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Abstract 

The concept of stability is studied on many different types of mathematical structures. This 

concept can be thought of as the small changes that will be applied in the structure studied 

should not disrupt the functioning of this structure. In this context, we performed the 

convergence and stability analysis of the new four-step iteration algorithm that we defined in 

this study, under appropriate conditions. In addition, we execute a speed comparison with 

existing algorithms to prove that the new algorithm is effective and useful, and we gave a 

numerical example to support our result. 
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1. INTRODUCTION 

Fixed point theory is a field with wide applications, which is located at the intersection of many 

branches of mathematics such as Analysis, Geometry, and Topology, and whose studies date 

back to the 19th century. Fixed point theory emerged to show the existence and uniqueness of 

the solution of ordinary differential equations. This theory plays an important role in solving 

problems encountered in many areas such as functional analysis, approximation theory, 

variational and linear inequalities, control systems, and optimization. In addition to its direct 

use in mathematics, fixed point theory has applications in various disciplines such as physics, 

chemistry, biology, medicine, engineering, communication, and economics [1-7]. 
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Fixed point theory studies are carried out on many mathematical structures from normed spaces 

to metric spaces. Studies on fixed point theory in normed spaces started with Brouwer [8] in 

the first quarter of the 20th century. Brouwer showed that mapping on itself defined on a closed 

ball in ℝ𝑛 space has at least one fixed point. In 1930, Schauder [9] took a Banach space instead 

of ℝ𝑛 space in Brouwer fixed point theorem and proved that a mapping on itself defined in a 

compact and convex subset of this space has at least one fixed point and presented a 

generalization of Brouwer fixed point theorem. 

Fixed point theory studies on complete metric spaces started with Stephan Banach. In 1922, 

Banach [10] proved that in the Banach fixed point theorem, also known as the "contraction 

principle", which guarantees the existence and uniqueness of a fixed point, a contraction 

mapping defined in the complete metric space has a unique fixed point. This theorem also 

provides a method for calculating the uniquely determined fixed point of a contraction mapping. 

This method, called iteration, produces a sequence with sequential approaches, and this 

sequence converges to the unique fixed point of the contraction mapping. Through this 

approach, Banach fixed point theorem is used as an effective tool in solving many existence 

problems in mathematics. 

Although iterative algorithms have a wide and dynamic literature, studies for these algorithms 

can be listed as determining the conditions under which the sequence to be obtained by using 

certain mapping classes will converge, comparing the convergence speeds, and performing data 

dependence and stability analysis [11-15]. 

The concept of stability has been widely used in many branches of science for a long time. 

According to Magnus [16], the source of stability studies can be found in the works of 

Aristoteles and Archimedes. At the same time, there is no universal definition of stability that 

is tailored to the specific needs of a particular problem. As a result, stability is one of the very 

meaningful scientific terms. In a broad sense, stability is understood as the ability of a system 

to continue functioning despite external disturbances without changing the internal structure. 

The concept of stability of mathematical problems can be explained as follows: In what 

situations can we say that by making a small change in the hypotheses of a theorem, the main 

conclusion of the theorem remains true or approximately true?. The first study on stability in 

the sense of fixed point was presented by Urabe in 1956 [17]. In 1967, Ostrowski [18] studied 

the stability of Picard iterative algorithm in metric spaces, but in general terms, the concept of 

stability for iterative algorithms was defined by Harder and Hicks [19] in 1988 and they proved 
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some stability theorems for Picard and Mann iterative algorithms using certain mapping classes. 

Later, this concept was examined by many authors and a large literature was created [20, 21]. 

In this study, a new four-step iterative algorithm has been proposed and the convergence of the 

newly defined iterative algorithm in a Banach space has been examined under suitable 

conditions. In addition, the convergence rate of the new algorithm has been compared with the 

existing algorithms and this result has been evaluated numerically on a non-trivial example. 

Finally, the concept of stability is analyzed for the new algorithm. 

2. MATERIALS AND METHODS 

In this section, we recall some fixed point iterative algorithms and give some preliminary 

information we need to obtain our main results. 

Let 𝑋 be an ambient space, 𝑇: 𝑋 → 𝑋 be a mapping, and 𝑥0, 𝑢0 ∈ 𝑋. 

Algorithm 1.  

{
 

 
𝑥𝑛+1 = 𝑇𝑦𝑛

𝑦𝑛 = 𝑇[(1 − 𝛼𝑛
(1))𝑥𝑛 + 𝛼𝑛

(1)𝑧𝑛]

𝑧𝑛 = (1 − 𝛼𝑛
(2))𝑥𝑛 + 𝛼𝑛

(2)𝑇𝑥𝑛

 (1) 

in which 𝛼𝑛
(𝑘) ∈ [0,1] are control sequences for 𝑘 = 1, 2. This method is called Thakur iterative 

algorithm [22]. 

Algorithm 2.  

{
 

 
𝑢𝑛+1 = 𝑇𝑣𝑛

𝑣𝑛 = 𝑇[(1 − 𝛼𝑛
(1))𝑤𝑛 + 𝛼𝑛

(1)𝑇𝑤𝑛]

𝑤𝑛 = (1 − 𝛼𝑛
(2))𝑢𝑛 + 𝛼𝑛

(2)𝑇𝑢𝑛

 (2) 

in which 𝛼𝑛
(𝑘) ∈ [0,1] are control sequences for 𝑘 = 1,2. This method is called 𝐾∗ iterative 

algorithm defined by Ullah and Arshad [23]. 

Algorithm 3. 

{
 

 
𝑥𝑛+1 = 𝑇𝑦𝑛

𝑦𝑛 = 𝑇[(1 − 𝛼𝑛
(1))𝑇𝑥𝑛 + 𝛼𝑛

(1)𝑇𝑧𝑛]

𝑧𝑛 = (1 − 𝛼𝑛
(2))𝑥𝑛 + 𝛼𝑛

(2)𝑇𝑥𝑛

 (3) 

in which 𝛼𝑛
(𝑘) ∈ [0,1] are control sequences for 𝑘 = 1,2. This method is called 𝐾 iterative 

algorithm defined by Hussain et al. [24]. 

Algorithm 4. 

{
𝑥𝑛+1 = 𝑇[(1 − 𝛼𝑛

(1))𝑇𝑥𝑛 + 𝛼𝑛
(1)𝑇𝑦𝑛]

𝑦𝑛 = 𝑇[(1 − 𝛼𝑛
(2))𝑥𝑛 + 𝛼𝑛

(2)𝑇𝑥𝑛]
 (4) 
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in which 𝛼𝑛
(𝑘) ∈ [0,1] are control sequences for 𝑘 = 1,2. This method is called Vatan-two step 

iterative algorithm defined by Vatan et al. [25]. 

Especially in applied mathematics, besides obtaining the solution of a problem, it is important 

to determine how to reach this solution in the easiest and fastest way. For this reason, it is 

necessary to compare the speed of an iterative algorithm used in the solution of the problem in 

comparison to other algorithms created with the same mapping. Based on this information, the 

four-step fixed-point iterative algorithm we defined is as follows: 

Algorithm 5. 

{
  
 

  
 𝑥𝑛+1 = 𝑇 [(1 − 𝛼𝑛

(1))𝑇𝑦𝑛 + 𝛼𝑛
(1)𝑇𝑧𝑛]

𝑦𝑛 = 𝑇 [(1 − 𝛼𝑛
(2))𝑇𝑥𝑛 + 𝛼𝑛

(2)𝑇𝑧𝑛]

𝑧𝑛 = 𝑇 [(1 − 𝛼𝑛
(3))𝑤𝑛 + 𝛼𝑛

(3)𝑇𝑤𝑛]

𝑤𝑛 = 𝑇 [(1 − 𝛼𝑛
(4))𝑥𝑛 + 𝛼𝑛

(4)𝑇𝑥𝑛]

 (5) 

in which 𝛼𝑛
(𝑘) ∈ [0,1] are control sequences for 𝑘 = 1,2,3, 4. 

Definition 1. Let 𝑋 be a Banach space and 𝑇: 𝑋 → 𝑋 be a mapping. If there exist a constant 

𝛿 ∈ [0,1) and a strictly increasing and continuous function 𝜙:ℝ+ → ℝ+ with 𝜑(0) = 0 such 

that 

‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝜙(‖𝑥 − 𝑇𝑥‖) + 𝛿‖𝑥 − 𝑦‖ (6) 

for all 𝑥, 𝑦 ∈ 𝑋 . Then, 𝑇 is called contractive-like mapping [26]. 

This mapping may not always have a fixed point. However, if this mapping has a fixed point 

such as 𝑝, using the inequality (6), we get 

‖𝑇𝑥 − 𝑝‖ ≤ 𝛿‖𝑥 − 𝑝‖                                                                        (7) 

and using the inequality (7), we obtain 

‖𝑇𝑥 − 𝑇𝑦‖  ≤ ‖𝑇𝑥 − 𝑝‖ + ‖𝑝 − 𝑇𝑦‖  

                                                    ≤ 𝛿‖𝑥 − 𝑝‖ + 𝛿‖𝑦 − 𝑝‖ (8) 

                       ≤ 𝛿‖𝑥 − 𝑦‖ + 2𝛿‖𝑦 − 𝑝‖  

Lemma 1. Let {𝛼𝑛
(𝑘)
}
𝑛=0

∞

 be three sequences such that 𝛼𝑛
(𝑘)
≥ 0 (∀ 𝑛 ∈ ℕ) for 𝑘 = 1,2,3. 

Assume that 𝛼𝑛
(2)
= 𝑜(𝛼𝑛

(3)
) , ∑ 𝛼𝑛

(3)
= ∞∞

𝑛=1 , and 𝛼𝑛
(3)
∈ (0,1) for all 𝑛 ≥ 𝑛0. If 𝛼𝑛+1

(1)
≤

(1 − 𝛼𝑛
(3))𝛼𝑛

(1) + 𝛼𝑛
(2)

, then lim
𝑛→∞

𝛼𝑛
(1)
= 0 [27]. 
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Lemma 2. Let {𝛼𝑛
(𝑘)
}
𝑛=0

∞

 be two sequences such that 𝛼𝑛
(𝑘)
≥ 0 (∀ 𝑛 ∈ ℕ) for 𝑘 = 1,2. Assume 

that lim
𝑛→∞

𝛼𝑛
(2)
= 0 and 𝜇 ∈ (0,1). If 𝛼𝑛+1

(1)
≤  𝜇𝛼𝑛

(1) + 𝛼𝑛
(2)

, then lim
𝑛→∞

𝛼𝑛
(1)
= 0 [28]. 

Definition 2. If 

lim
𝑛→∞

‖Θ𝑛
(1)
− Θ‖

‖Θ𝑛
(2)
− Θ‖

= 0, 

in which {Θ𝑛
(𝑖)
}
𝑛=0

∞

 are two sequences with lim
𝑛→∞

Θ𝑛
(𝑖)
= Θ (𝑖 = 1,2), then it is said that {Θ𝑛

(1)
}
𝑛=0

∞

 

converges faster than {Θ𝑛
(2)
}
𝑛=0

∞

 [29]. 

Definition 3. Let (𝑋, 𝑑) be a metric space, 𝑇: 𝑋 → 𝑋 be a mapping with fixed point 𝑝, and 𝑥0 ∈

𝑋. Assume that the sequence {𝑥𝑛}𝑛=1
∞  generated by the iterative algorithm 𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) 

converges to 𝑝. Let {𝑦𝑛}𝑛=1
∞ ⊂ 𝑋 be an arbitrary sequence and set 𝜀𝑛 = 𝑑(𝑦𝑛+1, 𝑓(𝑇, 𝑦𝑛)), 𝑛 =

0,1,2, … Then the iterative algorithm 𝑓(𝑇, 𝑥𝑛) will be called stable (or 𝑇-stable) if and only if 

lim
𝑛→∞

𝜖𝑛 = 0 implies that lim
𝑛→∞

𝑦𝑛 = 𝑝 [30]. 

3. RESULTS AND DISCUSSION  

In this section, strong convergence, rate of convergence, and stability results for the sequence 

obtained from Algorithm 5 constructed using a contractive-like mapping satisfying the 

condition (6), will be discussed. 

Theorem 1. Let C be a nonempty, closed, convex subset of a Banach space 𝑋 and 𝑇: 𝐶 → 𝐶  

be a contractive-like mapping with fixed point 𝑝. Let {𝑥𝑛}𝑛=1
∞  be iterative sequence generated 

by Algorithm 5 with real sequence {𝛼𝑛
(1)}

𝑛=1

∞

∈ [0,1] satisfying ∑ 𝛼𝑛
(1) = ∞∞

𝑛=1 . Then {𝑥𝑛}𝑛=1
∞  

converges strongly to p. 

Proof. We have to show 𝑥𝑛 → 𝑝 as 𝑛 → ∞. By using Algorithm 5 and (6), we have 

‖𝑤𝑛 − 𝑝‖ = ‖𝑇[(1 − 𝛼𝑛
(4))𝑥𝑛 + 𝛼𝑛

(4)𝑇𝑥𝑛] − 𝑝‖  

≤ 𝛿‖(1 − 𝛼𝑛
(4))𝑥𝑛 + 𝛼𝑛

(4)𝑇𝑥𝑛 − 𝑝‖  

                           ≤ 𝛿(1 − 𝛼𝑛
(4))‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛

(4)𝛿‖𝑇𝑥𝑛 − 𝑝‖ (9) 

                          ≤ 𝛿(1 − 𝛼𝑛
(4))‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛

(4)𝛿2‖𝑥𝑛 − 𝑝‖  

                                        ≤ 𝛿[1 − 𝛼𝑛
(4)(1 − 𝛿)]‖𝑥𝑛 − 𝑝‖  

and 



Y. Atalan and E. Kilic (2022). Aksaray University Journal of Science and Engineering, 6(1), 57-70. 

Aksaray J. Sci. Eng. 6:1 (2022) 57-70  62 
 

‖𝑧𝑛 − 𝑝‖ = ‖𝑇[(1 − 𝛼𝑛
(3))𝑤𝑛 + 𝛼𝑛

(3)𝑇𝑤𝑛] − 𝑝‖  

≤ 𝛿‖(1 − 𝛼𝑛
(3))𝑤𝑛 + 𝛼𝑛

(3)𝑇𝑤𝑛 − 𝑝‖  

                           ≤ 𝛿(1 − 𝛼𝑛
(3))‖𝑤𝑛 − 𝑝‖ + 𝛼𝑛

(3)𝛿‖𝑇𝑤𝑛 − 𝑝‖ (10) 

                           ≤ 𝛿(1 − 𝛼𝑛
(3))‖𝑤𝑛 − 𝑝‖ + 𝛼𝑛

(3)𝛿2‖𝑤𝑛 − 𝑝‖  

                                       ≤ 𝛿[1 − 𝛼𝑛
(3)(1 − 𝛿)]‖𝑤𝑛 − 𝑝‖  

Substituting (9) in (10), we attain 

‖𝑧𝑛 − 𝑝‖ ≤ 𝛿2[1 − 𝛼𝑛
(3)(1 − 𝛿)][1 − 𝛼𝑛

(4)(1 − 𝛿)]‖𝑥𝑛 − 𝑝‖ (11) 

Also, 

‖𝑦𝑛 − 𝑝‖ = ‖𝑇[(1 − 𝛼𝑛
(2))𝑇𝑥𝑛 + 𝛼𝑛

(2)𝑇𝑧𝑛] − 𝑝‖  

              ≤ 𝛿‖(1 − 𝛼𝑛
(2))𝑇𝑥𝑛 + 𝛼𝑛

(2)𝑇𝑧𝑛 − 𝑝‖ (12) 

                         ≤ 𝛿2(1 − 𝛼𝑛
(2))‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛

(2)𝛿2‖𝑧𝑛 − 𝑝‖  

Substituting (11) in (12), we get 

                                  ‖𝑦𝑛 − 𝑝‖ ≤ 𝛿2{(1 − 𝛼𝑛
(2))‖𝑥𝑛 − 𝑝‖  

                                              +𝛼𝑛
(2)𝛿2[1 − 𝛼𝑛

(3)(1 − 𝛿)][1 − 𝛼𝑛
(4)(1 − 𝛿)]}‖𝑥𝑛 − 𝑝‖ (13) 

Moreover, 

‖𝑥𝑛+1 − 𝑝‖ = ‖𝑇[(1 − 𝛼𝑛
(1))𝑇𝑦𝑛 + 𝛼𝑛

(1)𝑇𝑧𝑛] − 𝑝‖  

                 ≤ 𝛿‖(1 − 𝛼𝑛
(1))𝑇𝑦𝑛 + 𝛼𝑛

(1)𝑇𝑧𝑛 − 𝑝‖  

                              ≤ 𝛿(1 − 𝛼𝑛
(1))‖𝑇𝑦𝑛 − 𝑝‖ + 𝛼𝑛

(1)𝛿‖𝑇𝑧𝑛 − 𝑝‖ (14) 

                             ≤ 𝛿2(1 − 𝛼𝑛
(1))‖𝑦𝑛 − 𝑝‖ + 𝛼𝑛

(1)𝛿2‖𝑧𝑛 − 𝑝‖  

Substituting (11) and (13) in (14), we get 

‖𝑥𝑛+1 − 𝑝‖ ≤ 𝛿3(1 − 𝛼𝑛
(1)){(1 − 𝛼𝑛

(2))𝛿‖𝑥𝑛 − 𝑝‖  

                                 +𝛼𝑛
(2)𝛿3[1 − 𝛼𝑛

(3)(1 − 𝛿)][1 − 𝛼𝑛
(4)(1 − 𝛿)]}‖𝑥𝑛 − 𝑝‖  

              +𝛼𝑛
(1)𝛿4[1 − 𝛼𝑛

(3)(1 − 𝛿)][1 − 𝛼𝑛
(4)(1 − 𝛿]‖𝑥𝑛 − 𝑝‖                              

Considering that 𝛼𝑛
(𝑘) ∈ [0,1]  (𝑘 = 1,2,3, 4), 𝛿 ∈ (0,1), and rearranging the above inequality, 

we obtain 

‖𝑥𝑛+1 − 𝑝‖ ≤ 𝛿
3[1 − 𝛼𝑛

(1)(1 − 𝛿]‖𝑥𝑛 − 𝑝‖ (15) 

By induction, we get 

‖𝑥𝑛 − 𝑝‖ ≤ 𝛿3[1 − 𝛼𝑛−1
(1) (1 − 𝛿]‖𝑥𝑛−1 − 𝑝‖  



Y. Atalan and E. Kilic (2022). Aksaray University Journal of Science and Engineering, 6(1), 57-70. 

Aksaray J. Sci. Eng. 6:1 (2022) 57-70  63 
 

‖𝑥𝑛−1 − 𝑝‖ ≤ 𝛿3[1 − 𝛼𝑛−2
(1) (1 − 𝛿]‖𝑥𝑛−2 − 𝑝‖  

⋮  

‖𝑥2 − 𝑝‖ ≤ 𝛿3[1 − 𝛼1
(1)(1 − 𝛿]‖𝑥1 − 𝑝‖  

Hence, 

‖𝑥𝑛+1 − 𝑝‖ ≤ ‖𝑥1 − 𝑝‖𝛿
3𝑛∏[1 − 𝛼𝑖

(1)(1 − 𝛿)]

𝑛

𝑖=1

 (16) 

Since 𝛼𝑖
(1) ∈ [0,1] and 𝛿 ∈ (0,1), we have [1 − 𝛼𝑖

(1)(1 − 𝛿] ≤ 1. It is well-known from 

classical analysis that 1 − 𝑥 ≤ 𝑒−𝑥 for all 𝑥 ∈ [0,1], hence from (16), we attain 

‖𝑥𝑛+1 − 𝑝‖ ≤ ‖𝑥1 − 𝑝‖𝛿
3𝑛∏𝑒−(1−𝛿)𝛼𝑖

(1)
𝑛

𝑖=1

 
 

                      = ‖𝑥1 − 𝑝‖𝛿
3𝑛𝑒−(1−𝛿)∑ 𝛼𝑖

(1)𝑛
𝑖=1   

Taking the limit of both sides of the above inequality, 𝑥𝑛 → 𝑝 as 𝑛 → ∞. 

Without the need for the ∑ 𝛼𝑛
(1) = ∞∞

𝑛=1  condition given in this theorem, it can be seen from 

the following theorem that lim
𝑛→∞

‖𝑥𝑛 − 𝑝‖ = 0: 

Theorem 2. Let 𝐶, 𝑋, and 𝑇 with fixed point p be the same as in Theorem 1. Then the iterative 

sequence {𝑥𝑛}𝑛=1
∞ , which is generated by Algorithm 5, converges strongly to p. 

Proof. From (15), we have  

‖𝑥𝑛+1 − 𝑝‖ ≤ 𝛿3[1 − 𝛼𝑛
(1)
(1 − 𝛿]‖𝑥𝑛 − 𝑝‖ 

Since [1 − 𝛼𝑛
(1)(1 − 𝛿] ≤ 1, we get 

‖𝑥𝑛+1 − 𝑝‖ ≤ 𝛿3‖𝑥𝑛 − 𝑝‖ 

If the limit is taken for this inequality, it can be easily seen that lim
𝑛→∞

‖𝑥𝑛 − 𝑝‖ = 0 since 𝛿 ∈

(0,1).  

Theorem 3. Let 𝐶, 𝑋, and 𝑇 with fixed point p be the same as in Theorem 1. For given 𝑥1 =

𝑢1 ∈ 𝐶, consider the iterative sequences {𝑥𝑛}𝑛=1
∞  and {𝑢𝑛}𝑛=1

∞  defined by Algorithm 5 and 

Algorithm 2, respectively with {𝛼𝑛
(𝑘)
}
𝑛=0

∞

∈ [0,1] for 𝑘 = 1,2,3,4 in which 𝛼1
(1)
≤ 𝛼𝑛

(1)
≤ 1. 

Then {𝑥𝑛}𝑛=1
∞  converges faster than {𝑢𝑛}𝑛=1

∞  to p. 

Proof. From Theorem 1, we have the following estimate: 

‖𝑥𝑛+1 − 𝑝‖ ≤ ‖𝑥1 − 𝑝‖𝛿
3𝑛∏[1 − 𝛼𝑖

(1)(1 − 𝛿)]

𝑛

𝑖=1

 (17) 
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Also, by using Algorithm 2, we get 

 ‖𝑤𝑛 − 𝑝‖ ≤ (1 − 𝛼𝑛
(2)
)‖𝑢𝑛 − 𝑝‖ + 𝛿𝛼𝑛

(2)‖𝑢𝑛 − 𝑝‖  

 = [1 − 𝛼𝑛
(2)(1 − 𝛿)]‖𝑢𝑛 − 𝑝‖ (18) 

and  

‖𝑣𝑛 − 𝑝‖ ≤ 𝛿(1 − 𝛼𝑛
(1)
)‖𝑤𝑛 − 𝑝‖ + 𝛿𝛼𝑛

(1)‖𝑤𝑛 − 𝑝‖ (19) 

≤ 𝛿[1 − 𝛼𝑛
(1)(1 − 𝛿)]‖𝑤𝑛 − 𝑝‖  

and 

‖𝑢𝑛+1 − 𝑝‖ ≤ 𝛿‖𝑣𝑛 − 𝑝‖ (20) 

Substituting (18) in (19) and (19) in (20), respectively, and by taking into account that 

[1 − 𝛼𝑛
(2)(1 − 𝛿)] ≤ 1, we attain 

‖𝑢𝑛+1 − 𝑝‖ ≤ 𝛿2[1 − 𝛼𝑛
(1)(1 − 𝛿)]‖𝑢𝑛 − 𝑝‖ (21) 

By induction, we have 

‖𝑢𝑛+1 − 𝑝‖ ≤ 𝛿2𝑛∏[1 − 𝛼𝑖
(1)(1 − 𝛿)]‖𝑢1 − 𝑝‖

𝑛

𝑖=1

 (22) 

By applying assumption 𝛼1
(1)
≤ 𝛼𝑛

(1)
≤ 1 to (17) and (22) respectively, we obtain 

‖𝑥𝑛+1 − 𝑝‖ ≤ 𝛿
3𝑛∏[1− 𝛼1

(1)(1 − 𝛿)]‖𝑥1 − 𝑝‖

𝑛

𝑖=1

 (23) 

               = 𝛿3𝑛[1 − 𝛼1
(1)(1 − 𝛿)]

𝑛
‖𝑥1 − 𝑝‖  

and 

‖𝑢𝑛+1 − 𝑝‖ ≤ 𝛿2𝑛∏[1− 𝛼1
(1)(1 − 𝛿)]

𝑛

𝑖=1

‖𝑢1 − 𝑝‖ (24) 

                                              = 𝛿2𝑛[1 − 𝛼1
(1)(1 − 𝛿)]

𝑛
‖𝑢1 − 𝑝‖  

From (23) and (24), we can choose {𝑎𝑛}𝑛=1
∞  and {𝑏𝑛}𝑛=1

∞  as 

𝑎𝑛 = 𝛿
3𝑛[1 − 𝛼1

(1)
(1 − 𝛿)]𝑛‖𝑥1 − 𝑝‖ (25) 

𝑏𝑛 = 𝛿
2𝑛[1 − 𝛼1

(1)
(1 − 𝛿)]𝑛‖𝑢1 − 𝑝‖  

respectively. Let Θ𝑛 =
𝑎𝑛

𝑏𝑛
 . Then, we have 
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Θ𝑛 =
‖𝑥1 − 𝑝‖𝛿

3𝑛[1 − 𝛼1
(1)
(1 − 𝛿)]𝑛

‖𝑢1 − 𝑝‖𝛿2𝑛[1 − 𝛼1
(1)
(1 − 𝛿)]𝑛

 
 

                                            = 𝛿𝑛  

Since 𝛿 ∈ (0,1), we obtain lim
𝑛→∞

Θ𝑛 = 0 which implies that {𝑥𝑛}𝑛=1
∞  converges faster than 

{𝑢𝑛}𝑛=1
∞ . 

In order to validity of Theorem 3, we give the following example: 

Example 3.1. Let 𝑋 = ℝ and 𝐶 = [0,1]. Let 𝑇: 𝐶 → 𝐶 be a mapping defined by 𝑇(𝑥) =

1

5
𝑒−2𝑥 +

1

3
𝑐𝑜𝑠2𝑥 for all 𝑥 ∈ 𝐶. It can be seen in the Fig. 1 that 𝑇 satisfies condition (6) with 

𝛿 = 0.75 and 𝜓(𝑡) =
3𝑡

25
: 

  
Figure 1. Graphical demonstration of 𝑇 

 

Let 𝑥1 = 0.99 and 𝛼𝑛
(𝑘) = 0.25 for 𝑘 = 1,2,3,4. The following table shows that Algorithm 5 

converges to 𝑝 = 0.35261795533135 faster than all Algorithms 1-4:  
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Theorem 4. Let 𝐶, 𝑋, and 𝑇 with fixed point 𝑝 be the same as in Theorem 1. Suppose that 

iterative sequence generated by Algorithm 5 converges to 𝑝. Then Algorithm 5 is 𝑇 −stable. 

Proof. Let {𝑎𝑛}𝑛=1
∞  be an arbitrary sequence in 𝑋. Define 

𝜀𝑛 = ‖𝑎𝑛+1 − 𝑓(𝑇, 𝑎𝑛)‖    

for all 𝑛 ∈ ℕ, in which 𝑎𝑛+1 = 𝑇 [(1 − 𝛼𝑛
(1)
)𝑇𝑏𝑛 + 𝛼𝑛

(1)
𝑇𝑐𝑛], 𝑏𝑛 = 𝑇 [(1 − 𝛼𝑛

(2)
)𝑇𝑎𝑛 +

𝛼𝑛
(2)
𝑇𝑐𝑛], 𝑐𝑛 = 𝑇 [(1 − 𝛼𝑛

(3)
)𝑑𝑛 + 𝛼𝑛

(3)
𝑇𝑑𝑛]and 𝑑𝑛 = 𝑇 [(1 − 𝛼𝑛

(4)
)𝑎𝑛 + 𝛼𝑛

(4)
𝑇𝑎𝑛]. Suppose 

that lim
𝑛→∞

𝜀𝑛 = 0. We prove that lim
𝑛→∞

𝑎𝑛 = 𝑝: 

‖𝑎𝑛+1 − 𝑝‖ ≤ ‖𝑎𝑛+1 − 𝑓(𝑇, 𝑎𝑛)‖  

+‖𝑓(𝑇, 𝑎𝑛) − 𝑝‖  

                   ≤ 𝜀𝑛 + 𝛿 ‖(1 − 𝛼𝑛
(1)
)𝑇𝑏𝑛 + 𝛼𝑛

(1)
𝑇𝑐𝑛 − 𝑝‖ (26) 

                                ≤ 𝜀𝑛 + 𝛿(1 − 𝛼𝑛
(1)
)‖𝑇𝑏𝑛 − 𝑝‖ + 𝛿𝛼𝑛

(1)‖𝑇𝑐𝑛 − 𝑝‖  

                              ≤ 𝜀𝑛 + 𝛿
2(1 − 𝛼𝑛

(1)
)‖𝑏𝑛 − 𝑝‖ + 𝛿

2𝛼𝑛
(1)‖𝑐𝑛 − 𝑝‖  

and  

‖𝑏𝑛 − 𝑝‖ = ‖𝑇[(1 − 𝛼𝑛
(2)
)𝑇𝑎𝑛 + 𝛼𝑛

(2)
𝑇𝑐𝑛] − 𝑝‖  

                             ≤ 𝛿‖(1 − 𝛼𝑛
(2)
)𝑇𝑎𝑛 + 𝛼𝑛

(2)
𝑇𝑐𝑛 − 𝑝‖ (27) 

                         ≤ 𝛿2(1 − 𝛼𝑛
(2)
)‖𝑎𝑛 − 𝑝‖ + 𝛼𝑛

(2)
𝛿2‖𝑐𝑛 − 𝑝‖  

and  

‖𝑐𝑛 − 𝑝‖ = ‖𝑇[(1 − 𝛼𝑛
(3)
)𝑑𝑛 + 𝛼𝑛

(3)
𝑇𝑑𝑛] − 𝑝‖  

                                      ≤ 𝛿(1 − 𝛼𝑛
(3)
)‖𝑑𝑛 − 𝑝‖ + 𝛼𝑛

(3)
𝛿2‖𝑑𝑛 − 𝑝‖ (28) 

   ≤ 𝛿[1 − 𝛼𝑛
(3)
(1 − 𝛿)]‖𝑑𝑛 − 𝑝‖  

and 

‖𝑑𝑛 − 𝑝‖ = ‖𝑇[(1 − 𝛼𝑛
(4)
)𝑎𝑛 + 𝛼𝑛

(4)
𝑇𝑎𝑛] − 𝑝‖  

                         ≤ 𝛿(1 − 𝛼𝑛
(4)
)‖𝑎𝑛 − 𝑝‖ + 𝛼𝑛

(4)
𝛿2‖𝑎𝑛 − 𝑝‖ (29) 

       ≤ 𝛿[1 − 𝛼𝑛
(4)
(1 − 𝛿)]‖𝑎𝑛 − 𝑝‖  

Substituting (29) in (28), we attain 

‖𝑐𝑛 − 𝑝‖ ≤ 𝛿
2[1 − 𝛼𝑛

(3)
(1 − 𝛿)][1 − 𝛼𝑛

(4)
(1 − 𝛿)]‖𝑎𝑛 − 𝑝‖ (30) 

Substituting (30) in (27), we get 
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‖𝑏𝑛 − 𝑝‖ ≤ 𝛿
2 {1 − 𝛼𝑛

(2)(1 − 𝛿2)[1 − 𝛼𝑛
(3)(1 − 𝛿)][1 − 𝛼𝑛

(4)(1 − 𝛿)]} 

                       × ‖𝑎𝑛 − 𝑝‖ 

(31) 

Moreover, substituting (31) and (30) in (26), we obtain  

‖𝑎𝑛+1 − 𝑝‖ ≤ 𝜀𝑛 

                       +𝛿4{1 − 𝛼𝑛
(2)(1 − 𝛿2)(1 − 𝛼𝑛

(1)
)[1 − 𝛼𝑛

(3)(1 − 𝛿)][1 − 𝛼𝑛
(4)(1 − 𝛿)] 

 

+𝛼𝑛
(1)
[1 − 𝛼𝑛

(3)(1 − 𝛿)][1 − 𝛼𝑛
(4)(1 − 𝛿)]}‖𝑎𝑛 − 𝑝‖  

Since 𝛿 ∈ [0,1) and {𝛼𝑛
(𝑘)
}
𝑛=0

∞

∈ [0,1] for 𝑘 = 1,2,3,4, we have 

𝛿4{1 − 𝛼𝑛
(2)(1 − 𝛿2)(1 − 𝛼𝑛

(1)
)[1 − 𝛼𝑛

(3)(1 − 𝛿)][1 − 𝛼𝑛
(4)(1 − 𝛿)]  

                     +𝛼𝑛
(1)
[1 − 𝛼𝑛

(3)(1 − 𝛿)][1 − 𝛼𝑛
(4)(1 − 𝛿)]} < 1  

Hence, 

‖𝑎𝑛+1 − 𝑝‖ ≤ 𝛿‖𝑎𝑛 − 𝑝‖ + 𝜀𝑛  

Thus, from Lemma 2 we obtain lim
𝑛→∞

𝑎𝑛 = 𝑝.  

Conversely, assume that lim
𝑛→∞

𝑎𝑛 = 𝑝. We now prove that lim
𝑛→∞

𝜀𝑛 = 0: 

                                   𝜀𝑛 = ‖𝑎𝑛+1 − 𝑓(𝑇, 𝑎𝑛)‖  

                    ≤ ‖𝑎𝑛+1 − 𝑝‖ + ‖𝑇 [(1 − 𝛼𝑛
(1)
)𝑇𝑏𝑛 + 𝛼𝑛

(1)
𝑇𝑐𝑛] − 𝑝‖  

                      ≤ ‖𝑎𝑛+1 − 𝑝‖ + 𝛿 ‖(1 − 𝛼𝑛
(1)
)𝑇𝑏𝑛 + 𝛼𝑛

(1)
𝑇𝑐𝑛 − 𝑝‖ (32) 

                                      ≤ ‖𝑎𝑛+1 − 𝑝‖ + 𝛿
2(1 − 𝛼𝑛

(1)
)‖𝑏𝑛 − 𝑝‖ + 𝛿

2𝛼𝑛
(1)‖𝑐𝑛 − 𝑝‖  

Substituting (30) and (31) in (32), we get 

 𝜀𝑛 ≤ ‖𝑎𝑛+1 − 𝑝‖ 

+𝛿4{1 − 𝛼𝑛
(2)(1 − 𝛿2)(1 − 𝛼𝑛

(1))[1 − 𝛼𝑛
(3)(1 − 𝛿)][1 − 𝛼𝑛

(4)(1 − 𝛿)] 

 

                  +𝛼𝑛[1 − 𝛼𝑛
(3)(1 − 𝛿)][1 − 𝛼𝑛

(4)(1 − 𝛿)]}‖𝑎𝑛 − 𝑝‖  

By taking the limit as 𝑛 → ∞ in the above inequality, we obtain lim
𝑛→∞

𝜀𝑛 = 0.  

4. CONCLUSIONS 

In this study, we analyzed the convergence of Algorithm 5 under appropriate conditions. In 

addition to proving that it has a better convergence speed than other algorithms in the literature, 
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we also presented a numerical example to support this result. Finally, we discussed the concept 

of stability for Algorithm 5. 
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