Research Article
BibTex RIS Cite

Numerical Investigation of Stress Distribution in Swage Autofrettage Process for Heavy Weapon Barrel

Year 2023, Volume: 15 Issue: 3, 194 - 208, 31.12.2023
https://doi.org/10.29137/umagd.1364476

Abstract

Autofrettage process is used to forms residual stresses increasing the pressure carrying capacity and fatigue life of thick-walled cylinders. These residual stresses counteract some of the stresses during service pressure application and increase the pressure carrying capacity of pressure vessels. Although there are many techniques in practice, swage and hydraulic autofrettage processes mostly have been used in heavy gun barrel production process. In this study, the stresses developed at the end of the swage autofretage process on a heavy gun barrel are numerically calculated by using a FEM program. In FEM analysis, a two-dimensional (2D) axisymmetric model has been used. The FEM model is validated with data from the literature. The Von Mises stress under working pressure for non-autofrettaged barrel is calculated as 1350.3 MPa. The Von Mises equivalent stress for the autofrettaged barrel is 1122.3 MPa at 63% barrel thickness. It is seen that this stress value is below the barrel yield strength of 1195 MPa. As a result, there is 16.88% reduction of Von Mises for autofrettaged barrel under the working pressure. Thus, the application of autofrettage process on heavy weapon barrels and the calculation of the resulting stresses are critical for barrel life and pressure carrying capacity.

References

  • Alegre, J.M., Bravo, P., & Preciado, M. (2006). Design of an autofrettaged high-pressure vessel, considering the Bauschinger effect. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 220(1), 7-16. doi: 10.1243/095440805X73645
  • Ali, A.R.M, Ghosh, N.C. & Alam, T-E. (2010). Optimum design of pressure vessel subjected to autofrettage process. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 4 (10), 1040-1045.
  • Alinezhad, P., & Bihamta, R. (2012). A study on the tool geometry effects in the swage autofrettage. Advanced Materials Research Vols., 433-440, 2206-221. doi: 10.4028/www.scientific.net/AMR.433-440.2206
  • Bihamta, R., Movahhedy, M.R. & Mashreghi, A.R. (2007). A numerical study of swage autofrettage of thick-walled tubes. Materials and Design, 28 (3), 804-815. doi: 10.1016/j.matdes.2005.11.012
  • Chica, C.J, Marìn, M.M., Rubio, E.M., Teti, R., & Segreto, T. (2019). Parametric analysis of the mandrel geometrical data in a cold expansion process of small holes drilled in thick plates. Materials, 12 (24):4105.
  • Çandar, H., & Filiz, H., (2017). Optimum autofrettage pressure for a high pressure cylinder of a waterjet intensifier pump. Universal Journal of Engineering Science, 5(3), 44-55. doi: 10.13189/ujes.2017.050302
  • Davidson, T.E., Barton, C.S., Reiner, A.N., & Kendall, D.P. (1962). New approach to the autofrettage of high-strength cylinders, Experiment Mech., 2, 33–40
  • Gibson, M.C (2008). Determination of residual stress distributions in autofrettaged thick-walled cylinders. PhD Thesis, Department of Engineering Systems and Management, Cranfield University, Defence College of Management and Technology, Cranfield.
  • Gibson, M.C., Hameed, A., & Hetherington, J.G. (2012). Investigation of driving force variation during swage autofrettage, using finite element analysis. Journal of Pressure Vessel Technology, 134:051203. doi: 10.1115/1.4006922
  • Gibson, M.C., Hameed, A., & Hetherington, J.G. (2014). Investigation of residual stress development during swage autofrettage, using finite element analysis. Journal of Pressure Vessel Technology, 136:021206-1. doi: 10.1115/1.4025968
  • Hu, Z., & Penumarthy, C. (2014). Computer modeling and optimization of swage autofrettage process of a thick-walled cylinder incorporating Bauschinger effect. American Transactions on Engineering & Applied Sciences, 3(1), 31-63.
  • Hu, Z. (2019). Design of two-pass swage autofrettage processes of thick-walled cylinders by computer modeling Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(4), 1312-1333. 10.1177/0954406218770221
  • Hu, Z., Gibson, M.C., & Parker, A.P. (2021). Swage autofrettage FEA incorporating a user function to model actual Bauschinger effect. International Journal of Pressure Vessels and Piping, 191: 104372. doi: 10.1016/j.ijpvp.2021.104372
  • Iremonger, M.J., & Kalsi, G.S. (2003). A numerical study of swage autofrettage. Journal of Pressure Vessel Technology, 125 (3), 347-351. doi: 10.1115/1.1593073.
  • Jain, A., Khanwelkar, S., Saurav, K., Landge, A., & Yadav, U. (2016). Design and performance of hydraulic autofrettage using universal testing machine. Int. J. of Research in Mechanical Eng. Tech., 6(2), 154-157.
  • Kamal, S.M., & Dixit, U.S. (2015). Feasibility study of thermal autofrettage of thick-walled cylinders. Journal of Pressure Vessel Technology, 137:061207. doi: 10.1115/1.4030025
  • Kruczynski, D.L., & Hewitt, J.R. (1991). Temperature compensation techniques and technologies-an overview, U.S. Army Laboratory Command, Ballistic Research Laboratory, Report No: BRL-TR-3283
  • Lawton, B. (2001). Temperature and heat transfer at the commencement of rifling a 155 mm gun. 19th International Symposium of Ballistics, Switzerland, 307-314.
  • Majzoobi, G.H., & Ghomi, A. (2006). Optimization of autofrettage in thick-walled cylinders. Journal of Achievements in Materials and Manufacturing Engineering, 16(1-2) 124-131.
  • Majzoobi, G.H., & Ghomi, A. (2006). Optimization of compound pressure cylinders. Journal of Achievements in Materials and Manufacturing Engineering, 15(1-2) 135-145.
  • Makine ve Kimya Endüstrisi A.Ş (2021). https://mke.gov.tr/tr/urunlerimiz/sayfalar/17-09-2021-urun-kataloglari, İndirilme Tarihi: 01.10.2023.
  • Malik, M.A, Knushnood, S., Khan, M., & Rashid, B. (2007). Analysis of autofrettaged metal tubes. 15th International Conference on Nuclear Engineering, Nagoya, Japan, 22-26 April.
  • O’hara, G.P. (1992). Analysis of swage the swage autofrettage process, U.S. Army Armament Research, Development and Engineering Center, Benet Laboratories, Report No: ARCCB-TR-92016
  • Partovi, A. (2012). Analysis of autofrettaged high pressure components. Master’s Degree Thesis, Blekinge Institute of Technology, Department of Mechanical Engineering, Department of Mechanical Engineering, Sweden.
  • Putti, A., Chopade, M.R., & Chaudhari, H.E. (2016) A review on gun barrel erosion. International Journal of Current Engineering and Technology, 4, 231-235.
  • Shim, W.S., Kim, J.H., Lee, Y.S., Cha, K.U. & Hong, S.K. (2010). A study on hydraulic autofrettage of thick-walled cylinders incorporating Bauschinger effect. Experimental Mechanics, 50, 621-626. doi 10.1007/s11340-009-9255-4
  • Trieb, F., Schedelmaier, J., & Poelzl, M. (2015). Autofrettage-Basic information and practical application on components for waterjet cutting. WJTA American Waterjet Conference, Houston, Texas, 21-23 August.

Ağır Silah Namlusunun Mekanik Otofretaj İşleminde Gerilme Dağılımının Sayısal Olarak İncelenmesi

Year 2023, Volume: 15 Issue: 3, 194 - 208, 31.12.2023
https://doi.org/10.29137/umagd.1364476

Abstract

Otofretaj, kalın cidarlı silindirlerin basınç taşıma kapasitesini ve yorulma ömrünü artırmak için silindir et kalınlığında artık kalıcı gerilme oluşturma işlemidir. Bu artık gerilme, çalışma basıncının oluşturduğu gerilmenin bir kısmını nötr ederek, basınçlı kapların basınç taşıma kapasitesini artırır. Pratikte birçok otofretaj yöntemi olmakla beraber, özellikle ağır silah namlularında uygulanan iki otofretaj yöntemi mekanik ve hidrolik otofretaj işlemleridir. Bu çalışmada, ağır silah namlusuna mekanik otofretaj uygulanmasında oluşan gerilmeler sonlu elemanlar metodu (SEM) ile sayısal olarak hesaplanmıştır. SEM modelinde iki boyutlu (2B) aksisimetrik geometri kullanılmıştır. SEM modeli literatürdeki veriler ile doğrulanmıştır. Otofretajsız namluda 670 MPa çalışma basıncı altında namlu iç çapında Von Mises eşdeğer gerilmenin değeri 1350,3 MPa olarak hesaplanmıştır. Otofretaj uygulanmış namluda ise Von Mises eşdeğer gerilmesinin maksimum değeri, namlunun et kalınlığının %63’ne karşılık gelen bölgede 1122,3 MPa olarak hesaplanmıştır. Bu gerilme değerinin namlu akma mukavemeti olan 1195 MPa’ın altında olduğu görülmektedir. Sonuç olarak çalışma basıncı altında otofretaj uygulanmış namluda Von Mises eşdeğer gerilmesi, otofretaj uygulanmayan namluya göre %16,88 oranında azalmıştır. Bu sebeplerden dolayı, ağır silah namlularında otofretaj işleminin uygulanması ve oluşan gerilmelerin hesaplanması namlu ömrü ve basınç taşıma kapasitesi açısından kritik öneme sahiptir.

References

  • Alegre, J.M., Bravo, P., & Preciado, M. (2006). Design of an autofrettaged high-pressure vessel, considering the Bauschinger effect. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 220(1), 7-16. doi: 10.1243/095440805X73645
  • Ali, A.R.M, Ghosh, N.C. & Alam, T-E. (2010). Optimum design of pressure vessel subjected to autofrettage process. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 4 (10), 1040-1045.
  • Alinezhad, P., & Bihamta, R. (2012). A study on the tool geometry effects in the swage autofrettage. Advanced Materials Research Vols., 433-440, 2206-221. doi: 10.4028/www.scientific.net/AMR.433-440.2206
  • Bihamta, R., Movahhedy, M.R. & Mashreghi, A.R. (2007). A numerical study of swage autofrettage of thick-walled tubes. Materials and Design, 28 (3), 804-815. doi: 10.1016/j.matdes.2005.11.012
  • Chica, C.J, Marìn, M.M., Rubio, E.M., Teti, R., & Segreto, T. (2019). Parametric analysis of the mandrel geometrical data in a cold expansion process of small holes drilled in thick plates. Materials, 12 (24):4105.
  • Çandar, H., & Filiz, H., (2017). Optimum autofrettage pressure for a high pressure cylinder of a waterjet intensifier pump. Universal Journal of Engineering Science, 5(3), 44-55. doi: 10.13189/ujes.2017.050302
  • Davidson, T.E., Barton, C.S., Reiner, A.N., & Kendall, D.P. (1962). New approach to the autofrettage of high-strength cylinders, Experiment Mech., 2, 33–40
  • Gibson, M.C (2008). Determination of residual stress distributions in autofrettaged thick-walled cylinders. PhD Thesis, Department of Engineering Systems and Management, Cranfield University, Defence College of Management and Technology, Cranfield.
  • Gibson, M.C., Hameed, A., & Hetherington, J.G. (2012). Investigation of driving force variation during swage autofrettage, using finite element analysis. Journal of Pressure Vessel Technology, 134:051203. doi: 10.1115/1.4006922
  • Gibson, M.C., Hameed, A., & Hetherington, J.G. (2014). Investigation of residual stress development during swage autofrettage, using finite element analysis. Journal of Pressure Vessel Technology, 136:021206-1. doi: 10.1115/1.4025968
  • Hu, Z., & Penumarthy, C. (2014). Computer modeling and optimization of swage autofrettage process of a thick-walled cylinder incorporating Bauschinger effect. American Transactions on Engineering & Applied Sciences, 3(1), 31-63.
  • Hu, Z. (2019). Design of two-pass swage autofrettage processes of thick-walled cylinders by computer modeling Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(4), 1312-1333. 10.1177/0954406218770221
  • Hu, Z., Gibson, M.C., & Parker, A.P. (2021). Swage autofrettage FEA incorporating a user function to model actual Bauschinger effect. International Journal of Pressure Vessels and Piping, 191: 104372. doi: 10.1016/j.ijpvp.2021.104372
  • Iremonger, M.J., & Kalsi, G.S. (2003). A numerical study of swage autofrettage. Journal of Pressure Vessel Technology, 125 (3), 347-351. doi: 10.1115/1.1593073.
  • Jain, A., Khanwelkar, S., Saurav, K., Landge, A., & Yadav, U. (2016). Design and performance of hydraulic autofrettage using universal testing machine. Int. J. of Research in Mechanical Eng. Tech., 6(2), 154-157.
  • Kamal, S.M., & Dixit, U.S. (2015). Feasibility study of thermal autofrettage of thick-walled cylinders. Journal of Pressure Vessel Technology, 137:061207. doi: 10.1115/1.4030025
  • Kruczynski, D.L., & Hewitt, J.R. (1991). Temperature compensation techniques and technologies-an overview, U.S. Army Laboratory Command, Ballistic Research Laboratory, Report No: BRL-TR-3283
  • Lawton, B. (2001). Temperature and heat transfer at the commencement of rifling a 155 mm gun. 19th International Symposium of Ballistics, Switzerland, 307-314.
  • Majzoobi, G.H., & Ghomi, A. (2006). Optimization of autofrettage in thick-walled cylinders. Journal of Achievements in Materials and Manufacturing Engineering, 16(1-2) 124-131.
  • Majzoobi, G.H., & Ghomi, A. (2006). Optimization of compound pressure cylinders. Journal of Achievements in Materials and Manufacturing Engineering, 15(1-2) 135-145.
  • Makine ve Kimya Endüstrisi A.Ş (2021). https://mke.gov.tr/tr/urunlerimiz/sayfalar/17-09-2021-urun-kataloglari, İndirilme Tarihi: 01.10.2023.
  • Malik, M.A, Knushnood, S., Khan, M., & Rashid, B. (2007). Analysis of autofrettaged metal tubes. 15th International Conference on Nuclear Engineering, Nagoya, Japan, 22-26 April.
  • O’hara, G.P. (1992). Analysis of swage the swage autofrettage process, U.S. Army Armament Research, Development and Engineering Center, Benet Laboratories, Report No: ARCCB-TR-92016
  • Partovi, A. (2012). Analysis of autofrettaged high pressure components. Master’s Degree Thesis, Blekinge Institute of Technology, Department of Mechanical Engineering, Department of Mechanical Engineering, Sweden.
  • Putti, A., Chopade, M.R., & Chaudhari, H.E. (2016) A review on gun barrel erosion. International Journal of Current Engineering and Technology, 4, 231-235.
  • Shim, W.S., Kim, J.H., Lee, Y.S., Cha, K.U. & Hong, S.K. (2010). A study on hydraulic autofrettage of thick-walled cylinders incorporating Bauschinger effect. Experimental Mechanics, 50, 621-626. doi 10.1007/s11340-009-9255-4
  • Trieb, F., Schedelmaier, J., & Poelzl, M. (2015). Autofrettage-Basic information and practical application on components for waterjet cutting. WJTA American Waterjet Conference, Houston, Texas, 21-23 August.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Numerical Methods in Mechanical Engineering, Mechanical Engineering (Other)
Journal Section Articles
Authors

Doğan Baran 0000-0002-6719-9021

Osman Bican 0000-0003-2246-0780

Yahya Doğu 0000-0003-0474-2899

Publication Date December 31, 2023
Submission Date September 21, 2023
Published in Issue Year 2023 Volume: 15 Issue: 3

Cite

APA Baran, D., Bican, O., & Doğu, Y. (2023). Ağır Silah Namlusunun Mekanik Otofretaj İşleminde Gerilme Dağılımının Sayısal Olarak İncelenmesi. International Journal of Engineering Research and Development, 15(3), 194-208. https://doi.org/10.29137/umagd.1364476

All Rights Reserved. Kırıkkale University, Faculty of Engineering.