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ABSTRACT. The upper triangular double band matrix U(ao, a1, a2;bo, b1, b2)
is defined on a Banach sequence space by
Ul(ao, a1, a2;bo,b1,b2) (zn) = (antn + bnni1)neg
where az = ay, by = by for © = y(mod3). The class of the operator
Ul(ao,a1,az;bo, b1, b2)

includes, in particular, the operator U (r,s) when a = r and by = s for all
k € N, with r;s € R and s # 0. Also, it includes the upper difference operator;
ar = 1 and by, = —1 for all k£ € N. In this paper, we completely determine the
spectrum, the fine spectrum, the approximate point spectrum, the defect spec-
trum, and the compression spectrum of the operator U(ao, a1, az;bo, b1,b2)
over the sequence space c.

1. INTRODUCTION

Spectral theory is an important branch of mathematics. It also has many ap-
plications in physics. It is used, for example, to determine atomic energy levels in
quantum mechanics. The resolvent set, which is the complement of the spectrum
set of band matrices, can be used in such problems.

In this paper, we will calculate spectral decomposition of U(ag, a1, as;bg, b1,b2)
matrix. Ul(ag, a1, asz;bo, b1, be) matrix is studied in ¢y sequence space by Durna and
Kilig [9] therefore some result is omit becuse it is similar with [9].
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A: X — Y be abounded linear operator where X and Y are two Banach spaces.
We will show the image set of A withset R(A) ={y €Y :y= Az, z € X}. B(X)
is defined as in B : X — X all bounded, linear operators.

A:D(A) — X is a linear operator including D(A) C X, where D(A) show the
domain of A and X is a complex normed space. Let Ay := A — A for A € B(X)
and A € C where I show the identity operator. A;l is defined as the resolvent
operator of A.

The resolvent set of A consist from the set of complex numbers A of A such that
A;\l exists, is continuous and, is defined on a set which is dense in X, signified by
p(A, X). The complement of p(4, X) i.e. o(A4,X) = C\p(A, X) is the spectrum of
A.

Spectrum o (A, X) is the union of three sets which are disjoint, as follows: If A;l
does not exist A € C belongs to the point spectrum. If A;l is defined on a dense
subspace of X and is unbounded then A € C belongs to the continuous spectrum
0.(A, X) of A. If A" exists, but its domain of definition is not dense in X then
A;l may be bounded or unbounded. In this case A € C belongs to the residual
spectrum o,.(A, X).

7(A, X) = 0p(A, X)Uce(A, X) Uo, (A, X) (1)

is obtained by from above definitons and these sets are two by two discrete between
them.

The all, bounded, convergent, null and bounded variation sequences are denoted
by w, f, ¢, co and bv, respectively. Moreover the spaces of all p—absolutely
summable sequences and p—bounded variation sequences are denoted by ¢, bvy,
respectively.

We notice that the dual space of ¢ is norm isomorphic to the Banach space

élz{m:(xk)ew:i|xk|<oo}.

k=1

Many Authors studied the spectrum and fine spectrum of linear operators on
some sequence spaces. Some of the operators studied on the spectrum are as follows:
The g-Cesdro matrices with 0 < ¢ < 1 on ¢y was studied by Yildirim [19] in 2020,
the difference operator over the sequence space bu, by Akhmedov and Basar [1]
in 2007 and forward difference operator on the Hahn space by Yesilkayagil and
Kirigei [16] in 2016.

2. FINE SPECTRUM

The upper triangular double band matrix U(ag, a1, as; bo, b1, b2) is defined on a
Banach sequence space by

U(a07 ai, a2; b(), b17 b2) (xn) = (anxn + bnanrl)ZO:()
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where a, = ay, by = b, for x = y(mod3). The class of the operator U(ag, a1, as; b, b1, b2)
includes, in particular, the operator U (r, s) when a; = r and by = s for all k € N,
with ;s € R and s # 0. Also, it includes the upper difference operator; ar = 1
and by = —1 for all k¥ € N. These operators have been studied in [14] and [11],
respectively. Ul(ag, a1, az;bg, b1,b2) is an infinite matrix of form

_ao bo 0 0 0 0 0 i
0 al b1 0 0 0 0
0 0 an b2 0 0 0
Ul(ao, a1, az; by, b1, b2) = 8 8 8 %0 Z(i l?1 8 (bo, b1, b2 # 0).
0 0 0 0 0 a9 b2

2)

In this work, we will calculate spectral decomposition of above matrix.

Lemma 1 ( [3], p.6). The matriz B = (byy) gives rise to a bounded linear operator
T € (¢;¢) from c to itself if and only if

(i) the rows of B are in {1 and their £1 norm are bounded,

(ii) the colums of B are in c,

(iii) the squence of row sums of B is in c.

The operator norm of T is the supremum of the ¢; norms of the rows.

Corollary 1. Ul(ag, a1, a2;bo,b1,b2) : ¢ — ¢ is a bounded linear operator and the
norm s ||U(ag, a1, as; bg, b1, b2)|| = max {|ao| + |bol, |a1]| + |b1], |az| + |b2|} -

Notation 1. Throughout this study we will demonstrate as
M ={AeC:|x—aol[A—ar| [A = az| < [bof [br][b2]},
OM is the boundary of the set M and M s interior of the set M.
Theorem 1. ¢,(U (ao, a1, az; by, b1,b2) ,¢) = M.
Proof. Proof is similar to proof of |9, Theorem 1]. O

Lemma 2 ( [3], p.267). Let T : ¢ — ¢ be a bounded linear operator. If T* : {1 — {1,
T*g=goT, g € c" =¥, then T and T* have matriz representations B = (byx)
and B* respectively. In here

X Y—X v1—X UV2—X
uo boo —ug bio—uog bao —ug
B* = ur bor —ur bin—ur b —wy
Uz bog —uz big —uz bag —up
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where

oo
Up = lim by , v, = E bn,m
m—00
m=0

and

X = lim wv,.
n—oo

In this section, we will take a,, + b, = an41 + bpt1 = s, herein a, = ay, by = by,
=y (mod3).

From Lemma the adjoint of Ul(ag, a1, az; b, b1,b2) : ¢ — ¢ is the matrix

« 0
Ul(ao, a1, az; bo,b1,b2)" = < 8 Ut )

and U(ao, ai,ag; bo, b1, bg) B (61)
Lemma 3 (Goldberg [13| p.59]
Lemma 4 (Goldberg 13| p.60]
Theorem 2. 0,(U (ag, a1, az;bo,b1,b2)", c*=01) = {s}.

)

. T has a dense range < T is 1-1.

— —

. T has a bounded inverse < T* is onto.

Proof. Let i be an eigenvalue of the operator U (ag, a1, az; bg, b1, bg)*. Then there
exists u # 6 = (0,0,0,...) in £; such that U (ag, a1, az; bo, b1, b2)" u = nu.
Then, we obtain

Sug = Nug (3)

apuy = Nug (4)

bou1 + ajus = Nus (5)

biuz + asuz = nug (6)

bauz + apug = Nuy (7)

Then we have if n = s, then from ug € C , from and etc. u; = ug =
U3 =+++=U, =---=0. Ifn;és,thenfromu():&fromn:ao. Therefore
fromugzo,from@ug :O,fromul =0andetc. Soug=u; =ug =+ =
u, = --- = 0. Hereby, 0,(U (ag,a1,az2; bo, b1,b2)" ,c*=t1) = {s}. O

Theorem 3. o,.(U (ag, a1, az; bo, b1,b2),c) = {s}.

Proof. Owing to o,(A,¢c) = o,(A*, c*=l1)\op(A4,c¢), required result is given by
Theorems [1] and [2] O

Lemma 5.

fe’e] 3n+t [e%s) e’}
Z (Z akbnk> = Za3k+t (Z bn,3k+t> , t=0,1,2
n=1 k=1 n=~k

k=0
herein (ar) and (bny) are real numbers.
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') 3n+t
E g arbni
n=1 k=0

3+t 6+t 9+t 3n+t

D arbik + > arbor + > arbsk + -+ Y agbpp -
k=0 k=0 k=0 k=0

agbio + a1bi1 + azbiz + azbiz + agbig + asbys

+agbag + arbar + azbaz + aszbas + asbay + asbas + agbog + azbar + agbag
+agbso + a1b31 + a2b32 + azbss + asbzs + asbss + agbsg + arbsr + agbss
+agbzg + a1obs 10 + a11b3 11

+...

+agbno + a1bpy + -+ + azpt2bp 3042

+ e

oo o0 (o) o0 o
a0 > bno+ a1 Y buy+a2 Y bna+asr Y bnsir+aope D bnere
n=1 n=1 n=1 n=1 n=2

o0
+ o+ a3t Z bn 3K+t
n==k

o0 (o)
> askir | Y boskte
k=0 n=~k

Theorem 4.
O'C(U (ao,al,ag;bo,bl,bQ),C) = 8M\ {S} CLTLd O'(U (ao,al,ag;bo,bl,bg) ,C) = M

Proof. Let v = (v,) € £1 be such that (U (ag, a1, az;bo, b1,b2) — AI)*u = v for some
u = (up). Then we get following system of linear equations:

(s = Nug = vg
(0,0 — )\)Ul = V1

boui + (a1 — )\)Ug = VU9

(s —Nug =g
(ao — )\)ul =1
bausn + (a0 — A)Usnt1 = V3ni1
bousnt+1 + (@1 — AN)Usnt2 = V3ni2
biusnt2 + (a2 — A)Usnt3 = V3n43
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Solving above equations, we have

1
up =
1 3n—+t 3n+t—k—1 b
Ugnge = —— | D (1R T R =012 n=1,2
) ) ) Y ) LA
a2 = A | £ o @ntirlov — A

—1
Herein a, = ay, by = by for z = y(mod3) and we accept that [] _benttiioy

=1.
v=0 A3n+t+1—v — A

Therefore we get

o0

Do lunl = fuol + fua] + Jus| + Jug| +---
n=0

o0
Juo| + |ua| + Jua| + D luzn o]

n=1

= \u0|+|ul\+|U2|

3n—+t 3n+t—k—1 b3 L
3n+t—k 3n+t+1—v
Nt POLCTE A | |

A3n+t+1—v — A

k=1 v=0

1 N N bo
v v vy — v
S—A " ag— A ar— X ° (aof)\)(alf)\)l

) 3n+t 3n+t—k—1 b
3n+t+1—v
Vg _—
e S [ e

Thus the inequality is gotten;

Zu < G+max i rit \Uk|3n+ﬁk_1 b?ertJrl—VH (8)
n=0 ! 1 o @8ngrr—y — A
where
1 1 1 bo
T ao—AU1’+ a A2 (a0 =N (a— N

oo [3n+t 3n+t—k—1
Now, we consider the sum [ vl T1

b?m+t+1—H I Lemma
A3n4t+1—v — A

n=1 [ k=1 v=0
3ntt—k—1| .
. 3ntt+1—
if we take ay = |vi| and b, = BTV | then we have
v=0 A3n4t+1—v —

o) 3n+t 3n+t—k—1
A3nttil—v — A

> ,;1'”’“‘ I1

n=1 v=0

b3nttr1—v H
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oo 3n+t—(3k+t)—1

Z U3k 44| Z H

b3n+t+17u ‘
A3nttt1—v — A

oo 3n—3k—1 b
3n+t+1—v
U3k o i A Y
- Sl |3 TL [
3n—3k—1 b _ B
Alsosince  [[ | ——"E=) = |d|" "1 = 0,1,2 setting
V=0 | @3ndgtyi—v — A
bab1bg . . _
d= ( V1 2 ( N while |d| < 1, the last equation turns into the sum
ag — ayp — ag —

oo 3n—3k—1

e [z il

b3n+t+1—l/
A3ngt+1—v — A

f o5k [i |d|”"“]
- 2t ()

#u ||
1—[q "
Then since |d| < 1 we get
Zun <G+max;7||v|| )
0 m= |a | 1— |d| £y
bob1b
SO’Wehavew(vn)efl,u=(un>ezlif|d=' — <1

(ag — )\)(al — )\)(CL() — /\)

Consequently, if for A € C, |az — A||a; — A||ao — A| > |ba] |b1] |bo]|, then (u,) € £;.
Thus, the operator (U (ag, a1, az; bo, b1, b2)—AI)* is onto if |A — ag| |A — a1 |A — az| >
|bo| |b1] |b2]. Then by Lemma U (ag, a1, az; bo, b1, ba) — Al has a bounded inverse
if I)\ — a0| |)\ — a1| |)\ — a2| > ‘bo‘ |b1| |b2| Therefore,

O'C(U (ao,al,az;bo,bl,bg),c) Q {)\ eC: |)\ - a0| |)\ - al\ |)\ - a2| S |b0| |b1| |b2|} .
Owing to o(4, ¢) is the disjoint union of ¢,(4,¢c), 0,(A4,c) and o.(4, ¢), thence

O’(U (ao,al,ag;bo,bl,bg) ,C) Q {)\ eC: ‘)\ - ao‘ |>\ — a1| ‘)\ — ag‘ S |b()| |b1| |b2|} .
By Theorem [1] we get

{/\ S C: |/\—a0| |)\—a1| |/\—a2| < |b0| |b1| Ibg‘}

op (U (a0, a1, a2;bo,b1,b2) , ¢)
C U(U (a07a17a2;b07b17b2)70)'

Since, o (4, ¢) is closed

{Ae C: A= aol |A = ar] [A = az| < |bof b1 | [b2]}

N

(U (ao, a1, az2; b, b1,b2) , c)
= O—(U(a07a1ua2;607b17b2)70)7
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and hence {A cC: ‘A — CLo| |)\ — (11| |)\ — (12‘ S |b0| |b1| |b2|} C O'(U (ao,al,az;bo,bl,bz),c).
Therefore, o(U (ao, a1, az;bo, b1,b2),¢) = M and so o¢(U (ao, a1, az;bo, b1,b2) , c) =

M\ (M U {s}) = OM\ {s}.

O

3. SUBDIVISION OF THE SPECTRUM

Subdivision of the spectrum; consists of three subsets of the spectrum that need
not be discrete as follows:

The sequence (z,) € X that satisfy the conditions of ||z,|| = 1 and ||Az,| — 0
as n — oo is called a Weyl sequence for A.

The set
oap(A, X) :={\ € C : there exists a Weyl sequence for \I — A} (9)
show the approximate point spectrum of A. The set
os(A, X) :={A€ (A, X): M — A is not surjective} (10)
show defect spectrum of A. Finally, the set
7oA, X) = {A € C: R\ — A) # X} (11)

show compression spectrum in the literature.
The below Proposition is extremely important for obtaining the subdivision of
the spectrum of U (ag, a1, ag; bo, b1, b2) in c.

Proposition 1 ( 2], Proposition 1.3). The spectrum and subspectrum of an oper-
ator A € B(X) and its adjoint A* € B(X™*) are related by the following relations:
(a) J(A*vX*) = U(AvX)} (b) UC(A*aX*) - UGP(A?X)7

(c) oap(A*, X*) = 05(A, X), (d) 05(A*, X*) = 04p(4, X),
(e) U;D(A*vX*) = UCO<AaX); (f) UCO(A*vX*) 2 Up(A7 X):
(9) 0(A, X) = 04p(A, X)Uop(A*, X*) = 0,p(A4, X) Uogp(A*, X*).

Goldberg’s Classification of Spectrum

If A € B(X), then there are three cases for R(A):

(I) R(A) = X, (II) R(A) = X, but R(A) # X, (II]) R(A) # X
and three cases for A~

(1) A=! exists and bounded, (2) A~! exists but boundless, (3) A~! does not
exist.

If these cases are combined in all possible ways, nine different states are created.
These are labelled by: Iy, Is, Is, I1y, II, 113, 111y, 1115, 1113 (see [13]).

(A, X) can be divided into subdivisions Iro(A, X) = 0, Is0(A, X), [Ir0(A, X),
II30(A,X), I1o(A,X), I[II,0(A,X), III50(A, X). For example, if T = A — A
is in a given state, I1I5 (say), then we write A € I[1I,0(A, X).

By the definitions given above and introduction, we can write following Table 1.
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TABLE 1. Subdivisions of the spectrum of a linear operator

1 2 3
A;l exists A;l exists A;l
and is bounded | and is unbounded | does not exists
A€ oy(4,X)
I |RAMT-A)=X A€ p(A X) - A€ ogp(A X)

A€ o.(A4,X) A€ op(4,X)
II | RAM-A)=X| Xep(4,X) A€ 0gp(AX) A€ ggp(A,X)
)\EO'(;(A,X) AEUg(A,X)
A€o (A, X) A€o (A X) Aeop(4,X)
| R —A) £ X | Aeos(A4,X) | N€oap(A X) | A€ oup(A, X)
)\EO‘5(A,X) )\EUg(A,X)
A€ 0eo(AX) A€ 0e(AX) A€ Te(AX)

The articles mentioned in the Section 2, are related to the discretization of the
spectrum defined by Goldberg. However, subdivision of the spectrum was examined
on certain sequence space in [4], [6], [7]. Moreover, the spectrum and fine spectrum
was calculated in [5], [8], [10] , [12], [15], [17], [1§].

Theorem 5. If |A — ag| |\ — a1] |\ — az| < |bo| |b1]]b2|, then

AE I30'(U (ao, ay,ao;bg, by, b2) s C).
Proof. Proof is similar to proof of |9, Theorem 5]. |
Corollary 2. I1110(U(ag, a1, az;bo, b1,b2),¢) =0, I1150(U(ao, a1, az; bo, b1, b2), c) =
{s}.
Proof. If |\ — ao| |A — a1| |A — az| > |bo| |b1] |b2] then the operator U (ag, a1, az; by, b1, ba)—
Al has a bounded inverse from proof of Theorem [3| and A = s does not satisfy the
inequality |A — ao| |A — a1| |A — az| > |bo| |b1] |b2|. Owing to

or(Ulao, a1, a2;b0,b1,b2),¢) = II1Io(U(ao,a1,az;bo,b1,b2),c)
UIIIQU(U(G'()7 a1, a; bOv b17 b2)7 C)

from Table 1, we obtain IT1T0(U(ag,a1,as;bg,b1,b2),c) =0,

IIIQJ(U(CL(),al,CLQ;bo,bhbg),C) = {S} O
Corollary 3. II30(U(ag,a1,a9;bo,b1,b2),¢) = IT130(U(ag, a1, a2;bg,b1,b2),¢) =
0.

Proof. Since
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op(Ulao,a1,a2;b0,b1,b2),¢) = I30(U(ao,a1,az;bo,b1,b2),c)
UII30’(U(CLO,CL1,ag;bo,bl,bg),c)
UIIIgU (U(ao,al,ag;bo,bl,bg),c)
in Table 1, 0,,(U(ao, a1, az; bo, b1, b2),¢) = I30(U(ao, a1, az; bo, b1, ba), c) from The-

orem [I] and Theorem 5l Thus
IIgO'(U(ao,al,ag;bo,bl,bg),C) = IIIgJ(U(ao,al,a2;b0,b1,b2),c) = @ D

Theorem 6. (a) 05(U(ag, a1, az;bg,b1,b2),¢) = OM,
(b) Uap(U(aoaalaGQ;bOablabQ)ac) = M7
(c) 0co(U(ag, a1, az;bo,b1,b2),c) = {s}.

Proof. (a) From Table 1, we obtain
0s(U(ao, a1,az2;bo,b1,b2),¢) = o (U(ao, a1, az; bo, b1, b2),c)\Iso(U(ao, a1, az; bo, b1, b2),c) .
So using Theorem [ and [f] with a,, 4+ by, = an41 + bpg1 = S, the required result

is gotten.
(b) From Table 1, we obtain

Uap(U(ao,aJ,az;bo,bl,bz),c) = O'((U(a()7al,az;bo,b17bz),C)\III1O’(U(0,07a1,a2;b0,b1,b2),c).

And so 04, (U(ag, a1, az; bo, b1,b2),c) = M from Corollary
(¢) By Proposition [1] (e), we obtain

op(U(ao, a1, a2; b, b1,b2)*,¢*) = 0co(Ulag, ar, az; bo, b1, b2), c).

Using Theorem 2| with a,, + b, = a5, +1 + byt1, the required result is gotten. O

Corollary 4. (a) O'ap(U(ao,al,ag;bo,bl,bg)*,C* = [1) = 8M,
(b) o5(U(ao, a1, az;bo, by, b2)*,c* = £y) = M.

Proof. By Proposition [I] (¢) and (d), we obtain

Oap(Ulag, a1, as;bo,b1,b2)*,c* = 41) = 05(U(ao, a1, az; by, b1, b2), ¢)
and

os(U(ao, a1, az2; by, b1,02)", ¢* = 1) = 04p(Ul(ao, a1, az; bo, b1, b2), ¢).

from Theorem |§| (a) and (b) with a,, + b, = ap41 + b1 = S, the required results
are gotten. (I
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4. RESULTS

We can generalize our operator

=)

o

2 o

- o
5o

o o

o O
oo oo

Ulag,ai,...,an-15b0,b1,...,bp_1) =

O OO OO

0 0 ag bo

OO OO (e}
cococo
o
S
S
[
AN
S
3
|
AN

where b()7 bl, ey bn—l 7é 0.
In parallel with our study, the following results are valid for the n-entry upper
triangular double band matrix above.
n—1
Theorem 7. The following results are valid, where T = {)\ eC: ] 5 < 1},
k=0 k

T be the interior of the set T and OT be the boundary of the set T and for
Qp + by = ap4+1 + bn+1 =t

)\—ak

(1) O'p(U((l(),(ll,‘ . ,an,l;bo,bh. . ,bnfl),c) = T,

(2) O'p(U(a07(117. .. ,an,l;bo,bh. .. ,bnfl)*,c* = 1) = {t}7
(3) aT(U(aO,al, N 7an,1;b0,b1, .. .,bn,1)70> = {t},

(4) O'C(U(Clo,a1,...,an_l;bo,bl,...,bn_l),c) :8T\ {t},
(5) U(U(ao,al,...,an_l;bo,bl,...,bn_l),c) =T.
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