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Abstract

We apply the extended trial equation method (ETEM) to obtain exact solutions of (2+1) dimensional nonlinear electrical transmission line
equation (NETLE) and Benjamin-Bona-Mahony-Peregrine (BBMP) equation in this study. We create some exact solutions like soliton
solutions, rational, Jacobi elliptic, periodic wave solutions and hyperbolic function solutions of these equations via ETEM. After that, we
present conclusions that we acquired thanks to this method.
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1. Introduction

Recently, travelling wave solutions are a very significant subject in biophysics, chemistry, optical fibers, technology of space, electricity and
different subject in nonlinear sciences. According to recent studies, various researchers have submitted various methods to get travelling
wave solutions of NLEEs such as Hirota’s direct method [1], Jacobi elliptic function method [2], new version of the trial equation method
[3], (G’/G)—expansion method [4], tanh-coth method [5] and many more[6, 7, 8, 9]. In this work, the ETEM [10, 11, 12, 13, 14] will be
implemented to obtain exact solutions of (2+1) dimensional NETLE and BBMP equations.

We handle the following (2+1) dimensional NETLE [15]:

92 *U  §to*u *U  §}o*U
ﬁ(U—aU2+ﬁU3>—u5 (55M+W>—w§(5§ay2+w> =0, (1.1)

where a, B, uyp and @y are constants. §; and &, are the space between two adjoining sections in the longitudinal direction and transverse
direction respectively. Md. Abdul Kayum et al. have found soliton solutions of this equation by using modified simple equation method
[16]. E. Tala-Tebue et al. have acquired exact soliton solutions of Eq. (1.1) via (G'/G)-expansion method and new Jacobi elliptic function
expansion method [17, 18]. M. T. Gulluoglu has found travelling wave solutions of Eq. (1.1) by developed Bernoulli sub-equation function
method [19].

Secondly, we investigate the following BBMP equation [20]:

du  Jdu but du Pu 0

§+“5+ u E—i—cm— ,
where a, b, ¢ and g are nonzero steadies. ¢ power symbolizes the power-law nonlinearity parameter and it is essential to have g # 0, because
these values will location Eq. (1.2) beyond the linear regime. In Eq. (1.2) the initial term specifies evolution term, while the latest term
specifies the dispersion term. The third term is the nonlinear term. Khalique has found exact wave solutions of Eq. (1.2) using Lie symmetry
method and simplest equation approach [21]. Aminikhah et al. have used the functional variable method to solve this equation [22]. The
article is regulated as: In chapter 2, ETEM has been applied to (2+1) dimensional NETLE and BBMP equations. In chapter 3, The obtained
results by this method are presented.

(1.2)

2. Fundamentals of the ETEM

Stepl: On account of a known nonlinear partial differential equation

P(M7MT7MX7MM3"'):07 (21)
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get the wave transformation

N
u(x17x2a"'7xN7t):”(n)7n:)’ <2ijt>7 (22)

J=1

where A # 0 and ¢ # 0 . Embedding Eq. (2.2) into Eq. (2.1) satisfies a nonlinear ordinary differential equation,

oo

N(u,u ,u ,---)=0. 2.3)

Step2: Take conversion and trial equation as follows:

6 .
u=Y 7l (2.4)
i=0
where
r 09+ +&T
(M) — AT) = o) _ So £+ +&I+& (2.5)
y(I) LI+ +4G0+ &
Taking into account correlates Egs. (2.4) and (2.5), we can have
o) (& ’
N2 . i—1

u) =-—= it , (2.6)

() wn(%’ )
"My — oMy (& n (2 :
(u//): ¢ ( )W( )2 (P( )W( ) Zifirl_l + ¢( ) i(iil)firz—z , Q.7
2y2(I) i=0 v\ S

where ¢ and y are polynomials. Placing these terms into Eq. (2.3) ensures an equation of polynomial Q(I") of I":
Q) =0o, " +...+ 0T +0p=0. (2.8)
In accordance with balance principle, the correlation of 6, € and 6 can be described and thus values of 0, € and & can be received.
Step 3. If all of Q(T') coefficients are zero, a system of algebraic equations is obtained:
0;=0,i=0,..,s. 2.9)

Solving equation system (2.9), the values of &y, ...,&g; &p, ..., &e and Ty, ..., T5 can be described
Step4: Simplify Eq. (2.5) to basic integral form,

_ A _ [ v@)
i(nfno)_/\/m_/ (p(l“)dr' (2.10)

Performing a complete distinction system for polynomial to categorize the roots of ¢ ("), we resolve the infinite integral (2.10) and classify
exact solutions to Eq. (2.1) by Mathematica.

3. Implementations of the ETEM

In this chapter, we implement the method explained in Chapter 2 to the (2+1)-dimensional NETLE and the BBMP equations, respectively.
3.1. Implementation of the (2+1)-dimensional NETLE

In an attempt to find travelling wave solutions of Eq. (1.1), we take the transformation
U(x,y.1) =U(),n = Vk(x+y—vor). 3.1
where vy is an arbitrary constant and the speed of the travelling wave. Then, we attain

1 d*u
[m - @31{1 + ngz)] U+m (ﬁU3 - aUz) - (ugK% + ngg) =0 (3.2)

where m = kv%7 K= 512k,K2 = 522k. Embedding Eqs. (2.6) and (2.7) into Eq. (3.2), and making use of the balance principle, we gain
¥ =28+¢e+2. (3.3)

Then, we procure the corollaries as:
Case 1: If we select e =0,6 = 1 and ¥ = 4, we have

_ B (G FTE+TP5+ T35 +T%)
- %o

(u)? (3.4)
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o TG0 +208 43178, +417°8)

3.5)
28
where &4 # 0, §y # 0. Consecutively, resolving the algebraic equation system (2.9) satisfies
Fo=Eo b = (4a&s+3B&T) (B8a?EF —60BEEsT) —IB2(EF —4E80)T7)
0 = S0,61 216[3364%3 )
982 16(02 —3p)Es
= = —24 733 A PG4
£=6.8=56.04=80= 3¢ ( S+ Z, ek ;
—4./3
Ty = ﬁ 5351 =T,V) = Bn§4 . (3.6)
V/—16(02 = 3B)KEF +3B2K(3E] — 862E) 77
Embedding these corollaries into Egs. (2.5) and (2.10), we acquire
dr
i(n—no):A/ 55 (3.7)
JE+Er+ by o
—24&, | 9E2 1602488
where A = ,/ \/288< -I-‘;S—Trlz).
Integrating Eq. (3.7), we gain the solutions of Eq. (1.1) as follows:
—A
+(n— = 3.8
(N —=10) = = a’ (3.8)
2A I'—m
+(n—1n) = .
(1 —"o) o\ T g B (3.9
A I'—o
- , 3.10
(m=mo) =, ‘F—az 0 > 0, (3.10)
2A —op)—+/(a—op)(T'—«
(n—10) = e ovla - e T g, s g, 311
V(o —as)( \/ 062)+\/(0‘1 —o)(l'—o3)
2A
+(n—no) = F(o,l),o4 <03 <o <o, (3.12)
(o1 — o) (0 — o)

_ T—ai)(m—0u) 12 _ (0p—03)(01—0u) :
where F(¢,l) = fo W \@ = arcsiny | (5= (o —eu) 1 = @ —a(m—a) Moreover, o and o are the roots of the polynomial
equation
reopep Sip b (3.13)

&4 &4 & &

Embedding the solutions (3.8-3.12) into Eq. (2.4), we ascertain the following exact traveling wave solutions of Eq. (1.1), respectively:
rational function, hyperbolic function and Jacobi elliptic function.

up (x,y.1) = im, (3.14)

uy(x,y,1) = War — o)y 5, (3.15)
4A2 — [(al — ) <\/I§(x+y - vot)>]

w3 (x,y,) = M (1 + coth {(alAiz)\/l;(x—Q—y—vot)}) 7 (3.16)

ug(x,y,1) = A2 , (3.17)

D+ cosh [B (\/l;(x—o—y — vol))}
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Figure 3.1: Graph of the solution (3.16) is indicated atk = 1,vo =2,71 = 1,;, =3,& =3, & = -1,y =3, =2, 00 =2, =4,y=1,—-15<x < 15,
—5 <t <5 and the second graph denotes the exact solution of Eq. (3.16) for # = 1 with these values and x range.
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Figure 3.2: Graph of the solution (3.17) is indicated atk=4,vo =3,71 =2, =5,& =46 =2, a=1,a1 =1, =2, =2, 03 =3,y =2,-25 < x < 25,
—4 <t <4 and the second graph denotes the exact solution of Eq. (3.17) for r = 2 with these values and x range.
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Figure 3.3: Graph of the solution (3.18) is indicated at k = 9,vp = 5,71 = =2, = 1,63 =28 =—1,y=3,a=3, a1 =1, =6,a0 =2,03 = 3,04 =
4,-35 <x <35,-3 <t <3 and the second graph denotes the exact solution of Eq. (3.18) for # = 1 with these values and x range.

A
us(x,y,t) = ( > (3.18)

M +Nsn?(@,1))’

where Aj = 714, Ay = ZHAZ@NB0) 43— (27, (04 — o) (o1 — t3)),

o3—0p
_ V(—m)(on—05) - 2a—ap—oz 2 (0p—05)(a1—04) s
B= A D="6"¢ I'= (af—aZ)(a;—az;) M= (04— ),

B BN e
N = (o) — o), = £ V0@ (\//;(x+y—vot)) :
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Remark 1. If the notation / — 1 then the solution (3.18) can be turned into the hyperbolic function solution of the (2+1)-dimensional NETLE

A
g (x,y,1) = > , (3.19)

M + Ntanh? {W (VE(e+y- voz)ﬂ

where a3 = 04.
Remark 2. If the modulus / — 0 then the solution (3.18) can be abbreviated to periodic wave solution
A
up(x,y.1) = - : (3.20)
M+ Nsin? {W (Ve(+y- vot)ﬂ

where ap = 03.
Case 2: If we choose € = 1,6 = 1 and ¥ = 5 we have,

_ G AN+ G+ ST+ T+ &)

A2 (3.21)
) So+aT
S0 (Go+ &) (SESTH+4E4T3 +3E T2 + 26T+ &) — &1 (&I + ST+ ETP + T2+ E T+ &) (3.2)
2(6+4T)°
where &5 # 0, {; # 0. Consequtively, resolving the algebraic equation system (2.9) yields
Fom E0. &) = —12B85 w0t — 46 6optt +3BL081607 + 12850 (8ar +881pT1)
7 Coti (—481p+3B%0m) 7
£ = 6 (1652 10pT1 + Sot1 (Eas —6BL0TT) +281 (Eator+280(200 —9BT0) 7))
7 (—48ip+3B%m) 7
£y = 651&as+4 (1287 — So&s) pT1i —36B 806177 =k,
7 (—48ip+3BT) ’ 7
3BLET (u5K1 + 05 K2) &4
Ss=—7 apr V0= ; (3.23)
—4C1p+3B%m V2 (kt (48 p+3B%m))
where p=a —3B1,r=1—at+ ﬁfg,s =1-2at+3p fg. Embedding these corollaries into Egs. (2.5) and (2.10), we acquire
LUn12) 1 hn |/ r+g
£ 1) = 4| 22T 0% / — ? — (3.24)
54171 1"571"44_731"3_’_721"2_’_*11"4_*0
& & & & &
Integrating Eq. (3.24), we get the following exact approximate solutions to the Eq. (3.2). When ¢ (") = (I'— ap)’, we have
24 Lo+ 4T\ ?
+(n—no) =— . ( v ) : (3.25)
3v/Gi(Go+Gion) \ '~

If we take ¢(T') = (I'— o )*(I' — o) and & > o1y, then we get,

(N —mo) = — Ay [ (So+Ci1m) In|K(T)| + 1 \/(Co+§11")(r—0¢2)}’ (3.26)

o =0 | 24/ (0n —an)(Go+Ciau) I'—oy &
where
K(T) = [-a , (3.27)

(Go+28100 — §ro)T+Go(oy —20n) — Sronan +2+/(Go+ &) (Go+ Cron ) (T — o) (0 — o)

when ¢([') = ([ — a1 )3(I'— &)? and o > o, we obtain
oA (So+aI) Cotliop) T—a1)(8+ 1)

£ =10) = ap—ap |\ (&1 (C—a1)) +$ Gl —ap) ! <\/(061 062)((€0+C1F))) ' (3.28)
If we take ¢(T") = (I'— al)z(l"— ocz)z(l"— o3) and o) > o > 03, then we get,

A yin|P(T)| + ZinlR(D)]) (329)

i(n_rlo):_(al 7&3)\/5
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where

Y= \/m P(I) = T
-0z’ 2/(G+8T) (% + &100) (T — 05) (0 — 03) + G (02 —205) — L100.05 + (§o + 28100 — §105)T
z= \/ﬁw(r) _ 2V G0+ G- as)(on — o) +do(on —205) — Qs + (G +20an — Gl ;5

I'—om

when ¢(T") = (T~ 01)* (T — o)(T — &3) and & > @ > @3, then we obtain

244 (Co+Cia3)

+(n— =— E(op,l 3.31
(Tl TIO) o — o Cl(al —052) ((P7 )7 ( )

where

¢ = arcsiny | L= 0N =01) p_ (Got&i0n)(e — ) (3.32)

(T—ai)(n—03)’ (Go+Gioz) (o —)’

If we take ¢ (') = (I'— a1 )2(F'— o) (I'— 0o3) (' — 0t4) and ot; > 0 > 3, then we get,

IR 2A4(0 — a4) Go+&l oy Sotiim
)= (a1 — o) /i —0s) (8o + o) (O‘l —a " e F((N)) (339
where
A, — S +2)+Gom ¢ — arcsin C-og)(os—0n) p_ (GotGm)(u—0o) (01— 0)(es—a) (3:34)
4 & ’ T—a)(oz—oy)’ (Go+Giou)(on—0a3)’ (o —o3) (o —0y) '

Remark 3. A number of solutions of Eq. (1.1) were obtained by applying ETEM and these found solutions were controlled in Mathematica
12. Obtained Equation (3.16) in this work is similar to the solution (25) offered by Kayum et al. (2020). Besides, other solutions of Eq. (1.1)
are new.

3.2. Implementation of the BBMP equation

In order to find travelling wave solutions of Eq. (1.2), we take the transformation u(x,t) = U(n),n = x — At, we acquire

—AUp +aUy +bU%Uy — AcUpyy =0, (3.35)
Taking into consideration the conversion

U=V, (3.36)
Eq. (48) turns into the formula

—cq(g+ 1)AVVy +c(g* = DAVy +¢*(1+q)(@— A)V> +bg*V? =0,q # 0,9 # 1, (3.37)
Embedding Eqgs. (2.6) and (2.7) into Eq. (3.3), and utilizing the balance principle, we gain

V=€e4+86+2, (3.38)
After the above solution steps, the following situations are obtained:

Case 1: If we choose € =0,6 = 1 and ¥ = 3 we have,

_ GGG ET ) 1 (36T + 26T+ &)

o2 7 (3.39)
) %o 28
where &3 # 0, §y # 0. Respectively, solving the algebraic equation system (2.9) yields
(—4+q)q6} &
So=8081=8.=—— 0 G=——— 5,
4(=1+9)%& 4(~1+9)3&3
c(q+2)&f (a+aq+bmw) 98170 bty
Go=— T =T0,T1 = 57 g A =d+——. (3.40)
4b(g—1)%q&0 70 2(¢—1)& g+1
Embedding these corollaries into Egs. (2.5) and (2.10), we gain
dar
(3.41)

+£(n—mo) = \//TS/ \/r3

S, & &’
+él" +—;F+5—2
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— % _ Soclg=1)(g+2)(at+ag+bn)
& b’ o8
Integrating Eq. (3.41), we achieve the solutions of Eq. (1.2) as follows:

where Ag =

£(n—mo) = —2\/78\/%0617 (3.42)
+(n—no) = arctan __ 21 ,0 > 0, (3.43)
+(1—110) = \/ afaz ‘/E - ‘/Z: > o, (3.44)
£(n—mo) = /f; F(o,1),00 > 0 > 03, (3.45)
where

¢ dy . '-oz , w—o3
F(o,l) = — 0= = . 3.46
(9.1) /O lflzsinzl[/’(p arcsiny | P o — 0 (3.46)

Also, a1, 0 and o3 are the roots of the polynomial equation

Pyl Sip g (3.47)

& & &

Embedding the solutions (3.42-3.45) into Eq. (2.4) and Eq. (3.36), we ascertain the following exact traveling wave solutions of Eq. (1.2),
respectively: rational function, hyperbolic function and Jacobi elliptic function.

_ 1
q
471A
u(x,f)= |+710 + 178 = (3.48)
_ (v= (a2 ) =)
- 1 - 1
o — a
u(x,r) = ot + 171 (00 — oy )tanh? (5 ‘A8 2 ( ( + ﬁ>t—no))} 7 (3.49)
_ 1 b 1
—_ q
u(x,t) = _‘Eo +1i0+ 71 (00 — Olz)casech2 (5 OCIASOQ <x— (a—l— q%) t>)} ) (3.50)
and
1
[ 1 [og—o b1 om—az\|
2 1 3 2 3
t) = o o0 —o +- — ) t— —_ 3.51
u(x,1) _To+T1 3+ T1(0 — 03)sn ( 3\ g ( ( +q+1) 770)7061_053)} ; (351
If we take 79 = —7 01 and 19 = 0 for simplicity, then the solutions (3.48)-(3.50) can reduce to rational function solution
2
2VA !
u(x,t) = sy I (3.52)
(a + q+01 )
1-soliton solution
A
u(x,t) = —— — : (3.53)
cosh [Bz< (a—l— qﬂ) )]
singular soliton solution
A
u(x,f) = —— 10 p , (3.54)
sinha [Bz( (a—i— qﬂ) )]
where

- 1 1 . .
A=1Ag,Ag = (T1(0p — 1)) 7 ,A19 = (T1(0} —@))4 By = i% O"A;az A=a+ ;’%, Here, Ag and A are the amplitudes of the solitons,
while A is the velocity and Bj is the inverse width of the solitons. So, we can remark the solitons exist for 7; > 0. Also, if we take 7o = —7; 03

and g = 0 the Jacobi elliptic function solution (3.51) can be written as

2 b -
wi(x,1) = Ayysn {Bi< (a+ %)t> : Zf_gj (3.55)
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u(x,t)

t

1.0

0.5

Figure 3.4: Graph of the solution (3.52) is indicated at 7o = 1,7y = 3,a=1,b=2,c = —1,§y =5,&; = -3, =2,—45 < x < 45,
—1 <t <1 and the second graph denotes the exact solution of Eq. (3.52) for # = 0.5 with these values and x range.

=20 -10 1‘0 20 X[

Figure 3.5: Graph of the solution (3.53) is indicated at 7o = —3,7) =2,a=5,b=3,c =1, =3,{ =1, = 1,00 =2, =2,—20 < x < 20,
—5 <t <5 and the second graph denotes the exact solution of Eq. (3.53) for # = 2.5 with these values and x range.

u;(x,t

\7 \Jo Uo 0| |20 [30] X
2

Figure 3.6: Graph of the solution (3.54) is indicated at 7o = —2,7) =2,a=2,b=—1,c=3,§ =1, =6,y = 4,00 =3, =2,-35 < x < 35,
—3 <t <3 and the second graph denotes the exact solution of Eq. (3.54) for t = 1.5 with these values and x range.

1 i
where Ay = (11(0p — a3))7 and B; = (_21) u,(i =1,2).

Remark 1: When the modulus / — 1, the solution (3.55) can be transformed dark soliton solutions of BBMP equation

wi(e,t) = Aptanhs By (x— (at 22 )4 (3.56)
X)) = A1l i g+1 ) .
where oy = o and A = (a + ;’%) symbolizes the speed of the dark soliton.
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Case 2: If we choose € = 0,6 = 2 and ¥ = 4 we have,

(11 4+ 2002 (E4T* + &% + &2 4+ E T+ &)

v 2 _ ,
o %
o (mt2ul) (48413 + 2812 4+ 25T+ &) L (EaT* + &I+ 52+ 8T+ &) (3.57)
280 % ’ '
where &4 # 0, §y # 0. Consecutively, resolving the algebraic equation system (2.9) provides
£ — —bg* Gt} +4ci 11 (b7] +2a(g +1)(g+2)12) -
0 320722 (b‘clz—i-a(q—i— 1)(q+2)12) ol b
&= bq* Lot +2c&1 1, (3077 +a(q+1)(g+2)72)
2¢ty (b2 +a(g+1)(q+2)n)
£ = b1y (4?6 +4céiT2) _ b3 (¢G0T +4ck 1)
T e taclg+ 1)(g+2)m) "t 20t (b +alg+ 1)(g+2)7)
2 28t (bT? 1 2)7
= Ty - Lonl 1*“(‘1; Ng+2m) (3.58)
41 (q+1)(q+2)7 (¢G0T +4cé1 1)
Embedding these corollaries into Egs. (2.5) and (2.10), we get
Co2ety (b2 +a(g+1)(g+2) rz dr
+(n—mo) = ( L (a+1)( / (3.59)
bTZ( C071+4C§172 \/1"4+531-‘3+52r‘2+ 1 +§o
g & &
Integrating Eq. (3.59), we obtain the following exact solutions of Eq. (1.2).
An
+(n— =— 3.60
(N =10) = —— . (3.60)
A '-m
+(n-— =2 3.61
(1 —"o) o\ T o % 3.61)
Alp I'—o
+(n— =—In|— 3.62
(1 —mo) al_azn‘r_az ; (3.62)
2A —o3)—+/(T—03)(0 — o
£(n—m0) = = o VL )=o)l N> >0, (3.63)
V(e —ap)( \/ —03)++/(T—05)(ou — )
2A
+(n—mo) = 2 F(p.1),01 > oy > 03 > 04, (3.64)
(o —03) (02 — 0g)
where
2cty (bT? 1 2)7, r— - - -
Ap = 2 (2 12+a(1]+ Na+2) 2)7(/’:arcsin (= o) (@ a4),l2: (0 — 03)(on (x4). (3.65)
b73 (¢*8oT1 +4céi ) (T—o)(on — o) (o1 —03)(0p — o)
Also, a1, 0, 03 and 04 are the roots of the polynomial equation
ryeSpep o b (3.66)
& &4 & gy
Embedding the solutions (3.60)-(3.64) into (2.4) and (3.36), we get
57k
A1 Ap !
= + + 12 :
u(x,t) T+ T10q xfltfno—i_rz(al X*ll*no) :| s (3.67)
4A%, (0 — o) T
u(x,t): |:TO+Tlal+ 12( 2( 1) 1 ) 2+
2 ¢* Gt (bti+alg+1)(g+2)n
4A12 - l:(al - OQ) ( (él+l)(<1+21 )72 2C0T1+4c51‘52)t - n0):|
2
4A% (0 —o0y) i
o | o+ 12 ) (3.68)

2
2 P (bitalg+1)(g+2)1)
M- {(al ) <x’ D@ nGn aEn)’ Mo
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(o —ay)7

u(x,t) = {ro+rloc2+ +

(0 —) oo (bti+alg+1)(g+2)n)
exp { A ( - (q+l)(q+2l)rz(qzCofl+4c€1 U
2
1
e (02 =) } " (3.69)
exp |(@=@) (L £@u(britalgtD(@+)n) 1
P A G @260 rac ) 10
u(x,t) = |:‘L'0+‘L'| o+ (al _7062)71 +
oxp | @i=) ([ ¢bu(bitalgtl)@2)n) 1
P A, G n@hn+acEn) 0
2
1
o | o+ (1 — ) } ! (3.70)
(—) (. 4*%T (b3 +a(g+1)(g+2)n) i 1
P Tan \* T g n@hnacgn) M0
2oy — _
u(x, 1) = {To-i-noq _ (g —n)(ay —o3)7) N
200 — 0ty — 03 + (03 — O )cosh [W (x— At — no)]
2
5 1
ol o — (on — ) (a1 —03) }"7 3.71)
200 — 0 — o3+ (063 — ocz)cosh {W (x — At — T]Q):|
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2
1
ol ot (a1 — o) (o — )Ty }q (3.72)
e o VOB () (]
_ ¢&mu(bri+alg+1)(g+2)n)
where A = ¢t s 4B ,
For plainness, if we get 19 = 0, then we can specify the solutions (3.67)-(3.72) as follows:
_ L1
T q
(x,1) ir o+ Arz (3.73)
ulx,r) = i ’ .
AT eanegrae)@)n)
i 1T R hnackin)

=

4A%2 (a1 — 052)

2
2 P (bi+alg+1)(g+2)7)
A — {(0‘1 — o) ("* G2 n@hn 4dn)

ulxt)=|Y 5| o+ ) (3.74)

P (bri+alg+1)(g+2)n)
“p [33 <"* D2 G +4célrz)’>} -1

(o1 — )

G (bi+alg+1)(g+2)n) ’
“p [33 <"* D ar2mehn +4célrz)’>} -1

u(x,t) = Z Ti

o+

(3.76)

w(x,r) = i 7 (az v (02— o) , (3.75)

ENE

_y 2(on — o) (on — o3) '
ulxr) = l;’)ri (061 204 —ap — 03+ (03 — 0 )cosh [C(x—lt)]> :| ’ 377)
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; (o — ) (o — o) ila
N - . 7 3.78
M(x ) |:§6T ( 2 a4foc2+(a, 7054)3”12((/)’[)) ( |
where
[ G2em (b7 +alg+1)(g+2)T) _ k=) ~_ ky/(aa—0m)(on—03)
A= \/ bfzz(qlzgofl+4c§1r2) ;B3 = A5 2 C= 1 A]22 1 ’
— M(xj—l[) 12 _ (0&*063)(05]70;4) o 42C0T1 (b712+a(q+1)(q+2>12)
Q= 241, T (o) () T (D@2 (@t +4cEin)

Here, A is the amplitude of the soliton, while A is the velocity and B and C are the inverse width of the solitons.

Remark 2. The solutions of Eq. (1.2) were obtained by the way of using ETEM. They were controlled in Mathematica 12. We have obtained
the similar solution with the solution Eq. (17) in Osman et al. (2018), with the solution Eq. (6) in Khalique (2013) and with the solution Eq.
(58) in Aminikhah et al. (2015) in this work with the solution Eq. (3.53). Moreover, we have obtained the similar solution with the solution
Eq. (57) in Aminikhah et al. (2015) in this work with the solution Eq. (3.54). In addition, other solutions of Eq. (1.2) are new.

4. Conclusion

Travelling wave solutions of these equations were found by applying ETEM to (2+1) dimensional NETLE and BBMP equations. It’s should
be note that ETEM ensures strong mathematical means for obtaining the exact solutions of these equations and this method is very effective
in seeking novel solutions such as soliton solutions, rational, Jacobi elliptic, periodic wave solutions and hyperbolic function solutions.
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