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Abstract

Many quaternion numbers associated with Fibonacci and Lucas numbers or even their
generalizations have been defined and widely discussed so far. In all the studies, the
coefficients of these quaternions have been selected from consecutive terms of these numbers.
In this study, we define other generalizations for the usual Fibonacci and Lucas quaternions.
We also present some properties, including the Binet’s formulas and d’Ocagne’s identities,
for these types of quaternions.

1. Introduction

Since Sir William Rowan Hamilton introduced the quaternion algebra in 1843, their usage areas have developed rapidly. Due
to the fact that the quaternions are encountered in many problems from elastodynamics, quantum mechanics, elasticity theory
and many other fields of modern sciences, they have been studied widely.

A quaternion q can be regarded as a quadruple of real numbers and is formally defined by

q = q0 + iq1 + jq2 + kq3,

where q0,q1,q2, and q3 are any real numbers and the standard basis {1, i, j,k} satisfies

i2 = j2 = k2 =−1, i j =− ji = k, jk =−k j = i,ki =−ik = j.

The conjugate of q is

q∗ = q0− iq1− jq2− kq3

and, the norm of q is
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N(q) = qq∗ = q2
0 +q2

1 +q2
2 +q2

3.

Fibonacci numbers are recursively defined as

Fn = Fn−1 +Fn−2,

with the initial terms F0 = 0 and F1 = 1. The Lucas numbers satisfy the same recurrence relation but with the initial terms
L0 = 2 and L1 = 1. Binet’s formulas for the Fibonacci and Lucas numbers are

Fn =
αn−β n

α−β
and Ln = α

n +β
n,

respectively. Here, α = 1+
√

5
2 and β = 1−

√
5

2 are the positive and negative roots of x2− x−1 = 0, respectively.

Horadam [1] defined Fibonacci quaternions as

Qn := Fn + iFn+1 + jFn+2 + kFn+3, (1.1)

where Fn is the nth term of the Fibonacci sequence. Iyer [2] gave a similar definition for Lucas quaternions by the relation

Tn := Ln + iLn+1 + jLn+2 + kLn+3, (1.2)

and gave their many properties, where Ln is the nth Lucas number.

Halici [3] gave Binet’s formulas for the Fibonacci and Lucas quaternions as follows:

Qn =
αα−ββ

α−β
and Tn = αα +ββ ,

where α = 1+ iα + jα2 + kα3 and β = 1+ iβ + jβ 2 + kβ 3.

There exist many papers devoted to generalizations of the quaternion sequences in (1.1) and (1.2) today. For example, the
references in [4]–[11] can be investigated. Note that all authors have used a known generalization of Fibonacci and Lucas
numbers and have placed these numbers in coefficients of the basis vectors similar to the format given by Horadam and Iyer. In
this study, we present an another perspective to the Fibonacci and Lucas quaternions. According to our approach, we define a
new classes of quaternions whose the coefficients are arbitrarily selected from these splendid integers. The outline of this paper
is as follows: In Section 2, we introduce the unrestricted Fibonacci and Lucas quaternions and give Binet’s formulas and the
generating functions for these quaternions. Furthermore, we present certain special identities such as d’Ocagne’s identity and
Catalan’s identity; in Section 3, we display many fundamental properties and some sum formulas for these quaternion families.

2. Main results

Here, we present our definitions, some concepts and results. First of all, we give a definition in the following.

Definition 2.1. Let p, r and s be arbitrary integers. Hence, nth unrestricted Fibonacci and Lucas quaternions are given by the
relations

F
(p,r,s)
n := Fn + iFn+p + jFn+r + kFn+s (2.1)

and

L
(p,r,s)

n := Ln + iLn+p + jLn+r + kLn+s, (2.2)

respectively.
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According to our definitions, we have the following special cases:

• For p = r = s =−n, the usual Fibonacci numbers are obtained:

F
(−n,−n,−n)
n = Fn

• For p = 1 and r = s =−n, the Gaussian Fibonacci numbers are obtained:

F
(1,−n,−n)
n = Fn + iFn+1

• For p = 1, r = 2 and s = 3, the well-known Fibonacci and Lucas quaternions are obtained:

F
(1,2,3)
n = Qn = Fn + iFn+1 + jFn+2 + kFn+3

L
(1,2,3)

n = Tn = Ln + iLn+1 + jLn+2 + kLn+3

Taking Eqs. (2.1) and (2.2) into account, we directly obtain

F
(p,r,s)
n = F

(p,r,s)
n−1 +F

(p,r,s)
n−2 (2.3)

and

L
(p,r,s)

n = L
(p,r,s)

n−1 +L
(p,r,s)

n−2 , (2.4)

by the recurrence relations of Fibonacci and Lucas numbers respectively.

To make it easier to present and prove the results of the rest of paper, we now present next theorem that states Binet’s formulas
for the unrestricted Fibonacci and Lucas quaternions.

Theorem 2.2. (Binet’s Formula) Let n be an integer. Then the Binet’s formulas of the unrestricted Fibonacci and Lucas
quaternions are

F
(p,r,s)
n =

ᾰαn− β̆β n

α−β
(2.5)

and

L
(p,r,s)

n = ᾰα
n + β̆β

n, (2.6)

where ᾰ = 1+ iα p + jαr + kαs and β̆ = 1+ iβ p + jβ r + kβ s.

Proof. Applying Binet’s formulas of the classic Fibonacci numbers to the definition of the unrestricted Fibonacci quaternions,
we obtain

F
(p,r,s)
n = Fn + iFn+p + jFn+r + kFn+s

=
1

α−β

(
α

n−β
n + i(αn+p−β

n+p)+ j(αn+r−β
n+r)+ k(αn+s−β

n+s)
)

=
1

α−β

(
α

n(1+ iα p + jαr + kα
s)−β

n(1+ iβ p + jβ r + kβ
s)
)
,

and the last equation gives Eq. (2.5). The other can be proved similarly.
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· ᾰ β̆ ᾰ∗ β̆ ∗

ᾰ 2ᾰ−N(ᾰ) B+
√

5C N(ᾰ) A−
√

5C+2γ

β̆ B−
√

5C 2β̆ −N
(

β̆

)
−A+

√
5C N

(
β̆

)
ᾰ∗ N(ᾰ) −A−

√
5C 2ᾰ∗−N(ᾰ) −B+

√
5C−2γ +4

β̆ ∗ A+
√

5C+2γ N
(

β̆

)
−B−

√
5C−2γ +4 2β̆ ∗−N

(
β̆

)
Table 1: The multiplicative properties of ᾰ and β̆

Table 1 displays important features corresponding to the multiplication of ᾰ and β̆ . They will undertake important tasks in the
process of proofing the next theorems. Note that each of them can easily be proven by certain elementary operations and we
omit the details. In Table 1, the following notations are used:

A =
√

5F
(p,r,s)
0 − γ,

B = L
(p,r,s)

0 − γ,

C = i(−1)sFr−s + j(−1)pFs−p + k(−1)rFp−r

and

γ = 1+(−1)p +(−1)r +(−1)s.

Note that r− s, s− p, and p− r may be positive or negative.

The next theorem gives d’Ocagne’s identities for the considered quaternions.

Theorem 2.3. (d’Ocagne’s identity) Let m and n be any integers. Hence, we have

F
(p,r,s)
m F

(p,r,s)
n+1 −F

(p,r,s)
m+1 F

(p,r,s)
n = (−1)n(BFm−n +CLm−n)

and

L
(p,r,s)

m L
(p,r,s)

n+1 −L
(p,r,s)

m+1 L
(p,r,s)

n =−5(−1)n(BFm−n +CLm−n).

Proof. From the Binet’s formula in (2.5), we have

F
(p,r,s)
m F

(p,r,s)
n+1 −F

(p,r,s)
m+1 F

(p,r,s)
n =

1
5

[(
ᾰα

m− β̆β
m
)(

ᾰα
n+1− β̆β

n+1
)
−
(

ᾰα
m+1− β̆β

m+1
)(

ᾰα
n− β̆β

n
)]

=

√
5

5
(−1)n

(
ᾰβ̆α

m−n− β̆ ᾰβ
m−n
)

and by Table 1,

F
(p,r,s)
m F

(p,r,s)
n+1 −F

(p,r,s)
m+1 F

(p,r,s)
n =

√
5

5
(−1)n

[
(B+C

√
5)αm−n− (B−C

√
5)β m−n

]
=

√
5

5
(−1)n

[
B(αm−n−β

m−n)+C
√

5(αm−n +β
m−n)

]
.

We obtain the first identity from the last equation. Repeating the same procedure, the second identity can be obtained.
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Now we give Catalan’s identities of the unrestricted Fibonacci and Lucas quaternions.

Theorem 2.4. (Catalan’s identity) For any integers m and n, we have

F
(p,r,s)
m+n F

(p,r,s)
m−n −

[
F

(p,r,s)
m

]2
= (−1)m+n+1Fn (BFn +CLn)

and

L
(p,r,s)

m+n L
(p,r,s)

m−n −
[
L

(p,r,s)
m

]2
= 5(−1)m+nFn (BFn +CLn) .

Proof. By Eq. (2.5) and Table 1, we can write

F
(p,r,s)
m+n F

(p,r,s)
m−n −

[
F

(p,r,s)
m

]2
=

1
5

[
(ᾰα

m+n− β̆β
m+n)(ᾰα

m−n− β̆β
m−n)− (ᾰα

m− β̆β
m)2
]

=
1
5

[
((−1)m−n+1(ᾰβ̆α

2n + β̆ ᾰβ
2n)+(−1)m2C

]
=

1
5

[
(−1)m+n−1

(
(B+

√
5C)α2n +(B−

√
5C)β 2n

)
+(−1)mB

]
=

1
5

[
(−1)m+n−1

(
B(α2n +β

2n)+5C
(

α2n−β 2n

α−β

))
+(−1)mB

]
=

1
5
[
(−1)m+n−1 (BL2n +5CF2n)+(−1)mB

]
.

Substituting the identities 5F2
n = L2n− (−1)n ([12, p.42]) and F2n = FnLn ([12, p.14]) give the desired result. Similarly, the

second identity can be obtained.

For the case n = 1 in Theorem 2.4, we attain Cassini’s identities, which are given in the following.

Corollary 2.5. (Cassini’s identity) For any integer m, we have

F
(p,r,s)
m+1 F

(p,r,s)
m−1 −

[
F

(p,r,s)
m

]2
= (−1)m(B+C)

and

L
(p,r,s)

m+1 L
(p,r,s)

m−1 −
[
L

(p,r,s)
m

]2
=−5(−1)m(B+C).

Note that the above identities can be re-written for the usual forms of the Fibonacci and Lucas quaternions in the case
(p,r,s) = (1,2,3). In this case, we can summarize them as follows:

• D’Ocagne’s identities are as follows:

QmQn+1−Qm+1Qn = (−1)n [T0Fm−n +(−Q0 +3k)Lm−n]

KmKn+1−Km+1Kn =−5(−1)n [T0Fm−n +(−Q0 +3k)Lm−n]

• Catalan’s identities are as follows:

Qm+nQm−n−Q2
m = (−1)mF−n [FnT0 +(−Q0 +3k)Ln]

Km+nKm−n−K2
m =−5(−1)mF−n [FnT0 +(−Q0 +3k)Ln]
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• Cassini’s identities are as follows:

Qm+1Qm−1−Q2
m = (−1)m(Q−1 +3k)

Km+1Km−1−K2
m =−5(−1)m(Q−1 +3k)

The concept of Generating Function is so important research topic since that is helpful tool to solve linear homogeneous
recurrence relations with constant coefficients. Here, we investigate both the ordinary generating functions and the exponential
generating functions associated with our generalized quaternions. To do this, we introduce the following functions:

GF (x) =
∞

∑
n=0

F
(p,r,s)
n xn,

GL (x) =
∞

∑
n=0

L
(p,r,s)

n xn,

EF (x) =
∞

∑
n=0

F
(p,r,s)
n

xn

n!
(2.7)

and

EL (x) =
∞

∑
n=0

L
(p,r,s)

n
xn

n!
.

Hence, we present another main results of the current paper.

Theorem 2.6. The generating functions for the unrestricted Fibonacci and Lucas quaternions are

GF (x) =
F

(p,r,s)
0 +F

(p,r,s)
−1 x

1− x− x2 (2.8)

and

GL (x) =
L

(p,r,s)
0 +L

(p,r,s)
−1 x

1− x− x2 . (2.9)

Proof. Substituting Eq. (2.3) into Eq. (2.8) and Eq. (2.4) into Eq. (2.9), the results are satisfied. So, this completes the
proof.

Theorem 2.7. The exponential generating functions for the unrestricted Fibonacci and Lucas quaternions are

EF (x) =
ᾰeαx− β̆eβx

α−β

and

EL (x) = ᾰeαx + β̆eβx,

where e is the famous Euler’s number.

Proof. Substituting Eq. (2.5) into Eq. (2.7) leads to

EF (x) =
∞

∑
n=0

F
(p,r,s)
n

xn

n!
=

∞

∑
n=0

ᾰαn− β̆β n

α−β

xn

n!
=

1
α−β

(
ᾰ

∞

∑
n=0

(αx)n

n!
− β̆

∞

∑
n=0

(βx)n

n!

)
.

Considering MacLaurin series of an exponential function, the result follows. The second identity is demonstrated similarly.
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3. More features

In this section, we present many properties for the unrestricted Fibonacci and Lucas quaternions and some sum formulas of
them. The next theorem present these identities.

Theorem 3.1. Let m,n and t be any integers. Then,

F
(p+1,r+1,s+1)
n = F

(p,r,s)
n +F

(p,r,s)
n−1 −Fn−1, (3.1)

L
(p+1,r+1,s+1)

n = L
(p,r,s)

n +L
(p,r,s)

n−1 −Ln−1,

F
(p,r,s)
n+1 = F

(p+1,r+1,s+1)
n +Fn−1,

L
(p,r,s)

n+1 = L
(p+1,r+1,s+1)

n +Ln−1,

L
(p,r,s)

n = F
(p,r,s)
n−1 +F

(p,r,s)
n+1 ,

L
(p,r,s)

m+n F
(p,r,s)
m+t −L

(p,r,s)
m+t F

(p,r,s)
m+n = 2(−1)m+nBF

(p,r,s)
t−n ,

F
(p,r,s)
m+n +(−1)nF

(p,r,s)
m−n = F

(p,r,s)
m Ln,

F
(p,r,s)
m L

(p,r,s)
n −L

(p,r,s)
n F

(p,r,s)
m = 2(−1)mCLn−m,

F
(p,r,s)
m L

(p,r,s)
n −L

(p,r,s)
m F

(p,r,s)
n = 2(−1)n(BFm−n +CLm−n),

F
(p,r,s)
n F

(p,r,s)
m −F

(p,r,s)
m F

(p,r,s)
n = 2(−1)m+1CFn−m,

L
(p,r,s)

n L
(p,r,s)

m −L
(p,r,s)

m L
(p,r,s)

n = 10(−1)mCFn−m,

F
(p,r,s)
m+n Fm+n−F

(p,r,s)
m−n Fm−n = F

(p,r,s)
2m F2n,

L
(p,r,s)

m+n Lm+n−L
(p,r,s)

m−n Lm−n = 5F
(p,r,s)
2m F2n, (3.2)

F
(p,r,s)
m+n Lm+n +F

(p,r,s)
m−n Lm−n = F

(p,r,s)
2m L2n +2(−1)m+nF

(p,r,s)
0 ,

L
(p,r,s)

m+n Lm+n +L
(p,r,s)

m−n Lm−n = L
(p,r,s)

2m L2n +2(−1)m+nL
(p,r,s)

0 ,

5
[
F

(p,r,s)
m

]2
−
[
L

(p,r,s)
m

]2
= 4(−1)m+1B,

F
(p,r,s)
m+n +(−1)nF

(p,r,s)
m−n = F

(p,r,s)
m Ln,

L
(p,r,s)

m+n +(−1)nL
(p,r,s)

m−n = L
(p,r,s)

m Ln

and

F
(p,r,s)
2m = Fm+1F

(p,r,s)
m +FmF

(p,r,s)
m−1 .
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Proof. To reduce the volume of the current paper, we give some proofs of the above identities. Since the proofs of the first six
identities are done in the same way, we only prove Eq. (3.1). By the definition of unrestricted Fibonacci quaternions, we can
write

F
(p+1,r+1,s+1)
n = Fn + iFn+p+1 + jFn+r+1 + kFn+s+1

= Fn + i(Fn+p +Fn+p−1)+ j(Fn+r +Fn+r−1)+ k(Fn+s +Fn+s−1)

= (Fn + iFn+p + jFn+r + kFn+s)+(Fn−1 + iFn+p−1 + jFn+r−1 + kFn+s−1)−Fn−1.

Other proofs are based on Binet’s formulas of the corresponding quaternions. As an example, we show that (3.2) holds. Hence,
by employing Eq. (2.6) we obtain

L
(p,r,s)

m+n Lm+n−L
(p,r,s)

m−n Lm−n =
(

ᾰα
m+n + β̆β

m+n
)(

α
m+n +β

m+n)−(ᾰα
m−n + β̆β

m−n
)(

α
m−n +β

m−n)
=

(
ᾰα

2m+2n + β̆β
2m+2n− ᾰα

2m−2n− β̆β
2m−2n

)
=

(
ᾰα

2m+2n + β̆β
2m+2n− ᾰα

2m
β

2n− β̆α
2n

β
2m
)

= (α−β )2

(
ᾰα2m− β̆β 2m

α−β

)(
α2n−β 2n

α−β

)
= 5F

(p,r,s)
2m F2n.

So, the proof is completed.

Now, we list sum formulas for the considered quaternions in the following theorem.

Theorem 3.2. The following summation formulas hold for any integer n.

n

∑
t=0

F
(p,r,s)
t = F

(p,r,s)
n+2 −F

(p,r,s)
1 , (3.3)

n

∑
t=0

L
(p,r,s)

t = L
(p,r,s)

n+2 −L
(p,r,s)

1 ,

n

∑
t=0

F
(p,r,s)
2t−1 = F

(p,r,s)
2n −F

(p,r,s)
0 ,

n

∑
t=0

L
(p,r,s)

2t−1 = L
(p,r,s)

2n −L
(p,r,s)

0 ,

n

∑
t=0

F
(p,r,s)
2t = F

(p,r,s)
2n+1 −F

(p,r,s)
−1 ,

n

∑
t=0

L
(p,r,s)

2t = L
(p,r,s)

2n+1 −L
(p,r,s)
−1 ,

n

∑
t=0

(
n
t

)
F

(p,r,s)
t = F

(p,r,s)
2n (3.4)

and
n

∑
t=0

(
n
t

)
L

(p,r,s)
t = L

(p,r,s)
2n .
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Proof. We will prove some of the above identities again. Let us consider at = F
(p,r,s)
t+2 −F

(p,r,s)
1 . Hence, by the definition of

the unrestricted Fibonacci quaternions, we obtain

at −at−1 = F
(p,r,s)
t .

Applying the idea of creative telescoping [13] to Eq. (3.3), we conclude

n

∑
t=0

F
(p,r,s)
t =

n

∑
t=0

(at −at−1) = an−a−1,

and since a−1 = 0, Eq. (3.3) is attained. Proceeding as in the previous proof, we can obtain the other identities except last two
identities.

Now, substituting Eq. (2.5) to Eq. (3.4) leads to

n

∑
t=0

(
n
t

)
F

(p,r,s)
t =

n

∑
t=0

(
n
t

)
ᾰαn− β̆β n

α−β
=

1
α−β

(
ᾰ

n

∑
t=0

(
n
t

)
α

n− β̆

n

∑
t=0

(
n
t

)
β

n

)
,

and considering the formal expression of the Binomial Theorem, we obtain

n

∑
t=0

(
n
t

)
F

(p,r,s)
t =

ᾰ (α +1)n− β̆ (β +1)n

α−β
.

Using α2 = α + 1 and β 2 = β + 1, the proof of Eq. (3.4) is completed. The last equation can also be found in a similar
way.

4. Conclusions

In this study, we presented other generalizations for the usual Fibonacci and Lucas quaternions and gave many interesting
properties of these definitions. In particular, the Binet’s formulas, the generating function, some explicit formulas, and
special identities such as d’Ocagne’s Identities were obtained. Moreover, the examples regarding the reduced cases for our
generalizations, from the quaternion forms to the usual integer sequence ones, were investigated. In addition to those, we
considered sum formulas for our generalizations including the even and odd subscripts.

We think that the inferences of the paper can be used in several practical applications in applied sciences, e.g. control and
system theory, and neural network, etc.
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