Research Article
BibTex RIS Cite

Determination of structure of Thymine in liquid phase, and computation of ESR parameters of the radicals generated from Thymine using density functional theory

Year 2017, Volume: 6 Issue: 2, 62 - 67, 16.12.2017

Abstract



In this study, conformational analysis was performed
via the Spartan14 program to obtain the stable structure of the Thymine
molecule involved in the DNA biosynthesis process, which also plays an
important role in the transfer and conservation of genetic information. Two
conformations were determined by the conformation analysis. The geometry
optimization calculations of these conformations have been made. Possible
radicals were modeled by using the most stable structure, the electron
paramagnetic resonance parameters of the radicals were calculated and the
radical structure was given for the first time in comparison with the
experimental values. All of these calculations were performed in the Gaussian03
program using the Density Functional Theory (DFT). There are studies about
Electron Paramagnetic Resonance made by mixing hydrogen peroxide in the liquid
phase in the literature and comparisons in these studies utilized from this
study. Since there is no experimental study of radicals that can be formed by
molecular irradiation in the literature, the structures of such radicals and
the Electron Paramagnetic Resonance parameters of radicals are given for the
first time in this study.




References

  • [1] Kossel A., ve Neumann A., ber das thymin, ein spaltungsprodukt der nukleinsure, Ber. deutsch. chem. Ges. 26, 2753–2756, 1893.
  • [2] Al Mahroos M., ve Ark., Effect of sunscreen application on UV-induced thymine dimers, Arch Dermatol, 138, 1480-5, 2002.
  • [3] Gerdil R., The crystal structure of thymine monohydrate, Acta Cryst., 14, 333-344, 1961.
  • [4] Dohrmann J.K., Livingston R., Paramagnetic resonance study of liquids during photolysis. XIII. Uracil and derivatives, J. of the American Chemical Society, 5363- 5370, 1971.
  • [5] Sarıkaya E. K., Dereli Ö., Molecular structure and vibrational spectra of 7-Methoxy-4-methylcoumarin by density functional method, Journal of Molecular Structure, 1052, 214–220, 2013.
  • [6] Sarıkaya E. K., Dereli Ö., Study on molecular structure and vibrational spectra of 5, 7-dimethoxycoumarin using DFT: A combined experimental and quantum chemical approach, Optics and Spectroscopy, 117(2), 240–249, 2014.
  • [7] Sarıkaya E. K., Dereli Ö., Erdoğdu Y., Güllüoğlu M.T., Molecular structure and vibrational spectra of 7-Ethoxycoumarin by density functional method, Journal of Molecular Structure, 1049, 220–226, 2013.
  • [8] Ateş L., Dereli Ö., Türkkan E., Sayın Ü., Sevgi F., Tapramaz R., Birey M., EPR study of gamma-irradiated diaminoglyoxime single crystals, Journal of Molecular Structure, 1005, 8-11, 2011.
  • [9] Dereli Ö., Bahçeli S., Abbas A., Naseer M. M., Quantum chemical investigations of a co-crystal of 1,3,5-tris(4-hydroxyphenyl)benzene and 2,4,6-trimethoxy-1,3,5-triazine, Monatshefte für Chemie - Chemical Monthly, 146(9), 1473–1484, 2015.
  • [10] Erdoğdu Y., Dereli Ö., Sajan D., Joseph L., Unsalan O., Gulluoglu M. T., Vibrational (FT-IR and FT-Raman) spectral investigations of 7-aminoflavone with density functional theoretical simulations, Molecular Simulation, 38(4), 315-325, 2012.
  • [11] Ateş L., Erdoğdu Y., Sarıkaya E. K., Özturan F. P., ve Dereli Ö., Moleküler mekanik ve yoğunluk fonksiyonelleri teorisi metodlarıyla siyanoasetik asit molekülünün molekül ve radikal yapılarının belirlenmesi, Selçuk-Teknik Dergisi, 15(3), 253-263, 2016.
  • [12] Ateş L., Sarıkaya E. K., Özmen A., ve Dereli Ö., Propiyonitril molekülünün ve muhtemel radikallerinin yapısının hesaplamalı yöntemlerle incelenmesi, Türk Doğa ve Fen Dergisi, 47-50, 2016.
  • [13] Spartan 14, Wavefunction Inc., Irvine, CA 92612, USA, 2014.
  • [14] Frisch M. J., ve Ark., Gaussian 03, revision C. 02; Gaussian, Inc. Wallingford, CT ,26, 2003.
  • [15] Axel D. B., Density-functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98(7), 5648-5652, 1993.
  • [16] Axel D. B., Density-fnnctional exchange-energy approximation with correct asymptotic behavior, Physical review A, 38(6), 3098, 1988.
  • [17] Chengteh L, Yang W., Parr R. G., Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density, Physical review B, 37(2), 785, 1998.
  • [18] Godbout N., Salahub D. R., Andzelm J., Wimmer E., Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation, Canadian Journal of Chemistry, 70(2), 560-571, 1992.
  • [19] Sharma, B.K., Instrumental Methods of Chemical Analysis, Goel Publishing house, Meerut, 2005. [20] Neese, F., Prediction of electron paramagnetic resonance g-values by Coupled Perturbed Hartree-Fock and Kohn-Sham Theory, J. Chem. Phys, 115, 11080–11096, 2001.
  • [21] Chipman D.M., Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy. Kluwer Academic Press, Netherlands, 109-138, 1995.

Sıvı fazda Timin molekülünün yapısının belirlenmesi ve radikallerinin ESR parametrelerinin yoğunluk fonksiyonel teorisi ile hesaplanması

Year 2017, Volume: 6 Issue: 2, 62 - 67, 16.12.2017

Abstract



Bu çalışmada DNA biyosentez sürecine katılan, ayrıca
genetik bilginin transferi ve korunmasında önemli rol oynayan Timin molekülünün
kararlı yapısını elde etmek için Spartan14 programı aracılığıyla konformasyon
analizi yapılmıştır. Konformasyon analizi sonucunda iki konformasyon elde
edilmiştir. Bu konformasyonların geometri optimizasyon hesaplamaları
yapılmıştır. En kararlı yapı kullanılarak olası radikaller modellenmiş,
Radikallerin Elektron Paramanyetik Rezonans parametreleri hesaplanmış ve
deneysel değerlerle karşılaştırılarak radikal yapısı ilk defa bu çalışmada
verilmiştir. Bu hesaplamaların hepsi Yoğunluk Fonksiyonelleri Teorisi (DFT)
kullanılarak Gaussian03 programında yapılmıştır. Literatürde sıvı fazda
hidrojen peroksitle karıştırılarak yapılan Elektron Paramanyetik Rezonans
çalışması mevcuttur ve karşılaştırmalarda bu çalışmadan faydalanılmıştır.
Molekülün ışınlanması ile oluşabilecek radikallere ait deneysel bir çalışma
literatürde mevcut olmadığından, bu şekilde oluşabilecek radikallerin yapıları
ve Radikallerin Elektron Paramanyetik Rezonans parametreleri ilk defa bu
çalışmada verilmiştir.




References

  • [1] Kossel A., ve Neumann A., ber das thymin, ein spaltungsprodukt der nukleinsure, Ber. deutsch. chem. Ges. 26, 2753–2756, 1893.
  • [2] Al Mahroos M., ve Ark., Effect of sunscreen application on UV-induced thymine dimers, Arch Dermatol, 138, 1480-5, 2002.
  • [3] Gerdil R., The crystal structure of thymine monohydrate, Acta Cryst., 14, 333-344, 1961.
  • [4] Dohrmann J.K., Livingston R., Paramagnetic resonance study of liquids during photolysis. XIII. Uracil and derivatives, J. of the American Chemical Society, 5363- 5370, 1971.
  • [5] Sarıkaya E. K., Dereli Ö., Molecular structure and vibrational spectra of 7-Methoxy-4-methylcoumarin by density functional method, Journal of Molecular Structure, 1052, 214–220, 2013.
  • [6] Sarıkaya E. K., Dereli Ö., Study on molecular structure and vibrational spectra of 5, 7-dimethoxycoumarin using DFT: A combined experimental and quantum chemical approach, Optics and Spectroscopy, 117(2), 240–249, 2014.
  • [7] Sarıkaya E. K., Dereli Ö., Erdoğdu Y., Güllüoğlu M.T., Molecular structure and vibrational spectra of 7-Ethoxycoumarin by density functional method, Journal of Molecular Structure, 1049, 220–226, 2013.
  • [8] Ateş L., Dereli Ö., Türkkan E., Sayın Ü., Sevgi F., Tapramaz R., Birey M., EPR study of gamma-irradiated diaminoglyoxime single crystals, Journal of Molecular Structure, 1005, 8-11, 2011.
  • [9] Dereli Ö., Bahçeli S., Abbas A., Naseer M. M., Quantum chemical investigations of a co-crystal of 1,3,5-tris(4-hydroxyphenyl)benzene and 2,4,6-trimethoxy-1,3,5-triazine, Monatshefte für Chemie - Chemical Monthly, 146(9), 1473–1484, 2015.
  • [10] Erdoğdu Y., Dereli Ö., Sajan D., Joseph L., Unsalan O., Gulluoglu M. T., Vibrational (FT-IR and FT-Raman) spectral investigations of 7-aminoflavone with density functional theoretical simulations, Molecular Simulation, 38(4), 315-325, 2012.
  • [11] Ateş L., Erdoğdu Y., Sarıkaya E. K., Özturan F. P., ve Dereli Ö., Moleküler mekanik ve yoğunluk fonksiyonelleri teorisi metodlarıyla siyanoasetik asit molekülünün molekül ve radikal yapılarının belirlenmesi, Selçuk-Teknik Dergisi, 15(3), 253-263, 2016.
  • [12] Ateş L., Sarıkaya E. K., Özmen A., ve Dereli Ö., Propiyonitril molekülünün ve muhtemel radikallerinin yapısının hesaplamalı yöntemlerle incelenmesi, Türk Doğa ve Fen Dergisi, 47-50, 2016.
  • [13] Spartan 14, Wavefunction Inc., Irvine, CA 92612, USA, 2014.
  • [14] Frisch M. J., ve Ark., Gaussian 03, revision C. 02; Gaussian, Inc. Wallingford, CT ,26, 2003.
  • [15] Axel D. B., Density-functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98(7), 5648-5652, 1993.
  • [16] Axel D. B., Density-fnnctional exchange-energy approximation with correct asymptotic behavior, Physical review A, 38(6), 3098, 1988.
  • [17] Chengteh L, Yang W., Parr R. G., Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density, Physical review B, 37(2), 785, 1998.
  • [18] Godbout N., Salahub D. R., Andzelm J., Wimmer E., Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation, Canadian Journal of Chemistry, 70(2), 560-571, 1992.
  • [19] Sharma, B.K., Instrumental Methods of Chemical Analysis, Goel Publishing house, Meerut, 2005. [20] Neese, F., Prediction of electron paramagnetic resonance g-values by Coupled Perturbed Hartree-Fock and Kohn-Sham Theory, J. Chem. Phys, 115, 11080–11096, 2001.
  • [21] Chipman D.M., Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy. Kluwer Academic Press, Netherlands, 109-138, 1995.
There are 20 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Levent Ateş

Ayhan Özmen

Ömer Dereli

Publication Date December 16, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Ateş, L., Özmen, A., & Dereli, Ö. (2017). Sıvı fazda Timin molekülünün yapısının belirlenmesi ve radikallerinin ESR parametrelerinin yoğunluk fonksiyonel teorisi ile hesaplanması. Türk Doğa Ve Fen Dergisi, 6(2), 62-67.
AMA Ateş L, Özmen A, Dereli Ö. Sıvı fazda Timin molekülünün yapısının belirlenmesi ve radikallerinin ESR parametrelerinin yoğunluk fonksiyonel teorisi ile hesaplanması. TJNS. December 2017;6(2):62-67.
Chicago Ateş, Levent, Ayhan Özmen, and Ömer Dereli. “Sıvı Fazda Timin molekülünün yapısının Belirlenmesi Ve Radikallerinin ESR Parametrelerinin yoğunluk Fonksiyonel Teorisi Ile Hesaplanması”. Türk Doğa Ve Fen Dergisi 6, no. 2 (December 2017): 62-67.
EndNote Ateş L, Özmen A, Dereli Ö (December 1, 2017) Sıvı fazda Timin molekülünün yapısının belirlenmesi ve radikallerinin ESR parametrelerinin yoğunluk fonksiyonel teorisi ile hesaplanması. Türk Doğa ve Fen Dergisi 6 2 62–67.
IEEE L. Ateş, A. Özmen, and Ö. Dereli, “Sıvı fazda Timin molekülünün yapısının belirlenmesi ve radikallerinin ESR parametrelerinin yoğunluk fonksiyonel teorisi ile hesaplanması”, TJNS, vol. 6, no. 2, pp. 62–67, 2017.
ISNAD Ateş, Levent et al. “Sıvı Fazda Timin molekülünün yapısının Belirlenmesi Ve Radikallerinin ESR Parametrelerinin yoğunluk Fonksiyonel Teorisi Ile Hesaplanması”. Türk Doğa ve Fen Dergisi 6/2 (December 2017), 62-67.
JAMA Ateş L, Özmen A, Dereli Ö. Sıvı fazda Timin molekülünün yapısının belirlenmesi ve radikallerinin ESR parametrelerinin yoğunluk fonksiyonel teorisi ile hesaplanması. TJNS. 2017;6:62–67.
MLA Ateş, Levent et al. “Sıvı Fazda Timin molekülünün yapısının Belirlenmesi Ve Radikallerinin ESR Parametrelerinin yoğunluk Fonksiyonel Teorisi Ile Hesaplanması”. Türk Doğa Ve Fen Dergisi, vol. 6, no. 2, 2017, pp. 62-67.
Vancouver Ateş L, Özmen A, Dereli Ö. Sıvı fazda Timin molekülünün yapısının belirlenmesi ve radikallerinin ESR parametrelerinin yoğunluk fonksiyonel teorisi ile hesaplanması. TJNS. 2017;6(2):62-7.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.