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Abstract

In this study, we produce a surface family possessing an involute of a given curve as a geodesic. We find necessary and sufficient conditions
for the given curve such that its involute is a geodesic on any member of the surface family. Also, we present important results for ruled and
developable surfaces. Finally, we present two examples to support our results.
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1. Introduction and Preliminaries

Involute curve was first discovered by Huygens when he was trying to make a more accurate clock. Involute curves have a wide range of
mechanical engineering applications like involute gear teeth, centrifugal casing design, etc. The profiles of gear teeth are usually involute
curves. This is the best form for keeping the teeth in contact, while minimizing wear and backlash (Fig.1).

Fig. 1. Involute gear with involute teeth

The concept of family of surfaces having a given characteristic curve was first introduced by Wang et al. [2] in Euclidean 3-space. Kasap et al.
[3] studied some surfaces using generalized marching-scale functions. Also, surfaces with common geodesic in Minkowski 3-space have been
the subject of many studies [4, 5, 6, 7]. Bayram et al. [8] studied parametric surfaces which possess a given curve as a common asymptotic.
Ergün et al. [10] constructed a surface pencil from a given spacelike (timelike) line of curvature in Minkowski 3-space. Recently Bayram and
Bilici [9] expressed a surface family with a common involute asymptotic curve. In 2021, Bilici and Bayram [15] provided a parameterization
to construct a surface family with a common involute line of curvature. For some recent work inspired by the involute-evolute curve pair, see
[16, 17, 18, 19, 20, 21, 22, 23, 24]. In this paper, we give the necessary and sufficient condition for a given curve such that its involute is
both isoparametric and geodesic on a parametric surface. Furthermore, we obtain some important results for ruled surfaces. Finally, we
illustrate the method with two examples. Let α : I −→ R3 be a unit speed parametric curve, α ′ denotes the derivative of α with respect to

arc lenght parameter s and we assume that α is a regular curve with α ′′ (s) 6= 0, where s ∈ [n1,n2] ⊂ I. Let {V1 (s) ,V2 (s) ,V3 (s)} be the
Frenet frame of α at the point α (s), where V1 (s) = α ′ (s) , V2 (s) = α ′′

‖α ′′‖ and V3 (s) =V1 (s)×V2 (s) are the unit tangent, principal normal,
and binormal vectors of the curve α , respectively. Derivative formulas of the Frenet frame are governed by the relations
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d
ds

 V1 (s)
V2 (s)
V3 (s)

=

 0 κ (s) 0
−κ (s) 0 τ (s)

0 −τ (s) 0

 V1 (s)
V2 (s)
V3 (s)

 ,

where κ (s) = ‖α ′′ (s)‖ and τ (s) =−
〈
V ′3 (s) ,V2 (s)

〉
are called the curvature and torsion of the curve α (s), respectively [11].

Let α and β be two curves such that β intersects the tangents of α orthogonally. Then β is called an involute of α . An involute of a curve α

with arc length s is given by

β (s) = α (s)+(c− s)V1 (s) , (1.1)

where c is a real constant [12]. Throughout this article will be taken c− s 6= 0 for convenience.
If a rigid body moves along a unit speed curve α , then the motion of the body consists of translation along α and rotation about α . The
rotation is determined by an angular velocity vector ω which satisfies V ′i = ω×Vi (i = 1,2,3). The vector ω is called the Darboux vector.
In terms of Frenet vectors, Darboux vector is given by ω = τV1 +κV3 [13]. Also, we have κ = ‖ω‖cosθ , τ = ‖ω‖sinθ , where θ is the
angle between the Darboux vector ω of α and binormal vector V3. Observe that θ = arctan τ

κ
.

Let {V1 (s) ,V2 (s) ,V3 (s)} and
{

V ∗1 (s) ,V ∗2 (s) ,V ∗3 (s)
}

are Frenet frames of the curves α and β , respectively. If the curve β is the involute of
α then we have

 V ∗1 (s)
V ∗2 (s)
V ∗3 (s)

=

 0 1 0
−cosθ 0 sinθ

sinθ 0 cosθ

 V1 (s)
V2 (s)
V3 (s)

 , [14]. (1.2)

2. Surface family with a common involute geodesic

Suppose we are given a unit speed parametric curve α = α (s) so that ‖α ′′ (s)‖ 6= 0, in 3-dimensional space. Let β be an involute of the
given curve α. Surface family that possesses β as a common curve is given in the parametric form as

P(s, t) = β (s)+u(s, t)V ∗1 (s)+ v(s, t)V ∗2 (s)+w(s, t)V ∗3 (s) , (2.1)

where u(s, t) , v(s, t) and w(s, t) are C1 functions and are called marching-scale functions and
{

V ∗1 (s) ,V ∗2 (s) ,V ∗3 (s)
}

is the Frenet frame of
the curve β . Using Eqn. (1.2) we can express Eqn. (2.1) in terms of Frenet frame {V1 (s) ,V2 (s) ,V3 (s)} of the curve α as

P(s, t) = β (s)+(−v(s, t)cosθ +w(s, t)sinθ)V1 (s)+u(s, t)V2 (s)+(v(s, t)sinθ +w(s, t)cosθ)V3 (s) , (2.2)

where n1 ≤ s≤ n2, m1 ≤ t ≤ m2.

Remark 2.1. Observe that choosing different marching-scale functions yields different surfaces possessing β as a common curve.

Our goal is to find the necessary and sufficient conditions for which the curve β is isoparametric and geodesic on the surface P(s, t). Firstly,
as β is an isoparametric curve on the surface P(s, t), there exists a parameter t = to ∈ [m1,m2] such that P(s, to) = β (s), that is,

u(s, t0) = v(s, t0) = w(s, t0) = 0. (2.3)

Secondly the curve β is geodesic on the surface P(s, t) if and only if along the curve the surface normal vector field N (s, t0) is parallel to the
principal normal vector field V ∗2 of the curve β . The normal vector of P(s, t) can be written as

N (s, t) =
∂P(s, t)

∂ s
× ∂P(s, t)

∂ t
.

This equation can be expressed in terms of (1.2) and (2.2) as

N (s, t0) = κ (c− s)
[
−∂w

∂ t
(s, t0)V ∗2 ∗(s)+

∂v
∂ t

(s, t0)V ∗3 (s)
]
,

where κ is the curvature of the curve α. Since κ (s) 6= 0, the curve β is a geodesic on the surface P(s, t) if and only if

∂w
∂ t

(s, t0) 6= 0,
∂v
∂ t

(s, t0) = 0.

So, we can present :

Theorem 2.2. Let α be a unit speed curve with nonvanishing curvature and β be its involute. β is a geodesic on the surface P(s, t)if and
only if{

u(s, t0) = v(s, t0) = w(s, t0) = 0,
∂w
∂ t (s, t0) 6= 0, ∂v

∂ t (s, t0) = 0.
(2.4)
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Corollary 2.3. Let α be a unit speed curve with nonvanishing curvature and β be its involute. There exists a ruled surface possessing β as
a geodesic.

Proof. If we choose marching scale functions as

u(s, t) = v(s, t)≡ 0, w(s, t) = t− t0,

or

u(s, t) = w(s, t) = t− t0, v(s, t)≡ 0,

we obtain the ruled surfaces

P(s, t) = β (s)+(t− t0)V ∗3 (s) , (2.5)

or

P(s, t) = β (s)+(t− t0) [V ∗1 (s)+V ∗3 (s)] , (2.6)

respectively. So, these ruled surfaces satisfy Eqn. (2.4) and β is a geodesic on them.

Corollary 2.4. Ruled surface (2.5) is developable if and only if

θ (s) = s+ c,

where c is a constant.

Corollary 2.5. Ruled surface (2.6) is developable if and only if α is a helix.

3. Examples

3.1. Example 1

Let us take the unit speed circle α (s) = (coss,sins,0). Then, it is easy to show that

V1 (s) = (−sins,coss,0) ,

V2 (s) = (−coss,−sins,0) ,

V3 (s) = (0,0,1) ,

κ = 1, τ = 0, θ = 0.

Letting c = 0 in Eqn. (1.1) , we have

β (s) = (coss+ ssins,sins− scoss,0) ,

as an involute of α with Frenet vectors

V ∗1 (s) = (−coss,−sins,0) ,

V ∗2 (s) = (sins,−coss,0) ,

V ∗3 (s) = (0,0,1) .

If we choose u(s, t) = v(s, t)≡ 0, w(s, t) = t, then according to Corollary 2.3 we get the ruled surface

P1 (s, t) = β (s)+ tV ∗3 (s)

= (coss+ ssins,sins− scoss, t) ,

0 < s≤ 5, −5≤ t ≤ 5, possessing β as a geodesic (Fig. 2).
For the same curve, if we choose u(s, t) = w(s, t) = t, v(s, t)≡ 0 we obtain the ruled surface

P2 (s, t) = β (s)+ t [V ∗1 (s)+V ∗3 (s)]

= ((1− t)coss+ ssins,(1− t)sins− scoss, t) ,

0 < s≤ 5, −5≤ t ≤ 5, satisfying Corollary 2.3 and possessing β as an involute geodesic (Fig. 3) .

For the same curve, if we let u(s, t) = e2t −1, v(s, t)≡ 0, w(s, t) = t, then Eqn. (2.4) is satisfied and we obtain

P3 (s, t) = β (s)+
(

e2t −1
)

V ∗1 (s)+ tV ∗1 (s)

=
((

2− e2t
)

coss+ ssins,
(

2− e2t
)

sins− scoss, t
)
,

0 < s≤ 5, −1≤ t ≤ 1, as a member of the surface family possessing β as an involute geodesic (Fig. 4) .
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Fig. 2. Ruled surface P1 (s, t) as a member of the surface family and its common involute geodesic β .

Fig. 3. Ruled surface P2 (s, t) as a member of the surface family and its common involute geodesic β .

Fig. 4. P3 (s, t) as a member of the surface family and its common involute geodesic β .

3.2. Example 2

Let α (s) =
(

a1 cos s
a3
,a1 sin s

a3
, a2s

a3

)
be an arc length helix, where a1,a2,a3 ∈ R, a2

1 +a2
2 = a2

3, a1 > 0. One can show that

V1 (s) =

(
−a1

a3
sin

s
a3

,
a1

a3
cos

s
a3

,
a2

a3

)
,

V2 (s) =

(
−cos

s
a3

,−sin
s

a3
,0
)
,

V3 (s) =

(
a2

a3
sin

s
a3

,−a2

a3
cos

s
a3

,
a1

a3

)
,

κ =
a1

a2
3
, τ =

a2

a2
3
, θ = arctan

a2

a1
.
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So we have

β (s) =

(
a1 cos

s
a3
− a1

a3
(c− s)sin

s
a3

,

a1 sin
s

a3
+

a1

a3
(c− s)cos

s
a3

,
ca2

a3

)
as an involute of α with Frenet vectors

V ∗1 (s) =

(
−cos

s
a3

,−sin
s

a3
,0
)
,

V ∗2 (s) = sgn(a3)

(
sin

s
a3

,−cos
s

a3
,0
)
,

V ∗3 (s) = (0,0,sgn(a3)) .

Taking a1 =
√

3
2 , a2 =

1
2 , a3 = 1 results in θ = π

6 and if we let c =
√

3 in formula (1.1) we get

β (s) =

(√
3

2
coss−

√
3

2

(√
3− s

)
sins,

√
3

2
sins+

√
3

2

(√
3− s

)
coss,

√
3

2

)
.

If we let u(s, t)≡ 0, v(s, t) =
√

3t, w(s, t) = t, then Eqn. (2.4) is satisfied and we have

P4 (s, t) =

(√
3

2
coss−

(√
3

2

(√
3− s

)
−
√

3t

)
sins,

√
3

2
sins+

(√
3

2

(√
3− s

)
−
√

3t

)
coss,

√
3

2
+ t

)
,

−1,6≤ s≤ 1,6, −3≤ t ≤ 3, as a member of surface family possessing β as an involute geodesic (Fig.5) .

Fig. 5. P4 (s, t) as a member of the surface family and its common involute geodesic β .

For the same curve if we let u(s, t) = tan t, v(s, t) =
√

3(et −1) , w(s, t) = (et −1) , then Eqn. (??) is satisfied and we get

P5 (s, t) =

((√
3

2
− tan t

)
coss−

(√
3

2

(√
3− s

)
−
√

3
(
et −1

))
sins,(√

3
2
− tan t

)
sins+

(√
3

2

(√
3− s

)
−
√

3
(
et −1

))
coss,

√
3

2
+ et −1

)
,

−1,6≤ s≤ 1,6, −0.6≤ t ≤ 0.6, as a member of the surface family accepting β as an involute geodesic (Fig. 6) .
If we choose u(s, t) = s tan t, v(s, t) =

√
3ssin t, w(s, t) = ssin t, then Eqn. (2.4) is satisfied and we get

P6 (s, t) =

((√
3

2
− s tan t

)
coss−

(√
3

2

(√
3− s

)
−
√

3ssin t

)
sins,(√

3
2
− s tan t

)
sins+

(√
3

2

(√
3− s

)
−
√

3ssin t

)
coss,

√
3

2
+ ssin t

)
,

0 < s≤ 1,6, −0,3≤ t ≤ 0,3, as a member of the surface family accepting β as an involute geodesic (Fig. 7) .



Konuralp Journal of Mathematics 167

Fig. 6. P5 (s, t) as a member of the surface family and its common involute geodesic β .

Fig. 7. P6 (s, t) as a member of the surface family and its common involute geodesic β .
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[8] Bayram E., Güler F., Kasap E. Parametric representation of a surface pencil with a common asymptotic curve. Comput. Aided Des. 44, 637-643, 2012.
[9] E. Bayram, M. Bilici, Surface family with a common involute asymptotic curve, International Journal of Geometric Methods in Modern Physics, 13(5)

(2016), 1650062.
[10] E. Ergün, E. Bayram, E. Kasap, Surface pencil with a common line of curvature in Minkowski 3-space. Acta Math. Sinica, English Series. 30(12)

(2014), 2103-2118.
[11] M.P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1976.
[12] Hsiung CC. A first course in differential geometry. John Wiley & Sons Inc., USA, 1981.
[13] J. Oprea, Differential geometry and its applications. Pearson Education Inc., USA, 2007.



168 Konuralp Journal of Mathematics
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