy the following 

conditions 

𝑖2 = 𝑗2 = 𝑘2 = −1,  

𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗. 

The set of all quaternions is 

ℋ = {𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}. 

Due to the lack of commutativity, Hamilton quaternions form a 

skew field. Following Hamilton, a number of different 

quaternion algebras such as split-quaternions, semi-quaternions, 

split-semi quaternions, ¼-quaternions and commutative 

quaterions were studied.  

Recently, Şentürk and Ünal (2022) introduced 3-parameter 

generalized quaternions. The set of 3-parameter generalized 

quaternions is 

𝕂 = {𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘: 𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℝ} 

where the versors 1, 𝑖, 𝑗 and 𝑘 satisfy the following 

multiplication rules 

 

Table 1. Multiplication rules of versors 

 1 𝑖 𝑗 𝑘 

1 1 𝑖 𝑗 𝑘 

𝑖 𝑖 −𝜆1𝜆2 𝜆1𝑘 −𝜆2𝑗 

𝑗 𝑗 −𝜆1𝑘 −𝜆1𝜆3 𝜆3𝑖 

𝑘 𝑘 𝜆2𝑗 −𝜆3𝑖 −𝜆2𝜆3 

It shold be noted that 𝜆1, 𝜆2 and 𝜆3 are arbitrary real numbers. 

Fibonacci quaternions were introduced by Horadam (1963). 

He also used two generalizations of Fibonacci numbers to 

generalize Fibonacci quaternions. Similar to Horadam’s study, 

Iyer (1969) defined Lucas quaternions. Halıcı (2012) gave 

Binet’s formulas for the Fibonacci and Lucas quaternions and 

this study was a milestone in this theory, as Binet’s formulas 

allowed to obtain identities between terms of Fibonacci and 

Lucas quaternion sequences. Following Halıcı, a number of 

study investigating Fibonacci and Lucas quaternions or their 

generalizations have been done. Fibonacci split quaternions 

(Akyiğit, Kösal & Tosun, 2013) and dual Fibonacci quaternions 

(Nurkan & Güven, 2015)  are examples of using classical 

Fibonacci and Lucas numbers over a quaternion algebra. 

Another type of studies in literature used generalizations of 

Fibonacci and Lucas numbers over any quaternion algebra 

(Akyiğit, Kösal & Tosun, 2014; Aydın, 2021; Bilgici, Tokeşer & 

Ünal 2017; Flaut & Savin, 2015; Halıcı & Karataş, 2017; Polatlı, 

Kızılateş & Kesim, 2016; Tan, Yılmaz & Şahin, 2016; Yüce & 

Aydın, 2016). 

2. Definitions, Generating Functions and 

Binet’s Formulas 

 

Definitions of Fibonacci and Lucas generalized 3-parameter 

quaternions are given in the following. 

Definition 2.1. For any non-negative integer 𝑛, 𝑛th Fibonacci 

generalized 3-parameter quaternion is 

ℱ𝑛 = 𝐹𝑛 + 𝐹𝑛+1𝑖 + 𝐹𝑛+2𝑗 + 𝐹𝑛+3𝑘 

and 𝑛th Lucas generalized 3-parameter quaternion is 

ℒ𝑛 = 𝐿𝑛 + 𝐿𝑛+1𝑖 + 𝐿𝑛+2𝑗 + 𝐿𝑛+3𝑘 

where 𝐹𝑛 and 𝐿𝑛 are the classical Fibonacci and Lucas numbers. 

Corollary 2.2. For any non-negative integer 𝑛, Fibonacci and 

Lucas generalized 3-parameter quaternion satisfy the following 

recurrence relations 

ℱ𝑛 = ℱ𝑛−1 + ℱ𝑛−2 

and 

ℒ𝑛 = ℒ𝑛−1 + ℒ𝑛−2 

respectively. 

By using the identities 𝐹−𝑛 = (−1)𝑛+1𝐹𝑛 and 𝐿−𝑛 =
(−1)𝑛𝐿𝑛 for the classical Fibonacci and Lucas numbers, we 

obtain the following relations 
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ℱ−𝑛 = (−1)𝑛+1(𝐹𝑛 − 𝐹𝑛+1𝑖 + 𝐹𝑛+2𝑗 − 𝐹𝑛+3𝑘) 

and 

ℒ−𝑛 = (−1)𝑛(𝐿𝑛 − 𝐿𝑛+1𝑖 + 𝐿𝑛+2𝑗 − 𝐿𝑛+3𝑘). 

Binet’s formulas for the Fibonacci and Lucas generalized 3-

parameter quaternions are in the next theorem. 

Theorem 2.3. For any integer 𝑛, 𝑛th Fibonacci generalized 3-

parameter quaternion is 

ℱ𝑛 =
�̃�𝛼𝑛 − 𝛽𝛽𝑛

𝛼 − 𝛽
 

and 𝑛th Lucas generalized 3-parameter quaternion is 

ℒ𝑛 = �̃�𝛼𝑛 + 𝛽𝛽𝑛 

where �̃� = 1 + 𝛼𝑖 + 𝛼2𝑗 + 𝛼3𝑘 and 𝛽 = 1 + 𝛽𝑖 + 𝛽2𝑗 + 𝛽3𝑘. 

Proof. From the Binet’s formula for the Fibonacci numbers, we 

have 

ℱ𝑛 = 𝐹𝑛 + 𝐹𝑛+1𝑖 + 𝐹𝑛+2𝑗 + 𝐹𝑛+3𝑘 

  =
1

𝛼 − 𝛽
[(𝛼𝑛 − 𝛽𝑛) + (𝛼𝑛+1 − 𝛽𝑛+1)𝑖 + (𝛼𝑛+2 − 𝛽𝑛+2)𝑗

+ (𝛼𝑛+3 − 𝛽𝑛+3)𝑘] 

  =
1

𝛼 − 𝛽
[(1 + 𝛼𝑖 + 𝛼2𝑗 + 𝛼3𝑘)𝛼𝑛

− (1 + 𝛽𝑖 + 𝛽2𝑗 + 𝛽3𝑘)𝛽𝑛]. 

The last equation gives Binet’s formula for the Fibonacci 

generalized 3-parameter quaternions. Binet’s formula for the 

Lucas generalized 3-parameter quaternions can obtained in a 

similar way.   ◼ 

We need the following two relations for later use. 

Lemma 2.4. Let �̃� and 𝛽 be as given in Theorem 2.3. Thus, we 

have 

𝛼 ̃𝛽 = 𝑀 + √5 𝑁 

and  

𝛽𝛼 ̃ = 𝑀 − √5 𝑁 

where  

𝑀 = ℱ1 + 𝜆1𝜆2 − 𝜆1𝜆3 + 𝜆2𝜆3 + 𝑗 + 𝑘 

and  

𝑁 = −𝜆3𝑖 − 𝜆2𝑗 + 𝜆1𝑘. 

Proof. From the definitions of �̃� and 𝛽, proof is straightforward. 
◼ 

Corollary 2.5. Let �̃� and 𝛽 be as given in Theorem 2.3, we have 

𝛼 ̃𝛽 + 𝛽𝛼 ̃ = 𝑀. 

Generating functions for the Fibonacci and Lucas 

generalized 3-parameter quaternions are in the next theorem. 

Theorem 2.6. Generating functions for the sequences {ℱ𝑛}𝑛=0
∞  

and {ℒ𝑛}𝑛=0
∞  are 

∑ ℱ𝑛𝑥𝑛

∞

𝑛=0

=
𝑖 + 𝑗 + 2𝑘 + (1 + 𝑗 + 𝑘)𝑥

1 − 𝑥 − 𝑥2
 

and 

∑ ℒ𝑛𝑥𝑛

∞

𝑛=0

=
2 + 𝑖 + 3𝑗 + 4𝑘 + (−1 + 2𝑖 + 𝑗 + 3𝑘)𝑥

1 − 𝑥 − 𝑥2
 

respectively. 

Proof. Let ℱ(𝑥) be the sequences ∑ ℱ𝑛𝑥𝑛∞
𝑛=0 . Thus, we have 

ℱ(𝑥) = ℱ0 + ℱ1𝑥 + ∑ ℱ𝑛𝑥𝑛

∞

𝑛=2

. 

If we multiply the last equation by – 𝑥 and −𝑥2, we obtain 

−𝑥ℱ(𝑥) = −ℱ0𝑥 − ∑ ℱ𝑛−1𝑥𝑛

∞

𝑛=2

 

and 

−𝑥2ℱ(𝑥) = − ∑ ℱ𝑛−2𝑥𝑛

∞

𝑛=2

. 

Summing the last three equations and Corollary 2.2 give 

(1 − 𝑥 − 𝑥2)ℱ(𝑥) = ℱ0 + (ℱ1 − ℱ0)𝑥. 

Thus we obtain the first identity in theorem. The second identity 

can be obtained similarly.  ◼ 

 

3. Results  

In this section, we give generalizations of some well-known 

identities. We start with Vajda’s identities given in the following 

theorem. 

Theorem 3.1. For any integers 𝑟, 𝑠 and 𝑡, following equations 

hold 

ℱ𝑟+𝑠ℱ𝑟+𝑡 − ℱ𝑟ℱ𝑟+𝑠+𝑡 = (−1)𝑟+1𝐹𝑠(−𝑀𝐹𝑡 + 𝑁𝐿𝑡) 

and 

ℒ𝑟+𝑠ℒ𝑟+𝑡 − ℒ𝑟ℒ𝑟+𝑠+𝑡 = (−1)𝑟5𝐹𝑠(−𝑀𝐹𝑡 + 𝑁𝐿𝑡). 

Proof. 

Binet formula for the Fibonacci generalized 3-parameter 

quaternions gives 

ℱ𝑟+𝑠ℱ𝑟+𝑡 − ℱ𝑟ℱ𝑟+𝑠+𝑡 

        =
1

(𝛼 − 𝛽)2
[(�̃�𝛼𝑟+𝑠 − 𝛽𝛽𝑟+𝑠)(�̃�𝛼𝑟+𝑡 − 𝛽𝛽𝑟+𝑡)

− (�̃�𝛼𝑟 − 𝛽𝛽𝑟)(�̃�𝛼𝑟+𝑠+𝑡 − 𝛽𝛽𝑟+𝑠+𝑡)] 

=
1

(𝛼 − 𝛽)2
[�̃�𝛽(𝛼𝑟𝛽𝑟+𝑠+𝑡 − 𝛼𝑟+𝑠𝛽𝑟+𝑡)

+ 𝛽�̃�(𝛼𝑟+𝑠+𝑡𝛽𝑟 − 𝛼𝑟+𝑡𝛽𝑟+𝑠)] 

         =
(−1)𝑟

(𝛼 − 𝛽)2
[�̃�𝛽(𝛽𝑠+𝑡 − 𝛼𝑠𝛽𝑡)

+ 𝛽�̃�(𝛼𝑠+𝑡𝛽𝑟 − 𝛼𝑡𝛽𝑠)]    (since 𝛼𝛽 = −1) 

=
(−1)𝑟+1

(𝛼 − 𝛽)2
[�̃��̃�𝛽𝑡(𝛼𝑠 − 𝛽𝑡) − 𝛽�̃�𝛼𝑡(𝛼𝑠 − 𝛽𝑠)] 

             =
(−1)𝑟+1𝐹𝑠

𝛼 − 𝛽
[�̃�𝛽𝛽𝑡 − 𝛽�̃�𝛼𝑡] 
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             =
(−1)𝑟+1𝐹𝑠

𝛼 − 𝛽
[�̃�𝛽𝛽𝑡 − 𝛽�̃�𝛼𝑡] 

             =
(−1)𝑟+1𝐹𝑠

𝛼 − 𝛽
[𝛽𝑡(𝑀 + √5𝑁) − 𝛼𝑡(𝑀 − √5𝑁)]. 

Final equation with Binet formulas for the Fibonacci and Lucas 

numbers gives the first equation in the theorem. The second 

equation can be proved in a similar way.  ◼ 

If we take 𝑡 → −𝑠 in Vajda’s identity, we obtain Catalan’s 

identities for the Fibonacci and Lucas generalized 3-parameter 

quaternions given in the following corollary. 

Corollary 3.2.  For any integers 𝑟 and 𝑠, following equations 

hold 

ℱ𝑟+𝑠ℱ𝑟−𝑠 − ℱ𝑟
2 = (−1)𝑟+𝑠+1(𝑀𝐹𝑠

2 + 𝑁𝐹2𝑠) 

and 

ℒ𝑟+𝑠ℒ𝑟−𝑠 − ℒ𝑟
2 = (−1)𝑟+𝑠5(𝑀𝐹𝑠

2 + 𝑁𝐹2𝑠). 

If we take 𝑠 → 1 in Catalan’s identity, we have Cassini’s 

identities for the Fibonacci and Lucas generalized 3-parameter 

quaternions given in the following corollary. 

Corollary 3.3.  For any integer 𝑟, following equations hold 

ℱ𝑟+1ℱ𝑟−1 − ℱ𝑟
2 = (−1)𝑟(𝑀 + 𝑁) 

and 

ℒ𝑟+1ℒ𝑟−1 − ℒ𝑟
2 = (−1)𝑟+15(𝑀 + 𝑁). 

Another well-identity is d’Ocagne’s identity and it is in the next 

theorem. 

Theorem 3.4. For any integers 𝑟 and s, following equations hold 

ℱ𝑟ℱ𝑠+1 − ℱ𝑟+1ℱ𝑠 = (−1)𝑠[𝑀𝐹𝑟−𝑠 + 𝑁𝐿𝑟−𝑠] 

and 

ℒ𝑟ℒ𝑠+1 − ℒ𝑟+1ℒ𝑠 = (−1)𝑠+15[𝑀𝐹𝑟−𝑠 + 𝑁𝐿𝑟−𝑠]. 

Proof. From the Binet formula for the Fibonacci generalized 3-

parameter quaternions, we have 

ℱ𝑟ℱ𝑠+1 − ℱ𝑟+1ℱ𝑠 

    =
1

(𝛼 − 𝛽)2
[(�̃�𝛼𝑟 − 𝛽𝛽𝑟)(�̃�𝛼𝑠+1 − 𝛽𝛽𝑠+1)

− (�̃�𝛼𝑟+1 − 𝛽𝛽𝑟+1)(�̃�𝛼𝑠 − 𝛽𝛽𝑠)] 

    =
1

(𝛼 − 𝛽)2
[−�̃�𝛽(𝛼𝑟𝛽𝑠+1 − 𝛼𝑟+1𝛽𝑠)

− 𝛽�̃�(𝛼𝑠+1𝛽𝑟 − 𝛼𝑠𝛽𝑟+1)] 

    =
1

(𝛼 − 𝛽)2
[�̃�𝛽𝛼𝑟𝛽𝑠(𝛼 − 𝛽) − 𝛽�̃�𝛼𝑠𝛽𝑟(𝛼 − 𝛽)] 

    =
1

𝛼 − 𝛽
(�̃�𝛽𝛼𝑟𝛽𝑠 − 𝛽�̃�𝛼𝑠𝛽𝑟) 

    =
(−1)𝑠

𝛼 − 𝛽
(�̃�𝛽𝛼𝑟−𝑠 − 𝛽�̃�𝛽𝑟−𝑠) 

   =
(−1)𝑠

𝛼 − 𝛽
[(𝑀 + √5𝑁)𝛼𝑟−𝑠 − (𝑀 − √5𝑁)𝛽𝑟−𝑠]. 

Binet formula fort he Fibonacci and Lucas numbers gives the 

first identity in theorem. The second one can be proved similarly. 
◼ 

The other identities for the Fibonacci and Lucas generalized 

3-parameter quaternions are given in the next theorem. We will 

not prove these identities because theirs proofs based on Binet 

formulas for the Fibonacci and Lucas generalized 3-parameter 

quaternions similar to Vajda’s and Catalan’s identities. 

Theorem 3.5. For any integers 𝑟, 𝑠 and 𝑡, we have 

ℒ𝑟 = ℱ𝑟−1 + ℱ𝑟+1, 

ℒ𝑟+𝑠ℱ𝑟+𝑡 − ℒ𝑟+𝑡ℱ𝑟+𝑠 = 2(−1)𝑟+𝑠𝑀𝐹𝑡−𝑠, 

ℱ𝑟ℒ𝑠 − ℒ𝑠ℱ𝑟 = 2(−1)𝑟𝑁ℒ𝑠−𝑟 , 

ℱ𝑟ℒ𝑠 − ℒ𝑟ℱ𝑠 = 2(−1)𝑠(𝑀𝐹𝑟−𝑠 + 𝑁𝐿𝑟−𝑠), 

ℱ𝑟ℱ𝑠 − ℱ𝑠ℱ𝑟 = 2(−1)𝑠+1𝑁𝐹𝑟−𝑠, 

ℒ𝑟ℒ𝑠 − ℒ𝑠ℒ𝑟 = 10(−1)𝑠𝑁𝐹𝑟−𝑠, 

ℱ𝑟+𝑠𝐹𝑟+𝑠 − ℱ𝑟−𝑠𝐹𝑟−𝑠 = ℱ2𝑟𝐹2𝑠, 

ℒ𝑟+𝑠ℒ𝑟+𝑠 − ℒ𝑟−𝑠ℒ𝑟−𝑠 = 5ℱ2𝑟𝐹2𝑠, 

ℱ𝑟+𝑠𝐿𝑟+𝑠 − ℱ𝑟−𝑠𝐿𝑟−𝑠 = ℱ2𝑟+2𝑠 − ℱ2𝑟−2𝑠, 

ℒ𝑟+𝑠𝐿𝑟+𝑠 − ℒ𝑟−𝑠𝐿𝑟−𝑠 = ℒ2𝑟+2𝑠 − ℒ2𝑟−2𝑠, 

5ℱ𝑟
2 − ℒ𝑟

2 = 4(−1)𝑟+1𝑀, 

ℱ𝑟+𝑠 + (−1)𝑠ℱ𝑟−𝑠 = ℱ𝑟𝐿𝑠, 

ℒ𝑟+𝑠 + (−1)𝑠ℒ𝑟−𝑠 = ℒ𝑟𝐿𝑠, 

ℱ2𝑟 = 𝐹𝑟+1ℱ𝑟 + 𝐹𝑟ℱ𝑟−1. 

4. Conclusions  

There is an icreasing interest in quaternions whose 

coefficients are integer sequences, especially Fibonacci and 

Lucas sequences. Recently, Şentürk and Ünal (2022) introduced 

3-parameter generalized quaternions. This study aims to 

investigate these quaternions whose coefficients are Fibonacci 

and Lucas numbers. In this context, generating functions and 

Binet formulas for Fibonacci and Lucas generalized 3-parameter 

quaternions are important for calculating their properties and 

obtaining some generalization of well-known identities. 
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