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Abstract  

Over the last decades, to adopt high penetration of renewable energy sources (RESs) in electrical energy systems, distributed 

energy resources (DERs) have become prominent. Due to easy attainability status of small wind turbines (WTs), wind energy 

conversion systems (WECSs) are feasible applications for small customers, especially in windy areas. The next decade is 

likely to witness a considerable rise in DERs. In this context, WECSs are preferred broadly, thus harvesting wind energy into 

electrical energy effectively is a substantial issue. WTs can be got involved in the grid-connected or autonomous mode with a 

variety of topologies. In this paper, we examine to control of DC-DC boost converter of a WECS with the help of artificial 

intelligence (AI)-aided PI controller based on supervised learning method. Regarding the proposed method, artificial neural 

networks (ANNs) as a subset of AI are utilized. To test and ensure the applicability of the proposed control method, a small 

WECS with a permanent magnet synchronous generator (PMSG) connected a DC bus was implemented in 

MATLAB/Simulink environment. The proposed ANN scheme has reached a high accuracy rate with an overall mean squared 

error (MSE) equal to 7.4e-08. The results present that dynamic response and less complexity with a high accuracy rate have 

been obtained under study. The main target of this study is to reduce the number of sensors in the control layer. Thus, a cost-

effective and more reliable structure is obtained with fewer sensor requirements.   

Keywords: Wind Energy Conversion Systems, Artificial Intelligence, Artificial Neural Networks, DC-DC Power Converters 

 

Öz 

Son on yıllarda, elektrik enerjisi sistemlerinde yenilenebilir enerji kaynaklarının yüksek oranda nüfuzunu yaygınlaştırmak 

için dağıtılmış enerji kaynakları öne çıkmıştır. Küçük rüzgâr türbinlerinin kolay erişilebilirlik durumu nedeniyle, rüzgâr 

enerjisi dönüşüm sistemleri özellikle rüzgârlı alanlarda küçük müşteriler için elverişli uygulamalardır. Önümüzdeki on yıl 

muhtemelen dağıtık enerji kaynakları önemli bir artışa tanık olacaktır. Bu bağlamda, rüzgâr enerji dönüşüm sistemleri yaygın 

olarak tercih edilmektedir, bu nedenle rüzgâr enerjisinin elektrik enerjisine etkin bir şekilde dönüştürülmesi önemli bir 

konudur. Rüzgâr türbinleri çeşitli topolojilerle şebekeye bağlı veya otonom modda dâhil edilebilirler. Bu makalede, denetimli 

öğrenme yöntemine dayalı yapay zekâ destekli PI denetleyicisi yardımıyla bir rüzgâr enerji dönüşüm sistemindeki yükselten 

DC-DC güç dönüştürücüsünün kontrolünü incelemekteyiz. Önerilen yöntemle ilgili olarak, yapay zekânın bir alt kümesi 

olarak yapay sinir ağları kullanılmaktadır. Önerilen kontrol yönteminin uygulanabilirliğini test etmek ve doğrulamak için, 

MATLAB/Simulink ortamında bir DC baraya sabit mıknatıslı senkron generatör ile küçük bir rüzgar enerji dönüşüm sistem 

uygulanmıştır. Önerilen YSA şeması, 7.4e-08'e eşit toplam ortalama karesel hata (MSE) ile yüksek bir doğruluk oranına 

ulaşmıştır. Sonuçlar, çalışma kapsamında dinamik yanıtın ve daha az karmaşıklığın yüksek doğruluk ile elde edildiğini 

göstermektedir. Bu çalışmanın ana hedefi, kontrol katmanındaki sensör sayısını azaltmaktır. Böylece daha az sensör 

gereksinimi ile uygun maliyetli ve daha güvenilir bir yapı elde edilmektedir. 

Anahtar Kelimeler: Rüzgâr Enerjisi Dönüşüm Sistemleri, Yapay Zekâ, Yapay Sinir Ağları, DC-DC Güç Dönüştürücüleri 
 

I. INTRODUCTION 

1.1. Motivation and Background 

The availability of energy is not the only concern for today’s power systems. Another critical factor is its impact 

on consuming resource deficiency. Energy demand figures are expected to increase further due to the growing 

population, modernization, and globalization. Human beings have produced energy in conventional ways and still 

resume for years. However, it is inevitable that energy production is gradually abandoned the conventional ways 

due to both the depletion of resources and environmental concerns. This mandatory transition leads humanity to 

energy production with renewable energy sources (RESs). For RES-based applications, power electronics have 

grown into an accepted choice to supply sustainable power, since their complexity and performance have been 

boosted. Furthermore, several barriers that affect the efficiency of power electronics exist. Accomplishing these 

barriers demands to handle complicated optimization difficulties, which are challenging to alleviate through 

conventional methods [1]. 
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One of the most preferred RES-based systems, i.e., 

distributed energy resources (DERs) is that wind 

energy conversion systems (WECSs) are operated with 

the help of power electronic converters according to 

system topology. The WECSs are largely popular 

structures, which are preferred to feed electrical 

appliances in any circumstance [2]. Thereby, a safe and 

reliable power supply is directly related to the robust 

control and management of power electronics. In other 

words, power electronics can be considered as an easy 

linker of DER applications. However, the coordination 

of these power electronics interfaces causes many 

problems in the control layer due to the intermittent 

nature of RESs and their uncertainty.  

 

The desired characteristics of the control system should 

comprise tracking the output reference values (e.g., 

current and voltage), ensuring the presence and 

reliability of the power balance. Unlike classical 

control methods, this paper proposes the exploitation 

of a supervised learning-based multi-layer feedforward 

artificial neural network (ANN) to accomplish 

efficiency with high accuracy and to reduce the 

number of sensors in the control layer. We can 

implement the model of machine learning in various 

ways, ANNs are one of them. Thereby, the ANNs are a 

subset of machine learning and artificial intelligence 

(AI) targets to facilitate systems with intelligence that 

is susceptible to human-like learning and reasoning.  

 

Nowadays, AI has palpable advantages by having been 

successfully applied in innumerable areas such as 

recognition, classification, computer vision, energy, 

and vehicle technology, etc [3]. To this end, the proper 

control of power electronics has crucial for dealing 

with control difficulties, which should be taken into 

consideration. 

 

1.2. Related Literature 

Upon relevant literature, it is obvious that many 

researchers have addressed the application of AI 

methods such as ANN, fuzzy, deep learning, or hybrid 

methods etc. in power electronics [4]-[6]. In particular, 

similar topology and controller have been studied as 

being an experimental setup with a wind turbine (WT) 

emulator recently [7]. Few researchers have mentioned 

estimating accurate wind speed to harvest maximum 

power with sensorless control using AI algorithms in 

[8]. Similarly, maximizing effective power is discussed 

profitably with the aid of ANN-based reinforcement 

learning for a WECS via permanent magnet 

synchronous generator (PMSG) [9]. The authors in 

[10], suggest that sliding mode observer outperforms in 

tracking error than ANN-based observer as a 

sensorless control of PMSG in WECS; however, 

sliding mode observer deteriorates with chattering 

issue. To control the back-to-back power converter of a 

WECS, space vector-based pulse width modulation 

(SVPWM) has been developed through a feedforward 

ANN by obtaining lower total harmonic distortion 

(THD) [11]. On the other hand, an ANN-based voltage 

estimation for the calculation of THD is presented for 

multi-bus islanded AC microgrids [12]. Especially, a 

seamless estimated current data is implemented to 

support the control operation of a small WECS with 

the help of supervised learning-based ANN [13]. In 

[14], another RES-based system is that a PV panel is 

monitored for perceiving in case of the PV panel 

encounter degradation due to any faults. In other 

respect, to facilitate the operation of the energy 

management as reliable an ANN-based sensorless 

control [15] is proposed to eliminate the implemented 

sensors. 

 

Various approaches have been put forward to come 

around the barriers against efficiency and performance. 

Except for estimating current data, in [16] it is seen 

that wind speed and torque data are observed properly 

with sensorless control for small WT clusters 

throughout a direct torque control algorithm. Much 

work on the potential of the sensorless control has been 

carried out [17], yet there are still some critical issues 

about maximum power point tracking (MPPT) 

algorithm is applied to harvest maximum power from 

the wind [18]. As can be clearly seen in Table 1, the 

most recent studies with similar applications are given 

based on the related literature. 

 
Table 1. Comparison between related studies. 

SCHEME 

REF. 
APPLICATION SCHEME REF. APPLICATION 

ANN-Based 

MPC [19] 

Control of 

power 

converters 

Artificial neural 

network [23] 

Intelligent long-

term 

performance 

analysis 

FCS-MPC-

based NN 

Classifier 

[20] 

Voltage sag 

classification in 

PV system 

Artificial 

Neural 

Networks [24] 

Cyberattack 

detection & 

mitigation for 

microgrids 

Long short-

term memory 

NN (LSTM) 

[21] 

Power 

prediction for 

virtual plants 

MPC Using 

ANN [25] 

Control of DC-

DC Converters 

Proposed 

ANN-Based 

PI [13] 

Sensorless 

control of DC-

DC converter 

Batch 

normalization 

neural network 

(BN-NN) [26] 

Circuit 

parameter 

design of the  

converter 

Multilayer 

Perception 

ANN [22] 

Intelligent 

energy 

management 

Lagrange 

programming 

neural network 

(LPNN) [27] 

Obtaining 

optimal 

scheduling for 

microgrid 

 

1.3. Contributions and Organization 

Estimating current data enables power estimation as 

well. We do not only assert controlling a power 

converter of the WECS via ANN but also provide 

more reliable operation with less measured data in the 

control layer. This paper proposes to control a DC-DC 

boost converter with the aid of ANNs. The strong 
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aspects of this paper can be divided into three matters: 

1) the applied ANN possesses high accuracy to 

estimate the desired output, which is easy to apply, 

thanks to the proper input selection, 2) after an offline 

(training) phase of the application, the results validate 

that the online (exploitation) phase is conducted 

effectively, 3) this proposed AI-aided control via 

ANN increase the reliability of the system by reducing 

the used sensor in the control layer, as the measured 

sensor may corrupt, 4) the proposed method decreases 

the cost of ownership of sensors in the control layer 

and lastly 5) the estimated sensor’s data 

communication challenge is removed. 

 

The reminder of this paper is organized as follows. 

Section II explains about the WECS under study. 

Section III elucidates system control strategy for 

online and offline operation. Section IV evaluates the 

simulation results of the paper. Finally, conclusion 

remarks are stated in Section V.  

 

II. WIND ENERGY CONVERSION 

SYSTEM UNDER STUDY 
The mentioned WECS model can be split up into four 

parts regarding WT, PMSG, three-phase full-bridge 

diode rectifier, and lastly DC-DC boost converter.  

 

Variable wind speed profile is used for power 

extraction from the wind. The WT has a vertical axis 

turbine of three blades with fixed pitch angle (β) is 

equal to 0o. The WT has coupled with a three phase 

PMSG to generate power and then dispatch that power 

to the DC-DC converter with a full bridge diode 

rectifier. The synchronous generators are broadly 

preferred for variable wind speed in WT applications 

due to their low rotation synchronous speeds which 

track grid frequency. Therefore, it is worth using 

PMSG in these applications where the wind speed has 

too much fluctuation [28]. 

The configuration of the WECS can be illustrated in 

Figure 1. The maximum value of phase voltage is Vm, 

average output of the rectifier voltage Vo is VDC and it 

is expressed as  

 

00

1
( ) .

T

DC
V V t dt

T
                                         (1) 

 

Using equation (3), the average voltage of the output 

VDC-out can be found as 

          
2 /3

/3

6
3 sin ,

2
DC o t muV V d                         (2) 
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3 3
1.654 .o m mDC utV V V                            (3) 

 

Wind Turbine
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Diode Rectifier DC-DC Boost Converter

DC 

Bus

Controller

PWM
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Figure 1. Configuration of WECS under study. 

 

The WT power characteristics versus turbine speed 

can be expressed in Figure 2. The turbine output 

power can be seen that it coincides 320 W for 0.8 per 

unit of nominal mechanical power at base wind speed, 

so the nominal output power corresponds to 400 W. 

The output power and mechanical torque of the 

WECS can be aligned by following equations. The 

output power of the turbine is defined as            

             

3, ) ,
2

(p i dm w nP c
A

                                  (4) 

 

where, Pm is Mechanical output power of the turbine 

(W), cp is the performance coefficient of the turbine, ρ 

is air density (kg/m3), A is the turbine swept area (m2), 

Vwind the wind speed (m/s), λ is tip speed ratio of the 

rotor blade tip speed to wind speed, and lastly β the 

blade pitch angle (degree). An equation is used to 

model cp(λ,β) that based on the modeling turbine 

characteristics [29] as follows: 

  

5
/

1 2 3 4 6
, ) ( / ) ,(

ic

p i
c c c c c e c         (5) 

 

with  

                           

3

1 0.035

0.08

1

1
,                                      (6) 

 

where, coefficients are located as follows: 

c1=0.5176, c2=116, c3=0.4, c4=5, c5=1, and c6=0.0068. 

The turbine characteristics can vary for different 

values of the pitch angle β. 

 

The model in d-q frame of the PMSG is based on (7). 

Besides, the electromagnetic torque (Tem) of the 

generator can be expressed as equation (11) unless Lq 

is not equal to Ld, 

     

* ,
d d d dc c

c

q q q qc c

V i i eR L d
L

V i i eL R dt

       (7) 

 

                 

,em qT P i                                           (8) 

 

where, Vd and Vq are direct and quadratic stator 

voltages, id and iq are direct and quadratic currents, ed 

and eq are direct and quadratic magnetic motive 

forces, respectively. Rc is resistance of each stator 
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phase, φ is the permanent magnetic flux, ꞷ is the rotor 

electrical angular speed and Lc is inductance of each 

stator phase. As to the model of PMSG in (7), taking 

into consideration the Clarke transformation, the 

PMSG model in α-β frame can be written by  

 
0 0

*

00

1

,1

s

ss s

ss

V ei

V ei

R
i

LL R

i LL

            (9) 

 

                                 

sin ,e                                 (10) 

 

cos ,e                                                    (11) 

 

where, Vα and Vβ are stator voltages vectors, id and iq 

are stator current vectors, eα and eβ are direct and 

quadratic magnetic electromotive forces, respectively. 

Rc is resistance of each stator phase, and Lc is 

inductance of each stator phase. 
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Figure 2. Turbine power characteristic versus wind 

speed. 

 

III. SYSTEM CONTROL STRATEGY 

3.1. Conventional Control 

To control the power electronics converters which do 

not only use traditional multiple feedback loops but 

also pulse width modulation (PWM) is required. The 

controller is the key component in achieving a well-

controlled and high-performance system. The DC-DC 

boost unidirectional converter is triggered by the duty 

cycle (D) of the power semiconductor MOSFET 

thanks to the PWM signal. Equation (12) describes the 

output and input voltages relationship as     

                  

_

1

1
.DC Bus DC outV

D
V                                         (12) 

 

A block diagram of the configuration and proportional 

integral (PI)-cascaded conventional control structure of 

the WECS is seen in Figure 3. 
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Figure 3. Configuration and control structure of 

WECS by PI-cascaded current and voltage controllers. 

 

Before proceeding, it is important to mention about 

obtaining the necessary transfer function for any 

controller after simplifying and linearizing the modeled 

system. Where RWT=VWT/IWT is output resistance of the 

WECS, the transfer function between the converter 

input voltage (VWT) and the duty cycle (D) can be 

expressed as follows with the help of the small-signal 

model as follows: 

                               

_B

2)

( )
.

( 1

DC us

WT WT

WT WT WT

V

s LCV

s
s

R C L

D s

C

                       (13) 

 

3.2. ANN-Based Control 

Essentially, AI tries to mimic the mindset in the human 

brain. The brains contain a lot of neurons, and these 

neurons are associated with biological neural networks 

that facilitate the behavior process. An ANN aims to 

mimic a sub-simulation of the biological network using 

electronic circuits. AI databases are applied in many 

fields such as software, economy, industry, and 

engineering [12]. Neural, statistical, and evolutionary 

learning are among the artificial intelligence-based 

multiple learning theories that ANNs are the most 

basic technique of neural learning [30]. The ANN was 

claimed by McCulloch and Pitts based on the 

mathematical model of a primitive cell of the human 

brain [31]. Roughly, a neuron is triggered by the 

weights of inputs that exceed the threshold limit, 

causing the response of activated output functions, and 

thus produce an appropriate output. Prediction is a sort 

of filtering, where past values of one or more-time 

series are utilized to estimate future values. Dynamic 

ANNs contain tapped delay lines are ready for 

nonlinear prediction. They are also feasible for system 

identification, impending failure detection, dynamic 

modeling of a physical model. AI can be used for 

simulation, analysis, visualization, and control of a 

variety of systems.  

 

Another point worth mentioning is that elements of 

feedforward neural networks are separated layers. The 

signs from the input layer to the output layer are 

transmitted by a one-way connection. While being a 
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link from one layer to the next, no link exists in the 

same layer. In feedforward networks, the outputs of the 

cells in the layers are the input of the next layer. If the 

layer by layer network is examined, the input layer 

transmits the information from the external 

environment to the cells in the intermediate (hidden) 

layer without making any changes. The output of the 

network is calculated by processing the input data 

within the hidden layers and the output layer.  

 

A multi-layer applicator consists of one or more hidden 

layers and one output layer. All cells in one layer are in 

contact with all cells in the next layer. Feedforward is 

derived from the forward flow of information on behalf 

of networks. There is no information processing in the 

input layer. The number of cells in the input layer 

depends on the number of entries in the applied 

problem. Similarly, the hidden layer and the number of 

cells in this layer differ with the problem structure but 

is found by trial-and-error. The number of cells in the 

output layer is related to the number of outputs in the 

applied problem. 

 

Feedforward networks can generally respond to 

problems such as classification, generalization, and 

recognition by applying the Delta learning rule. For the 

input presented to the network, the output of the 

network is compared with the actual result. The 

difference resulting from this comparison reveals the 

error value. The purpose of calculating 

backpropagation is to produce a good output by 

reducing the error. The error will be distributed to the 

weight ratings of the network every iteration. 

 

Since nonlinear problems cannot be learned with 

single-layer perception, and most of the problems 

encountered in daily life are not linear, we have used 

this multi-layer feedforward neural network with 

Levenberg-Marquardt backpropagation in this study. 

This backpropagation algorithm approaches second-

order training speed regardless of computing the 

Hessian matrix likewise the quasi-Newton methods. 

When the performance function has the form of a sum 

of squares, the Hessian matrix and the gradient can be 

expressed as 

              

,T
H J J                             (14) 

 

with 

 

,T
g J e                               (15) 

 

where, J is the Jacobian matrix that comprises of first 

derivatives of the network errors regarding the weights 

and biases, and e is a vector of network errors. The 

Jacobian matrix can be extracted with a standard 

backpropagation technique which is less complicated 

than computing the Hessian matrix. The Levenberg-

Marquardt algorithm uses this approximation to the 

Hessian matrix in the following Newton-like update as 

              
1

1 [ ] ,T T

k kX X J J I J e             (16) 

 

where, the scalar µ is zero, that is precisely Newton’s 

method, using the approximate Hessian matrix. If µ is 

large, this inclines gradient descent with a small step 

size. Newton’s method is quicker and more accurate 

near an error minimum, so the aim is to shift toward 

Newton’s method as rapidly as possible.  

 

An auxiliary network training function named 

“Trainlm” is generally the fastest backpropagation 

algorithm in the Simulink toolbox, which revises 

weight and bias states according to Levenberg-

Marquardt optimization and also is recommended as a 

supervised algorithm, even although it occupies more 

memory but less time than others. By the way, a 

supervised learning allows one to acquire data and then 

to produce a new output from previous experience i.e., 

correct output. It provides to improve performance 

criteria using this experience. Also, supervised 

machine learning helps us solving a variety of 

computational problems in the life [30].  

 

The training process is stopped once the generalization 

finishes improving, as same as being in the MSE of 

validation process. Mentioning the operation, an ANN 

estimates data series of Y(t), while obtaining past 

values up to delay (d) pieces of X(t) series as 

               

( ) 1 ,..., ( ) .Y t f X t X t d                (17) 

 

Additionally, supposing that the forms of error data 

series as et = {e}t; where, t = 1, …, n, the neural 

network can be designed under four sections such as 

proper input selection, defining the paradigms, 

estimation, and lastly implementation. As stated 

previously, the backpropagation is a way for training 

the weights in a multilayer neural network [13, 32]. 

The generic structure of the backpropagation neural 

network can be expressed as follows:  

             

, 1 ,h h jb b j m                             (18)       

      

, , , ,
1

1,2,...,
( ) ; ,

1,2,...,

n

t j t ij t i z j
i

i n
v w X b

j m
   (19)                                                          

              

, , ,t j hidden t jQ f v                           (20) 

 

If an ANN consists of n inputs, one hidden layer with 

m neurons, and one output, so the output signal can be 

calculated as 

      

, ,
1

,
n

t output t j t j k
i

Y f w Q b                             (21) 
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where, Xt,j is input, vt,i, Qt,i, and bh,j are input, output of 

hidden layer (i.e, ith node of hidden layer), and the 

bias factor for the ith  neurons of the hidden layer 

respectively, by is the bias factor of the neuron in the 

output layer, wt,ij and wt,i are connection weights, and 

Yt is output. Then the ANN generates (m+1)th error 

points, thereby mean absolute percentage error rate, 

which is the average squared difference between 

outputs and targets, can be computed as 

 

 
1

1 ( ) ( )
MAPE .100.

( )

n

t

X t Y t

n X t
           (22) 

 

The structure of implemented neural network 

possesses one hidden layer, and its sigmoid activation 

function is given by 

         

,,

1
,

1 t jt j v
Q

e
                         (23) 

 

also can be defined as  

 

,

,

,

0 0,
.

1 0.

t j

t j

t j

v
Q

v
                        (24) 

 

The schematic diagram of elucidated and studied of 

multi-layer feedforward neural network with 

Levenberg-Marquardt backpropagation can be 

illustrated in Figure 4. Neural Net Time Series 

application exists in Machine Learning Toolbox of 

MATLAB/Simulink was used in order to implement 

the mentioned ANN. Implemented ANN has 3 inputs, 

1 output, one hidden layer with 10 hidden neurons, 

and 2 delays. The node size of the hidden layer is 

selected based on satisfactory results. If it is selected 

less than average, the network cannot be trained well, 

otherwise, selecting more nodes causes more 

unnecessary complexity. On the other hand, the output 

depends on the historical value of the inputs, though 

the number of delays may result in a better 

performance when the system is more dynamic; 

however, a great deal of delays makes the training 

process slow. With respect to stages in the 

implementation phase, the data was shared to having 

divided into training, validation, and testing part was 

selected 70%, 15%, and 15%, respectively. In the 

training part, the network is adjusted according to the 

error, then is met to adapt network generalization until 

generalization stops training with the help of using 

Levenberg-Marquardt. Due to selection of simulation 

sample time (Ts) as 5e-6 secs and simulation period 

(∆T) as 4 secs, the number of elements can be 

calculated regarding (1/Ts)*(∆T). In the testing, both 

during and after training the network is tested for an 

independent measure of network performance. 

Besides, we embedded the input as an 800001x3 

matrix, representing dynamic data 800001-time steps 

of 3 elements and targeted 800001x1 matrix, 

representing dynamic output data 800001-time steps 

of 1 element [13]. 

 

xn

v Q

y

Output LayerHidden LayerInput Layer

 

Figure 4. Schematic structure of ANN to estimate 

output [12]. 

 

In this paper, we have implemented a nonlinear input-

output neural network which is simple and easy to 

apply. It is worth mentioning that applying ANN-

aided control to the WECS can be split up into two 

main phases regarding the offline and online part. The 

offline mode is met to gather the required dataset for 

training ANN that will be an estimator as can be 

depicted in Figure 5. After that phase, ANN is well-

trained and prepared to estimate the desired output for 

the online mode. That approach alleges preparing a 

well-trained and tuned network via a large amount of 

input data (related output) in the training phase.  

 

With the help of depth of dataset, the ANN targets to 

predict required inputs of the converter controller 

without using sensor measurements to eliminate the 

sensor data of the mentioned input. In the online 

phase, the well-tuned ANN carries out to estimate the 

output whose sensor needs to be eliminated in the 

control layer. In this context, Figure 6 depicts a 

general picture of the control structure that is aided by 

ANN.  
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Figure 5. Control structure of WECS by ANN-Aided 

PI-cascaded current and voltage controllers in offline 

phase. 
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Figure 6. Control structure of WECS by ANN-Aided 

PI-cascaded current and voltage controllers in online 

phase. 

 

IV. RESULTS 
The results of this paper has been achieved under two 

different variable wind speed conditions. Training of 

ANN yields different results because of different 

initial conditions and sampling. Acquiring lower 

values are always better, namely close to zero. In this 

study, best validation performance was obtained 

8.1564e-11 at 1000 epochs. In Figure 7, the variable 

wind speed profile which considerably affects the 

output is given. In terms of accurate operation, 

regression (R) values assess the correlation between 

outputs and targets. If R value converges 1 that means 

a close relationship exists in Table 2, otherwise, 0 is a 

random relationship that needs to be edited. On the 

other hand, mean absolute percentage error (MAPE) is 

the average squared difference between outputs and 

targets. The advantages of the proposed neural 

network (NN)-based methods are expressed in Table 3 

based on the literature. Estimating the data with high 

accuracy which influences the system positively is 

profitable. Furthermore, it is clear that the amount of 

percent error is less than 10%, it is considerable that is 

a high accuracy estimator at every moment of the 

simulation.  
 

Table 2. Performance criteria of ANN under study. 

TRAINING 

PART 

CRITERIA 

BEST 

PERFORMANCE 

OF MSE 

REGRESSION-

R 

Training 5.1e-08 0.99 

Validation 9.9e-08 0.99 

Test 3.4e-07 0.98 

Overall 7.4e-08 0.99 

 

 

 

 

Table 3. Performance criteria of ANN under study. 

SCHEME REF. APPLICATION BENEFIT 
OVERALL 

ACCURACY 

ANN-Based 

MPC [19] 

Control of 

power 

converters 

Less 

computational 

effort and better 

attenuation   

98.25 %  

FCS-MPC-

based NN 

Classifier 

[20] 

Voltage sag 

classification 

in PV system 

Enabling 

voltage support 
98.60 % 

Long short-

term memory 

NN (LSTM) 

[21] 

Power 

prediction for 

virtual plants 

Combining the 

concepts of 

ANN and ML 

91 % 

Proposed 

ANN-Based 

PI [13] 

Sensorless 

control of DC-

DC converter 

Less cost, fewer 

needed sensors, 

larger reliability 

tolerance 

 

98.85 %  

 

Multilayer 

Perception 

ANN [22] 

Intelligent 

Energy 

Management 

Minimization of 

operation costs 

and emission 

96.01 %  
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Figure 7. Variable wind speed profile-I. 

 

 

Figure 8. Percentage error values of estimated 

current. 

 

The estimated value can be considered that is 

relatively low as seen in Figure 8. Also, Figure 9 

shows one of the best validation performance of MSE 

results during the training process for 1000 epoch.  
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Figure 9. MSE value for output until 1000 epoch 

size. 
 

Upon considering the performance criteria of the 

trained ANNs, the equations show the metrics in 

equations (25) and (26) to obtain high accuracy rates. 

As mentioned before, R should reflect convergence to 

1, and mean squared error MSE should be near 0 as 

possible as much.  

        

1

( ) ( )1
* ,ref

ref

m
ref Y Y

t Y Y

Y t Y t
R

m
             (25)                               

           

2

1

1
( ( ) ( )) ,

m

ref
t

MSE Y t Y t
m

                      (26) 

 

where, Yref(t) is the desired value, Y(t) is the estimated 

value of the proposed method, and also μ and σ are the 

mean and standard deviation values, respectively. As 

shown in Figure 10, since the estimated value set up 

bears a very close resemblance to the measured data, 

our findings validate the usefulness of ANN-aided 

control for power converter with a complementary and 

easy way. It is clear that the estimated value can 

perform instead of the measured value by eliminating 

the relevant sensor data. For power estimation, 

measured and estimated powers can be shown in 

Figure 11. 
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Figure 10. Measured and estimated currents. 
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Figure 11. Measured and estimated powers regarding 

generated power in WECS. 

 

Figure 12. Variable wind speed profile-II. 
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Figure 13. Measured and estimated currents. 
 

 

Figure 14. Percentage error values of estimated 

current. 
 

For a better illustration, the second variable wind speed 

profile has been defined to the system to test under 

different conditions, as seen in Figure 12. 

Subsequently, measured and estimated currents in 

WECS is given in Figure 13. It is clear that abrupt 

changes in wind speed makes the system more 

vulnerable; however, the MAPE of this operation is 

still within an acceptable band in Figure 14. Once 

changing the percentage allocation of the target time 

steps for training, validation, and testing parts, the 

trained network achieves reaching accuracy rates as 

well due to having a static nonlinear relationship 

between inputs and output.   

 

V. CONCLUSION 
AI-aided namely ANN-based control of a DC-DC 

boost power converter in WECS was implemented in 

this work. The results of this work show us that the 

proposed method can perform like a conventional 

controller with a high accuracy rate. Additionally, that 

method enables reducing sensor requirements from the 

main control layer, which makes the system more 

reliable and cost-effective. Also, the communication 

challenges with sensors are diminished.  

 

That research could possibly support the people who 

are interested in applied AI in energy systems. On the 

other hand, some better features of the system were 
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obtained such as quick response and less complexity 

without steady-state oscillation. Depending on the 

gathered dataset, it is possible to estimate the 

instantaneous power prediction from the WECS. In 

terms of the findings, our results are encouraging and 

should be applied by real-time experimental system. 
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