Review
BibTex RIS Cite

FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME

Year 2024, Volume: 29 Issue: 1, 291 - 310, 22.04.2024
https://doi.org/10.17482/uumfd.1292213

Abstract

Geleneksel fosil yakıtlar, rezervlerinin sınırlı ve ciddi zararlı kirletici sorunlarının olması önemli problemdir. Fosil yakıtlara en önemli sürdürülebilir alternatif yakıt ve enerji kaynağı hidrojendir. Hidrojenin kimyasal enerjisinin elektrik enerjisine dönüştürüldüğü sistem olan direkt hidrojenli PEM yakıt hücresi umut vaat eden bir enerji kaynağıdır. Bu çalışmada PEM yakıt hücresinin bileşenlerinin ve bazı durumların PEM yakıt hücresi performansına etkisi irdelenmiştir. Öncelikle PEM yakıt hücresinin çalışma sistemi irdelendi. Yakıt hücresinin parçaları ve bu parçaların yakıt hücresi yığın maliyetine etkisi incelendi. Son olarak membran, gaz difüzyon tabakası, bipolar tabaka ve anot-katot elektrotlarının PEM yakıt hücresi performansına etkileri araştırıldı. PEM yakıt hücresinde membran kalınlığı azaldıkça performansının arttığı görüldü. Gaz difüzyon tabakasında az veya aşırı suyun, yakıt hücresi performansı sınırlayıcı etkisi tespit edildi. Grafit gibi elektrik iletkenliği iyi olan ve korozyona dayanıklı bipolar plakanın yakıt hücresi performansını artırdığı tespit edildi. Elektrotların elektrik iletkenliği ve hidrojenin elektrotların yüzeyine tutunma kabiliyeti artıkça performansı olumlu etkilediği görüldü.

References

  • 1. Agyekum, E. B., Ampah, J. D., Wilberforce, T., Afrane, S., & Nutakor, C. (2022). Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output. Membranes, 12(11), 1103. https://doi.org/10.3390/membranes12111103
  • 2. Ali, A., Al-Othman, A., & Tawalbeh, M. (2023). Grand Challenges in Fuel cell Technology towards Resource Recovery. Journal of Resource Recovery, 1(1). http://doi.org/%2010.52547/jrr.2211.1004
  • 3. Alizadeh, E., Rahimi-Esbo, M., Rahgoshay, S. M., Saadat, S. H. M., & Khorshidian, M. (2017). Numerical and experimental investigation of cascade type serpentine flow field of reactant gases for improving performance of PEM fuel cell. International Journal of Hydrogen Energy, 42(21), 14708–14724. https://doi.org/10.1016/j.ijhydene.2017.04.212
  • 4. Awotwe, T. W., Alaswad, A., Mooney, J., & Olabi, A. G. (2015). Hydrogen production for solar energy storage. A proposed design investigation. State of the Art on Energy Developments, 11, 353.
  • 5. Aydin, Murat. (2007). PEM yakıt pilinin iki boyutlu modellemesi. . PhD Thesis. Enerji Enstitüsü. İstanbul.
  • 6. Bampos, G., & Bebelis, S. (2022). Performance of a Pd-Zn Cathode Electrode in a H2 Fueled Single PEM Fuel Cell. Electronics, 11(17), 2776. https://doi.org/10.3390/electronics11172776
  • 7. Barbir, F. (2005). PEM Fuel Cells-Theory and Practice’Elsevier Academic Press. Burlil] 멀 on.
  • 8. Berg, P., Novruzi, A., & Promislow, K. (2006). Analysis of a cathode catalyst layer model for a polymer electrolyte fuel cell. Chemical Engineering Science, 61(13), 4316–4331. https://doi.org/10.1016/j.ces.2006.01.033
  • 9. Bhosale, A. C., Ghosh, P. C., & Assaud, L. (2020). Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. Renewable and Sustainable Energy Reviews, 133, 110286. https://doi.org/10.1016/j.rser.2020.110286
  • 10. Blanco-Cocom, L., Botello-Rionda, S., Ordoñez, L. C., & Valdez, S. I. (2022). A Self-Validating Method via the Unification of Multiple Models for Consistent Parameter Identification in PEM Fuel Cells. Energies, 15(3), 885. https://doi.org/10.3390/en15030885
  • 11. Costamagna, P., & Srinivasan, S. (2001). Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. Journal of Power Sources, 102(1–2), 253–269. https://doi.org/10.1016/S0378-7753(01)00808-4
  • 12. ÇELİK, S. 2018. Akiş Kanali Tasariminin Pem Yakit Pili Performansina Etkilerinin İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 407-416. doi: 10.28948/ngumuh.387275
  • 13. Devanathan, R. (2008). Recent developments in proton exchange membranes for fuel cells. Energy & Environmental Science, 1(1), 101–119. doi: 10.1039/B808149M
  • 14. Diaz, M., Ortiz, A., & Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. Journal of Membrane Science, 469, 379–396. https://doi.org/10.1016/j.memsci.2014.06.033
  • 15. Dihrab, S. S., Sopian, K., Alghoul, M. A., & Sulaiman, M. Y. (2009). Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renewable and Sustainable Energy Reviews, 13(6–7), 1663–1668. https://doi.org/10.1016/j.rser.2008.09.029
  • 16. Erdinc, O., & Uzunoglu, M. (2010). Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches. Renewable and Sustainable Energy Reviews, 14(9), 2874–2884. https://doi.org/10.1016/j.rser.2010.07.060
  • 17. Eroğlu, L. (2023). PEM yakıt hücresi diziliminde grafit akış kanallı gaz difüzyon tabakasının malzeme özelliklerinin incelenmesi (Master's thesis, Aksaray Üniversitesi Fen Bilimleri Enstitüsü).
  • 18. Ferng, Y. M., Su, A., & Hou, J. (2014). Parametric investigation to enhance the performance of a PBI-based high-temperature PEMFC. Energy Conversion and Management, 78, 431–437. https://doi.org/10.1016/j.enconman.2013.10.069
  • 19. Gittleman, C., Jorgensen, S., Waldecker, J., Hirano, S., & Mehall, M. (2010). Automotive fuel cell R&D needs. DOE Fuel Cell Pre-Solicitation Workshop. Department of Energy, Lakewood, Colorado.
  • 20. Gürbüz, Ö. Ü. H. (2021). Bölüm 4. Modern Mühendislik Yöntemleri Ve Uygulamalari, 85.
  • 21. Islam, M. R., Shabani, B., Rosengarten, G., & Andrews, J. (2015). The potential of using nanofluids in PEM fuel cell cooling systems: A review. Renewable and Sustainable Energy Reviews, 48, 523–539. https://doi.org/10.1016/j.rser.2015.04.018
  • 22. İÇİNGÜR, Y., & KİREÇ, L. (2011). Bir polimer elektrolit membran yakıt pilinde kullanılmak üzere gaz akış plakaları tasarımı ve denenmesi. Politeknik Dergisi, 14(1), 31-37. Digital Object Identifier (DOI) : 10.2339/2011.14.1, 31-37
  • 23. Jang, J.-H., Yan, W.-M., & Shih, C.-C. (2006). Effects of the gas diffusion-layer parameters on cell performance of PEM fuel cells. Journal of Power Sources, 161(1), 323–332. https://doi.org/10.1016/j.jpowsour.2006.03.089
  • 24. Jourdani, M., Mounir, H., & Marjani, A. (2017). Three-dimensional PEM fuel cells modeling using COMSOL multiphysics. The International Journal of Multiphysics, 11(4), 427–442.
  • 25. Jung, H.-Y., Huang, S.-Y., Ganesan, P., & Popov, B. N. (2009). Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. Journal of Power Sources, 194(2), 972– 975. https://doi.org/10.1016/j.jpowsour.2009.06.030
  • 26. Kahraman, H., & Orhan, M. F. (2017). Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling. Energy Conversion and Management, 133, 363–384. https://doi.org/10.1016/j.enconman.2016.10.053
  • 27. Kahraman, Hüseyin. (2010). Polimer elektrolitik nembran (pem) yakıt pillerinde kullanılacak metalik çift kutuplu plakanın geliştirilmesi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Sakarya.
  • 28. Kahveci, E. E., & Taymaz, I. (2014). Experimental investigation on water and heat management in a PEM fuel cell using response surface methodology. International Journal of Hydrogen Energy, 39(20), 10655–10663. https://doi.org/10.1016/j.ijhydene.2014.04.195
  • 29. Kaplan, B. Y. (2022). Düzeltme: Polimer Elektrolit Membranli (Pem) Yakit Pilleri İçin İndirgenmiş Grafen Oksit-Karbon Nanofiber Hibrit Destekli Platin Elektrokatalizörlerinin Geliştirilmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 535–536. https://doi.org/10.17482/uumfd.1027983
  • 30. Karaoğlan, M. U., Kuralay, N. S. 2014. “PEM Yakıt Hücresi Modeli,” Mühendis ve Makina, cilt 55, sayı 657, s. 51-58
  • 31. Kim, Chang-Soo, et al. Method for fabricating membrane and electrode assembly for polymer electrolyte membrane fuel cells. U.S. Patent No 6,180,276, 2001.
  • 32. Lee, N. W., Kim, S. Il, Kim, Y. S., Kim, S. H., Ahn, B. K., & Kim, M. S. (2015). An effective discharge method for condensed water inside the GDL using pressure gradient of a PEM fuel cell. International Journal of Heat and Mass Transfer, 85, 703–710. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.028
  • 33. Lim, B. H., Majlan, E. H., Tajuddin, A., Husaini, T., Daud, W. R. W., Radzuan, N. A. M., & Haque, M. A. (2021). Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review. Chinese Journal of Chemical Engineering, 33, 1–16. https://doi.org/10.1016/j.cjche.2020.07.044
  • 34. Lin, M.-T., Wan, C.-H., & Wu, W. (2013a). Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti, Zr) N thin films as Metal bipolar plate for unitized regenerative fuel cell. Thin Solid Films, 544, 162–169. https://doi.org/10.1016/j.tsf.2013.03.130
  • 35. Lin, M.-T., Wan, C.-H., & Wu, W. (2013b). Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti, Zr) N thin films as Metal bipolar plate for unitized regenerative fuel cell. Thin Solid Films, 544, 162–169. https://doi.org/10.1016/j.tsf.2013.03.130
  • 36. Lin, R., Zhu, Y., Ni, M., Jiang, Z., Lou, D., Han, L., & Zhong, D. (2019). Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start. Applied Energy, 241, 420–432. https://doi.org/10.1016/j.apenergy.2019.03.091
  • 37. Lori, O., & Elbaz, L. (2020). Recent advances in synthesis and utilization of ultra‐low loading of precious metal‐based catalysts for fuel cells. ChemCatChem, 12(13), 3434–3446. doi.org/10.1002/cctc.202000001
  • 38. Manso, A. P., Marzo, F. F., Barranco, J., Garikano, X., & Mujika, M. G. (2012). Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. International Journal of Hydrogen Energy, 37(20), 15256–15287. https://doi.org/10.1016/j.ijhydene.2012.07.076
  • 39. Mench, M. (2008). Fuel Cell Engines, John Wiley& Sons. Inc, ISNB, 978.
  • 40. Meral, P. (2019). Pem tipi yakıt hücrelerinde tasarım ve işletme parametrelrinin hücre performansına etkisi (Master's thesis, Sakarya Üniversitesi).
  • 41. Mukherjee, P. P., Mukundan, R., & Borup, R. L. (2010). Modeling of durability effect on the flooding behavior in the PEFC gas diffusion layer. International Conference on Fuel Cell Science, Engineering and Technology, 44045, 683–688. https://doi.org/10.1115/FuelCell2010-33241
  • 42. Müller, M.-V., Giorgio, M., Hausmann, P., Kinlechner, L., Heinzel, A., & Schwämmlein, J. (2022). Investigation of the effect of carbon post-vs pre-coated metallic bipolar plates for PEMFCs–start-up and shut-down. International Journal of Hydrogen Energy, 47(13), 8532–8548. https://doi.org/10.1016/j.ijhydene.2021.12.179
  • 43. Ozdogan, M., Namli, L., & Durmuş, A. (2017). Gaz Difüzyon Tabakası Kalınlığının Pem Yakıt Hücresinin Performansına Etkisinin İncelenmesi.
  • 44. Öztürk, Y. E. (2023). Pem yakıt hücreli araçlarda termal ve su yönetim sistemlerinin teorik ve nümerik incelenmesi (Master's thesis, Bursa Uludağ Üniversitesi)
  • 45. Özveren U., Dinçer S., \"PEM Yakıt Hücrelerinin Yapay Sinir Ağları ile Modellenmesi\", 7. Ulusal Kimya Mühendisliği Kongresi, Eskişehir, Türkiye, 5 - 08 Eylül 2006
  • 46. Parekh, A. (2022). Recent developments of proton exchange membranes for PEMFC: A review. Frontiers in Energy Research, 10, 956132. https://doi.org/10.3389/fenrg.2022.956132
  • 47. Park, S., Lee, J.-W., & Popov, B. N. (2012). A review of gas diffusion layer in PEM fuel cells: Materials and designs. International Journal of Hydrogen Energy, 37(7), 5850–5865. https://doi.org/10.1016/j.ijhydene.2011.12.148
  • 48. Pollet, B. G., Kocha, S. S., & Staffell, I. (2019). Current status of automotive fuel cells for sustainable transport. Current Opinion in Electrochemistry, 16, 90–95. https://doi.org/10.1016/j.coelec.2019.04.021
  • 49. Pourrahmani, H. (2022). Water management of the proton exchange membrane fuel cells: Optimizing the effect of microstructural properties on the gas diffusion layer liquid removal. Energy, 256, 124712. https://doi.org/10.1016/j.energy.2022.124712
  • 50. Rahimi-Esbo, M., Ramiar, A., Ranjbar, A. A., & Alizadeh, E. (2017). Design, manufacturing, assembling and testing of a transparent PEM fuel cell for investigation of water management and contact resistance at dead-end mode. International Journal of Hydrogen Energy, 42(16), 11673–11688. https://doi.org/10.1016/j.ijhydene.2017.02.030
  • 51. Rahimi-Esbo, M., Ranjbar, A. A., Ramiar, A., Alizadeh, E., & Aghaee, M. (2016). Improving PEM fuel cell performance and effective water removal by using a novel gas flow field. International Journal of Hydrogen Energy, 41(4), 3023–3037. https://doi.org/10.1016/j.ijhydene.2015.11.001
  • 52. Ralph, T. R., Hards, G. A., Keating, J. E., Campbell, S. A., Wilkinson, D. P., Davis, M., St‐Pierre, J., & Johnson, M. C. (1997). Low cost electrodes for proton exchange membrane fuel cells: Performance in single cells and Ballard stacks. Journal of the Electrochemical Society, 144(11), 3845.
  • 53. Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable and Sustainable Energy Reviews, 92, 394–404. https://doi.org/10.1016/j.rser.2018.04.034
  • 54. Scherer, G. G. (2004). Fuel Cells in Switzerland–A Brief Retrospective View. Chimia, 58(12), 824- 825. ISSN 0009–4293.
  • 55. Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–189. https://doi.org/10.1016/j.enpol.2008.08.016
  • 56. Shahgaldi, S., Alaefour, I., & Li, X. (2018). Impact of manufacturing processes on proton exchange membrane fuel cell performance. Applied Energy, 225, 1022–1032. https://doi.org/10.1016/j.apenergy.2018.05.086
  • 57. Sorensen, B. (2017). Renewable energy: physics, engineering, environmental impacts, economics and planning. Academic Press.
  • 58. Şahin, A. (2013). Yakıt Hücrelerinden Kullanılmak Üzere Nanokompozit Membran Sentezi ve Karakterizasyonu. Yayımlanmamış Doktora Tezi), Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara
  • 59. Şenpinar, A., & Gençoğlu, M. T. (2006). Yenilenebilir Enerji Kaynaklarinin Çevresel Etkileri Açisindan Karşilaştirilmasi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 4(2), 49–54.
  • 60. Tzelepis, S., Kavadias, K. A., Marnellos, G. E., & Xydis, G. (2021). A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level. Renewable and Sustainable Energy Reviews, 151, 111543. https://doi.org/10.1016/j.rser.2021.111543
  • 61. Wang, Y., Leung, D. Y. C., Xuan, J., & Wang, H. (2016). A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. Renewable and Sustainable Energy Reviews, 65, 961–977. https://doi.org/10.1016/j.rser.2016.07.046
  • 62. Wang, Y., Wang, C.-Y., & Chen, K. S. (2007). Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica Acta, 52(12), 3965–3975. https://doi.org/10.1016/j.electacta.2006.11.01
  • 63. Whiston, M. M., Azevedo, I. L., Litster, S., Whitefoot, K. S., Samaras, C., & Whitacre, J. F. (2019). Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. Proceedings of the National Academy of Sciences, 116(11), 4899–4904. https://doi.org/10.1073/pnas.1804221116
  • 64. Wilberforce, T., Ijaodola, O., Ogungbemi, E., Khatib, F. N., Leslie, T., El-Hassan, Z., Thomposon, J., & Olabi, A. G. (2019). Technical evaluation of proton exchange membrane (PEM) fuel cell performance–A review of the effects of bipolar plates coating. Renewable and Sustainable Energy Reviews, 113, 109286. https://doi.org/10.1016/j.rser.2019.109286
  • 65. Xia, L., Zhang, C., Hu, M., Jiang, S., Chin, C. S., Gao, Z., & Liao, Q. (2018). Investigation of parameter effects on the performance of high-temperature PEM fuel cell. International Journal of Hydrogen Energy, 43(52), 23441–23449. https://doi.org/10.1016/j.ijhydene.2018.10.21
  • 66. Yilmaztürk Güney, S. (2019). Pem Yakit Hücreleri İçin Membran-Elektrot-Yiğinlarinin Hazirlanmasi Ve Karakterizasyonu. Doktora Tezi, Lisansüstü Eğitim Enstitüsü, İstanbul.
  • 67. Zhang, H., Hou, M., Lin, G., Han, Z., Fu, Y., Sun, S., Shao, Z., & Yi, B. (2011). Performance of Ti–Ag-deposited titanium bipolar plates in simulated unitized regenerative fuel cell (URFC) environment. International Journal of Hydrogen Energy, 36(9), 5695–5701. https://doi.org/10.1016/j.ijhydene.2011.01.154
  • 68. Zhang, L., Chae, S.-R., Hendren, Z., Park, J.-S., & Wiesner, M. R. (2012). Recent advances in proton exchange membranes for fuel cell applications. Chemical Engineering Journal, 204, 87–97. https://doi.org/10.1016/j.cej.2012.07.103
  • 69. Zhang, M., Hu, L., Lin, G., & Shao, Z. (2012). Honeycomb-like nanocomposite Ti-Ag-N films prepared by pulsed bias arc ion plating on titanium as bipolar plates for unitized regenerative fuel cells. Journal of Power Sources, 198, 196–202. https://doi.org/10.1016/j.jpowsour.2011.10.022
  • 70. Zhang, Q., Lin, R., Técher, L., & Cui, X. (2016). Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution. Energy, 115, 550–560. https://doi.org/10.1016/j.energy.2016.08.086
  • 71. Zhang, R., Lan, S., Xu, Z., Qiu, D., & Peng, L. (2021). Investigation and optimization of the ultra-thin metallic bipolar plate multi-stage forming for proton exchange membrane fuel cell. Journal of Power Sources, 484, 229298. https://doi.org/10.1016/j.jpowsour.2020.229298
  • 72. Zhang, S., Yuan, X., Wang, H., Mérida, W., Zhu, H., Shen, J., Wu, S., & Zhang, J. (2009). A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy, 34(1), 388–404. https://doi.org/10.1016/j.ijhydene.2008.10.012

Evaluation of the Effects of Physical Parameters on the Performance of Hydrogen PEM Fuel Cells

Year 2024, Volume: 29 Issue: 1, 291 - 310, 22.04.2024
https://doi.org/10.17482/uumfd.1292213

Abstract

Fossil fuels have limited reserves and cause harmful pollution. Hydrogen is the most promising sustainable alternative fuel and energy source. Direct hydrogen PEM fuel cells, which convert chemical energy to electrical energy, offer potential as an energy source. This study examined the components and conditions that affect the performance of PEM fuel cells. The effects of the membrane, gas diffusion layer, bipolar plate, and anode-cathode electrodes were investigated. It was found that decreasing the membrane thickness increased performance. The impact of excessive or insufficient water in the gas diffusion layer was found to limit performance. The use of bipolar plates with good electrical conductivity and corrosion resistance, such as graphite, improved performance. Increasing the electrical conductivity of the electrodes and their ability to adhere to hydrogen on their surface positively affected performance.

References

  • 1. Agyekum, E. B., Ampah, J. D., Wilberforce, T., Afrane, S., & Nutakor, C. (2022). Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output. Membranes, 12(11), 1103. https://doi.org/10.3390/membranes12111103
  • 2. Ali, A., Al-Othman, A., & Tawalbeh, M. (2023). Grand Challenges in Fuel cell Technology towards Resource Recovery. Journal of Resource Recovery, 1(1). http://doi.org/%2010.52547/jrr.2211.1004
  • 3. Alizadeh, E., Rahimi-Esbo, M., Rahgoshay, S. M., Saadat, S. H. M., & Khorshidian, M. (2017). Numerical and experimental investigation of cascade type serpentine flow field of reactant gases for improving performance of PEM fuel cell. International Journal of Hydrogen Energy, 42(21), 14708–14724. https://doi.org/10.1016/j.ijhydene.2017.04.212
  • 4. Awotwe, T. W., Alaswad, A., Mooney, J., & Olabi, A. G. (2015). Hydrogen production for solar energy storage. A proposed design investigation. State of the Art on Energy Developments, 11, 353.
  • 5. Aydin, Murat. (2007). PEM yakıt pilinin iki boyutlu modellemesi. . PhD Thesis. Enerji Enstitüsü. İstanbul.
  • 6. Bampos, G., & Bebelis, S. (2022). Performance of a Pd-Zn Cathode Electrode in a H2 Fueled Single PEM Fuel Cell. Electronics, 11(17), 2776. https://doi.org/10.3390/electronics11172776
  • 7. Barbir, F. (2005). PEM Fuel Cells-Theory and Practice’Elsevier Academic Press. Burlil] 멀 on.
  • 8. Berg, P., Novruzi, A., & Promislow, K. (2006). Analysis of a cathode catalyst layer model for a polymer electrolyte fuel cell. Chemical Engineering Science, 61(13), 4316–4331. https://doi.org/10.1016/j.ces.2006.01.033
  • 9. Bhosale, A. C., Ghosh, P. C., & Assaud, L. (2020). Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. Renewable and Sustainable Energy Reviews, 133, 110286. https://doi.org/10.1016/j.rser.2020.110286
  • 10. Blanco-Cocom, L., Botello-Rionda, S., Ordoñez, L. C., & Valdez, S. I. (2022). A Self-Validating Method via the Unification of Multiple Models for Consistent Parameter Identification in PEM Fuel Cells. Energies, 15(3), 885. https://doi.org/10.3390/en15030885
  • 11. Costamagna, P., & Srinivasan, S. (2001). Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. Journal of Power Sources, 102(1–2), 253–269. https://doi.org/10.1016/S0378-7753(01)00808-4
  • 12. ÇELİK, S. 2018. Akiş Kanali Tasariminin Pem Yakit Pili Performansina Etkilerinin İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 407-416. doi: 10.28948/ngumuh.387275
  • 13. Devanathan, R. (2008). Recent developments in proton exchange membranes for fuel cells. Energy & Environmental Science, 1(1), 101–119. doi: 10.1039/B808149M
  • 14. Diaz, M., Ortiz, A., & Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. Journal of Membrane Science, 469, 379–396. https://doi.org/10.1016/j.memsci.2014.06.033
  • 15. Dihrab, S. S., Sopian, K., Alghoul, M. A., & Sulaiman, M. Y. (2009). Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renewable and Sustainable Energy Reviews, 13(6–7), 1663–1668. https://doi.org/10.1016/j.rser.2008.09.029
  • 16. Erdinc, O., & Uzunoglu, M. (2010). Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches. Renewable and Sustainable Energy Reviews, 14(9), 2874–2884. https://doi.org/10.1016/j.rser.2010.07.060
  • 17. Eroğlu, L. (2023). PEM yakıt hücresi diziliminde grafit akış kanallı gaz difüzyon tabakasının malzeme özelliklerinin incelenmesi (Master's thesis, Aksaray Üniversitesi Fen Bilimleri Enstitüsü).
  • 18. Ferng, Y. M., Su, A., & Hou, J. (2014). Parametric investigation to enhance the performance of a PBI-based high-temperature PEMFC. Energy Conversion and Management, 78, 431–437. https://doi.org/10.1016/j.enconman.2013.10.069
  • 19. Gittleman, C., Jorgensen, S., Waldecker, J., Hirano, S., & Mehall, M. (2010). Automotive fuel cell R&D needs. DOE Fuel Cell Pre-Solicitation Workshop. Department of Energy, Lakewood, Colorado.
  • 20. Gürbüz, Ö. Ü. H. (2021). Bölüm 4. Modern Mühendislik Yöntemleri Ve Uygulamalari, 85.
  • 21. Islam, M. R., Shabani, B., Rosengarten, G., & Andrews, J. (2015). The potential of using nanofluids in PEM fuel cell cooling systems: A review. Renewable and Sustainable Energy Reviews, 48, 523–539. https://doi.org/10.1016/j.rser.2015.04.018
  • 22. İÇİNGÜR, Y., & KİREÇ, L. (2011). Bir polimer elektrolit membran yakıt pilinde kullanılmak üzere gaz akış plakaları tasarımı ve denenmesi. Politeknik Dergisi, 14(1), 31-37. Digital Object Identifier (DOI) : 10.2339/2011.14.1, 31-37
  • 23. Jang, J.-H., Yan, W.-M., & Shih, C.-C. (2006). Effects of the gas diffusion-layer parameters on cell performance of PEM fuel cells. Journal of Power Sources, 161(1), 323–332. https://doi.org/10.1016/j.jpowsour.2006.03.089
  • 24. Jourdani, M., Mounir, H., & Marjani, A. (2017). Three-dimensional PEM fuel cells modeling using COMSOL multiphysics. The International Journal of Multiphysics, 11(4), 427–442.
  • 25. Jung, H.-Y., Huang, S.-Y., Ganesan, P., & Popov, B. N. (2009). Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. Journal of Power Sources, 194(2), 972– 975. https://doi.org/10.1016/j.jpowsour.2009.06.030
  • 26. Kahraman, H., & Orhan, M. F. (2017). Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling. Energy Conversion and Management, 133, 363–384. https://doi.org/10.1016/j.enconman.2016.10.053
  • 27. Kahraman, Hüseyin. (2010). Polimer elektrolitik nembran (pem) yakıt pillerinde kullanılacak metalik çift kutuplu plakanın geliştirilmesi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Sakarya.
  • 28. Kahveci, E. E., & Taymaz, I. (2014). Experimental investigation on water and heat management in a PEM fuel cell using response surface methodology. International Journal of Hydrogen Energy, 39(20), 10655–10663. https://doi.org/10.1016/j.ijhydene.2014.04.195
  • 29. Kaplan, B. Y. (2022). Düzeltme: Polimer Elektrolit Membranli (Pem) Yakit Pilleri İçin İndirgenmiş Grafen Oksit-Karbon Nanofiber Hibrit Destekli Platin Elektrokatalizörlerinin Geliştirilmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 535–536. https://doi.org/10.17482/uumfd.1027983
  • 30. Karaoğlan, M. U., Kuralay, N. S. 2014. “PEM Yakıt Hücresi Modeli,” Mühendis ve Makina, cilt 55, sayı 657, s. 51-58
  • 31. Kim, Chang-Soo, et al. Method for fabricating membrane and electrode assembly for polymer electrolyte membrane fuel cells. U.S. Patent No 6,180,276, 2001.
  • 32. Lee, N. W., Kim, S. Il, Kim, Y. S., Kim, S. H., Ahn, B. K., & Kim, M. S. (2015). An effective discharge method for condensed water inside the GDL using pressure gradient of a PEM fuel cell. International Journal of Heat and Mass Transfer, 85, 703–710. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.028
  • 33. Lim, B. H., Majlan, E. H., Tajuddin, A., Husaini, T., Daud, W. R. W., Radzuan, N. A. M., & Haque, M. A. (2021). Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review. Chinese Journal of Chemical Engineering, 33, 1–16. https://doi.org/10.1016/j.cjche.2020.07.044
  • 34. Lin, M.-T., Wan, C.-H., & Wu, W. (2013a). Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti, Zr) N thin films as Metal bipolar plate for unitized regenerative fuel cell. Thin Solid Films, 544, 162–169. https://doi.org/10.1016/j.tsf.2013.03.130
  • 35. Lin, M.-T., Wan, C.-H., & Wu, W. (2013b). Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti, Zr) N thin films as Metal bipolar plate for unitized regenerative fuel cell. Thin Solid Films, 544, 162–169. https://doi.org/10.1016/j.tsf.2013.03.130
  • 36. Lin, R., Zhu, Y., Ni, M., Jiang, Z., Lou, D., Han, L., & Zhong, D. (2019). Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start. Applied Energy, 241, 420–432. https://doi.org/10.1016/j.apenergy.2019.03.091
  • 37. Lori, O., & Elbaz, L. (2020). Recent advances in synthesis and utilization of ultra‐low loading of precious metal‐based catalysts for fuel cells. ChemCatChem, 12(13), 3434–3446. doi.org/10.1002/cctc.202000001
  • 38. Manso, A. P., Marzo, F. F., Barranco, J., Garikano, X., & Mujika, M. G. (2012). Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. International Journal of Hydrogen Energy, 37(20), 15256–15287. https://doi.org/10.1016/j.ijhydene.2012.07.076
  • 39. Mench, M. (2008). Fuel Cell Engines, John Wiley& Sons. Inc, ISNB, 978.
  • 40. Meral, P. (2019). Pem tipi yakıt hücrelerinde tasarım ve işletme parametrelrinin hücre performansına etkisi (Master's thesis, Sakarya Üniversitesi).
  • 41. Mukherjee, P. P., Mukundan, R., & Borup, R. L. (2010). Modeling of durability effect on the flooding behavior in the PEFC gas diffusion layer. International Conference on Fuel Cell Science, Engineering and Technology, 44045, 683–688. https://doi.org/10.1115/FuelCell2010-33241
  • 42. Müller, M.-V., Giorgio, M., Hausmann, P., Kinlechner, L., Heinzel, A., & Schwämmlein, J. (2022). Investigation of the effect of carbon post-vs pre-coated metallic bipolar plates for PEMFCs–start-up and shut-down. International Journal of Hydrogen Energy, 47(13), 8532–8548. https://doi.org/10.1016/j.ijhydene.2021.12.179
  • 43. Ozdogan, M., Namli, L., & Durmuş, A. (2017). Gaz Difüzyon Tabakası Kalınlığının Pem Yakıt Hücresinin Performansına Etkisinin İncelenmesi.
  • 44. Öztürk, Y. E. (2023). Pem yakıt hücreli araçlarda termal ve su yönetim sistemlerinin teorik ve nümerik incelenmesi (Master's thesis, Bursa Uludağ Üniversitesi)
  • 45. Özveren U., Dinçer S., \"PEM Yakıt Hücrelerinin Yapay Sinir Ağları ile Modellenmesi\", 7. Ulusal Kimya Mühendisliği Kongresi, Eskişehir, Türkiye, 5 - 08 Eylül 2006
  • 46. Parekh, A. (2022). Recent developments of proton exchange membranes for PEMFC: A review. Frontiers in Energy Research, 10, 956132. https://doi.org/10.3389/fenrg.2022.956132
  • 47. Park, S., Lee, J.-W., & Popov, B. N. (2012). A review of gas diffusion layer in PEM fuel cells: Materials and designs. International Journal of Hydrogen Energy, 37(7), 5850–5865. https://doi.org/10.1016/j.ijhydene.2011.12.148
  • 48. Pollet, B. G., Kocha, S. S., & Staffell, I. (2019). Current status of automotive fuel cells for sustainable transport. Current Opinion in Electrochemistry, 16, 90–95. https://doi.org/10.1016/j.coelec.2019.04.021
  • 49. Pourrahmani, H. (2022). Water management of the proton exchange membrane fuel cells: Optimizing the effect of microstructural properties on the gas diffusion layer liquid removal. Energy, 256, 124712. https://doi.org/10.1016/j.energy.2022.124712
  • 50. Rahimi-Esbo, M., Ramiar, A., Ranjbar, A. A., & Alizadeh, E. (2017). Design, manufacturing, assembling and testing of a transparent PEM fuel cell for investigation of water management and contact resistance at dead-end mode. International Journal of Hydrogen Energy, 42(16), 11673–11688. https://doi.org/10.1016/j.ijhydene.2017.02.030
  • 51. Rahimi-Esbo, M., Ranjbar, A. A., Ramiar, A., Alizadeh, E., & Aghaee, M. (2016). Improving PEM fuel cell performance and effective water removal by using a novel gas flow field. International Journal of Hydrogen Energy, 41(4), 3023–3037. https://doi.org/10.1016/j.ijhydene.2015.11.001
  • 52. Ralph, T. R., Hards, G. A., Keating, J. E., Campbell, S. A., Wilkinson, D. P., Davis, M., St‐Pierre, J., & Johnson, M. C. (1997). Low cost electrodes for proton exchange membrane fuel cells: Performance in single cells and Ballard stacks. Journal of the Electrochemical Society, 144(11), 3845.
  • 53. Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable and Sustainable Energy Reviews, 92, 394–404. https://doi.org/10.1016/j.rser.2018.04.034
  • 54. Scherer, G. G. (2004). Fuel Cells in Switzerland–A Brief Retrospective View. Chimia, 58(12), 824- 825. ISSN 0009–4293.
  • 55. Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–189. https://doi.org/10.1016/j.enpol.2008.08.016
  • 56. Shahgaldi, S., Alaefour, I., & Li, X. (2018). Impact of manufacturing processes on proton exchange membrane fuel cell performance. Applied Energy, 225, 1022–1032. https://doi.org/10.1016/j.apenergy.2018.05.086
  • 57. Sorensen, B. (2017). Renewable energy: physics, engineering, environmental impacts, economics and planning. Academic Press.
  • 58. Şahin, A. (2013). Yakıt Hücrelerinden Kullanılmak Üzere Nanokompozit Membran Sentezi ve Karakterizasyonu. Yayımlanmamış Doktora Tezi), Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara
  • 59. Şenpinar, A., & Gençoğlu, M. T. (2006). Yenilenebilir Enerji Kaynaklarinin Çevresel Etkileri Açisindan Karşilaştirilmasi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 4(2), 49–54.
  • 60. Tzelepis, S., Kavadias, K. A., Marnellos, G. E., & Xydis, G. (2021). A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level. Renewable and Sustainable Energy Reviews, 151, 111543. https://doi.org/10.1016/j.rser.2021.111543
  • 61. Wang, Y., Leung, D. Y. C., Xuan, J., & Wang, H. (2016). A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. Renewable and Sustainable Energy Reviews, 65, 961–977. https://doi.org/10.1016/j.rser.2016.07.046
  • 62. Wang, Y., Wang, C.-Y., & Chen, K. S. (2007). Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica Acta, 52(12), 3965–3975. https://doi.org/10.1016/j.electacta.2006.11.01
  • 63. Whiston, M. M., Azevedo, I. L., Litster, S., Whitefoot, K. S., Samaras, C., & Whitacre, J. F. (2019). Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. Proceedings of the National Academy of Sciences, 116(11), 4899–4904. https://doi.org/10.1073/pnas.1804221116
  • 64. Wilberforce, T., Ijaodola, O., Ogungbemi, E., Khatib, F. N., Leslie, T., El-Hassan, Z., Thomposon, J., & Olabi, A. G. (2019). Technical evaluation of proton exchange membrane (PEM) fuel cell performance–A review of the effects of bipolar plates coating. Renewable and Sustainable Energy Reviews, 113, 109286. https://doi.org/10.1016/j.rser.2019.109286
  • 65. Xia, L., Zhang, C., Hu, M., Jiang, S., Chin, C. S., Gao, Z., & Liao, Q. (2018). Investigation of parameter effects on the performance of high-temperature PEM fuel cell. International Journal of Hydrogen Energy, 43(52), 23441–23449. https://doi.org/10.1016/j.ijhydene.2018.10.21
  • 66. Yilmaztürk Güney, S. (2019). Pem Yakit Hücreleri İçin Membran-Elektrot-Yiğinlarinin Hazirlanmasi Ve Karakterizasyonu. Doktora Tezi, Lisansüstü Eğitim Enstitüsü, İstanbul.
  • 67. Zhang, H., Hou, M., Lin, G., Han, Z., Fu, Y., Sun, S., Shao, Z., & Yi, B. (2011). Performance of Ti–Ag-deposited titanium bipolar plates in simulated unitized regenerative fuel cell (URFC) environment. International Journal of Hydrogen Energy, 36(9), 5695–5701. https://doi.org/10.1016/j.ijhydene.2011.01.154
  • 68. Zhang, L., Chae, S.-R., Hendren, Z., Park, J.-S., & Wiesner, M. R. (2012). Recent advances in proton exchange membranes for fuel cell applications. Chemical Engineering Journal, 204, 87–97. https://doi.org/10.1016/j.cej.2012.07.103
  • 69. Zhang, M., Hu, L., Lin, G., & Shao, Z. (2012). Honeycomb-like nanocomposite Ti-Ag-N films prepared by pulsed bias arc ion plating on titanium as bipolar plates for unitized regenerative fuel cells. Journal of Power Sources, 198, 196–202. https://doi.org/10.1016/j.jpowsour.2011.10.022
  • 70. Zhang, Q., Lin, R., Técher, L., & Cui, X. (2016). Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution. Energy, 115, 550–560. https://doi.org/10.1016/j.energy.2016.08.086
  • 71. Zhang, R., Lan, S., Xu, Z., Qiu, D., & Peng, L. (2021). Investigation and optimization of the ultra-thin metallic bipolar plate multi-stage forming for proton exchange membrane fuel cell. Journal of Power Sources, 484, 229298. https://doi.org/10.1016/j.jpowsour.2020.229298
  • 72. Zhang, S., Yuan, X., Wang, H., Mérida, W., Zhu, H., Shen, J., Wu, S., & Zhang, J. (2009). A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy, 34(1), 388–404. https://doi.org/10.1016/j.ijhydene.2008.10.012
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Energy Systems Engineering (Other)
Journal Section Survey Articles
Authors

Selman İlbeyoğlu 0009-0006-5374-7548

Hüseyin Gürbüz 0000-0002-3561-7786

Early Pub Date March 28, 2024
Publication Date April 22, 2024
Submission Date May 4, 2023
Acceptance Date January 2, 2024
Published in Issue Year 2024 Volume: 29 Issue: 1

Cite

APA İlbeyoğlu, S., & Gürbüz, H. (2024). FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(1), 291-310. https://doi.org/10.17482/uumfd.1292213
AMA İlbeyoğlu S, Gürbüz H. FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME. UUJFE. April 2024;29(1):291-310. doi:10.17482/uumfd.1292213
Chicago İlbeyoğlu, Selman, and Hüseyin Gürbüz. “FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, no. 1 (April 2024): 291-310. https://doi.org/10.17482/uumfd.1292213.
EndNote İlbeyoğlu S, Gürbüz H (April 1, 2024) FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 1 291–310.
IEEE S. İlbeyoğlu and H. Gürbüz, “FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME”, UUJFE, vol. 29, no. 1, pp. 291–310, 2024, doi: 10.17482/uumfd.1292213.
ISNAD İlbeyoğlu, Selman - Gürbüz, Hüseyin. “FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/1 (April 2024), 291-310. https://doi.org/10.17482/uumfd.1292213.
JAMA İlbeyoğlu S, Gürbüz H. FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME. UUJFE. 2024;29:291–310.
MLA İlbeyoğlu, Selman and Hüseyin Gürbüz. “FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 29, no. 1, 2024, pp. 291-10, doi:10.17482/uumfd.1292213.
Vancouver İlbeyoğlu S, Gürbüz H. FİZİKSEL PARAMETRELERİN HİDROJEN PEM YAKIT HÜCRESİ PERFORMANSINA ETKİLERİ ÜZERİNE DEĞERLENDİRME. UUJFE. 2024;29(1):291-310.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.