Research Article
BibTex RIS Cite

Tomografi Görüntülerinden Mekanik El Protezi Tasarımı ve Kinematik Analizi

Year 2022, Volume: 25 Issue: 3, 1091 - 1097, 01.10.2022
https://doi.org/10.2339/politeknik.885995

Abstract

Teknolojinin gelişmesi birçok protez tasarımını ve geliştirmesini beraberinde getirdi. Protezlerin temel amacı uzuv kaybı olan bir kişinin yaşam standardını yükseltmektir. Geliştirilmiş birçok protez türü vardır. Protezler birçok uzuv kaybını telafi edebilir, üst vücut protezleri sadece parmak kayıpları değil tam kol kayıpları için de olabilir. Bilindiği gibi parmak kayıpları en sık görülen uzuv kayıplarıdır. Parmak protezlerinin temel amacı insan parmaklarının işlevselliğini taklit etmektir. Ancak parmak protezlerinin çoğu sadece kozmetiktir ve işlevsel değildir. Öte yandan, fonksiyonel protezlerin çoğu kullanıcıya tam olarak uymaz ve kişiye özel tasarlanmamıştır. Bir diğer büyük sorun ise bazı protezlerin uygulanması için cerrahi operasyona ihtiyaç duymasıdır. Bu çalışmanın temel amacı, kullanıcıya mükemmel uyan (kişiselleştirilmiş), uygulaması kolay (cerrahi işlem gerektirmeyen), erişilebilir (üretimi kolay) ve sürdürülebilir parmak protezleri tasarlamaktır. Bu çalışmada bilgisayarlı tomografi görüntülerinden parmak protezi tasarlanmıştır. Protez, insan eli iskelet yapısına göre modellenmiştir. Parmak kayıplarını simüle etmek için distal ve orta falanks kemikleri modelden çıkarıldı. Modellenen iskelet yapısı üzerine parmak protezleri oluşturuldu. El iskelet modeli ve yeni tasarlanan protez, CAD yazılımı kullanılarak monte edildi. Tasarlanan protez hareket analizleri tamamlandı ve model optimize edildi. Kinematik analiz ile tasarlanan protezin hareket kabiliyetleri belirlenmiş ve yeni bir matematiksel model geliştirilmiştir. Oluşturulan matematiksel model diğer kullanıcının protezinde kullanılabilir, bu şekilde kişiselleştirilmiş protez üretimi için yeni tasarım modellemesi gerekmez, kullanıcı parametreleri ve ölçümler gelecekteki modeller için yeterlidir. Yeni tasarlanan parmak protezinin kavrama kabiliyeti incelendi. Protezin mekanik yapısı ve hareket kabiliyetleri deneyler ve ölçümlerle doğrulandı.

References

  • [1] Cheng WL, Carbone G, Ceccarelli M “Design Considerations for an Underactuated Robotic Finger Mechanism Designing an underactuated mechanism for a 1 active DOF finger operation”, Chinese Journal of Mechanical Engineering, 22(04):475-488, (2009).
  • [2] Zuo KJ, Olson JL “The evolution of functional hand replacement: From iron prostheses to hand transplantation”, The Canadian journal of plastic surgery, 22(1):44-51, (2014).
  • [3] Feix T, Romero J, Schmiedmayer HB, Dollar AM, Kragic D. “The GRASP Taxonomy of Human Grasp Types”, IEEE Transactions on Human-Machine Systems, 46(1):66-77, (2016).
  • [4] Gabiccini M, Bicchi A, Prattichizzo D, Malvezzi M “On the role of hand synergies in the optimal choice of grasping Forces”, Autonom Robots , 23:235–252, (2011).
  • [5] Rossi C, Savino S Robot “Trajectory Planning by Assigning Positions and Tangential Velocities”, Robotics and Computer Integrated Manufacturing, 29(1):139-156, (2013).
  • [6] Wu L, Ceccarelli M A “Numerical Simulation for Design and Operation of an Underactuated Finger Mechanism for LARM Hand”, Chinese Journal Of Mechanical Engineering, 22(4):86-112, (2009).
  • [7] Neumann D Kinesiology of the Musculoskeletal System, Mosby, Missouri. (2016).
  • [8] Licheng W, Yanxuan K, Xiali L. “A fully rotational joint underactuated finger mechanism and its kinematics analysis”, International Journal of Advanced Robotic Systems, (2016).
  • [9] Dalley SA, Varol HA, Goldfarb M. “A method for the control of multigrasp myoelectric prosthetic hands”, IEEE Trans Neural Syst Rehabil Eng., 20(1):58–67, (2012).
  • [10] Wiste TE, Dalley SA, Varol HA, Goldfarb M. “Design of a multigrasp transradial prosthesis”, ASME J Med Devices, 5:1–7, (2011).
  • [11] Gaiser IN, Pylatiuk C, Schulz S, Kargov A, Oberle R, Werner T. “The FLUIDHAND III: A multifunctional prosthetic hand”, J Prosthetics Orthotics, 21(2):91–96, (2009).
  • [12] Deshpande AD, Xu Z, Weghe MJV, Brown BH, Ko J, Chang LY, Wilkinson DD, Bidic SM, Matsuoka Y. “Mechanisms of the anatomically correct testbed hand”, IEEE/ASME Trans Mechatronics, 18(1):238–250, (2013).
  • [13] Bennett DA, Dalley SA, Truex D, Goldfarb M, A. “Multigrasp Hand Prosthesis for Providing Precision and Conformal Grasps”, IEEE/ASME Transactions on Mechatronics, 99:1-8, (2015).
  • [14] Jin H, Dong E, Xu M, Yang J. “A Smart and Hybrid Composite Finger with Biomimetic Tapping Motion for Soft Prosthetic Hand”, Journal of Bionic Engineering, 17:484-500, (2020).
  • [15] Liu S, Van M, Chen Z, Angeles J, Chen C. “A novel prosthetic finger design with high load-carrying capacity”, Mechanism and Machine Theory, (2020).
  • [16] Jaber HM, Sattar MA, Abd Al-Sahib NK. Low Cost “Prosthesis for People with Transradial Amputations”, Nahrain Journal for Engineering Sciences, 23(2):167-177, (2020).
  • [17] Romero RC, Machado AA, Costa KA, Reis PHRG, Brito PP, “Vimieiro CBS. Development of a Passive Prosthetic Hand That Restores Finger Movements Made by Additive Manufacturing”, Recent Advances in Assistive Robots, 10(12):41-48, (2020).
  • [18] Carrozza MC, Cappiello G, Micera S, Edin A. “Design of a cybernetic hand for perception and action”, Design of a cybernetic hand for perception and action, 95(6):629-644, (2020).

Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images

Year 2022, Volume: 25 Issue: 3, 1091 - 1097, 01.10.2022
https://doi.org/10.2339/politeknik.885995

Abstract

Advancement of technology brought along many prostheses design and developments. The main purpose of prostheses are to improve the life standard of people with limb loss. There are many types of prostheses that were developed in recent years. Prostheses can compensate many limb losses, upper body prostheses can be for not only finger losses but also full arm losses. Finger losses are the most common limb losses. Finger prostheses are imitating the functionality of human fingers. However most of the finger prostheses are only for cosmetic purposes and non-functional. On the other hand, the most of the functional prostheses are not perfectly fit to the users and are not designed personalised. Another big problem, some prostheses need a surgical operation to apply. The main purpose of this study is to design a finger prosthesis that is a perfect fit to user (personalised), easy to apply (does not required surgical operation), accessible (easy to manufacture) and sustainable. In this study, finger prosthesis was modelled based on human hand skeleton structure from computerized tomography (CT) images. Index finger distal and middle phalanges bones were removed from the hand model to simulate finger losses. Finger prosthesis was created on the modelled skeleton structure. Hand skeleton model and newly designed prosthesis were assembled by using CAD software. The designed prosthesis movement capability was examined, parts size and connections were optimised. Gripping ability of the designed prosthesis were analysed by kinematic analyses and a new mathematic model was developed. Created mathematic model can be use at other user’s prosthesis, in this way analyses are not required for new designs, user parameters and measurements are enough to future designs manufacturs. Joint rotation rates were set to grip 40 mm diameter cylinder. The gripping ability of the newly designed finger prosthesis was analysed. Mechanical structure and movement abilities of the prosthesis were confirmed by experiments and measurements. Gripping tests are show that, designed and optimised prosthesis capable to grip perfectly 38-42 mm diameter cylinder. Smaller object also can be moved using prosthesis finger tips.  

References

  • [1] Cheng WL, Carbone G, Ceccarelli M “Design Considerations for an Underactuated Robotic Finger Mechanism Designing an underactuated mechanism for a 1 active DOF finger operation”, Chinese Journal of Mechanical Engineering, 22(04):475-488, (2009).
  • [2] Zuo KJ, Olson JL “The evolution of functional hand replacement: From iron prostheses to hand transplantation”, The Canadian journal of plastic surgery, 22(1):44-51, (2014).
  • [3] Feix T, Romero J, Schmiedmayer HB, Dollar AM, Kragic D. “The GRASP Taxonomy of Human Grasp Types”, IEEE Transactions on Human-Machine Systems, 46(1):66-77, (2016).
  • [4] Gabiccini M, Bicchi A, Prattichizzo D, Malvezzi M “On the role of hand synergies in the optimal choice of grasping Forces”, Autonom Robots , 23:235–252, (2011).
  • [5] Rossi C, Savino S Robot “Trajectory Planning by Assigning Positions and Tangential Velocities”, Robotics and Computer Integrated Manufacturing, 29(1):139-156, (2013).
  • [6] Wu L, Ceccarelli M A “Numerical Simulation for Design and Operation of an Underactuated Finger Mechanism for LARM Hand”, Chinese Journal Of Mechanical Engineering, 22(4):86-112, (2009).
  • [7] Neumann D Kinesiology of the Musculoskeletal System, Mosby, Missouri. (2016).
  • [8] Licheng W, Yanxuan K, Xiali L. “A fully rotational joint underactuated finger mechanism and its kinematics analysis”, International Journal of Advanced Robotic Systems, (2016).
  • [9] Dalley SA, Varol HA, Goldfarb M. “A method for the control of multigrasp myoelectric prosthetic hands”, IEEE Trans Neural Syst Rehabil Eng., 20(1):58–67, (2012).
  • [10] Wiste TE, Dalley SA, Varol HA, Goldfarb M. “Design of a multigrasp transradial prosthesis”, ASME J Med Devices, 5:1–7, (2011).
  • [11] Gaiser IN, Pylatiuk C, Schulz S, Kargov A, Oberle R, Werner T. “The FLUIDHAND III: A multifunctional prosthetic hand”, J Prosthetics Orthotics, 21(2):91–96, (2009).
  • [12] Deshpande AD, Xu Z, Weghe MJV, Brown BH, Ko J, Chang LY, Wilkinson DD, Bidic SM, Matsuoka Y. “Mechanisms of the anatomically correct testbed hand”, IEEE/ASME Trans Mechatronics, 18(1):238–250, (2013).
  • [13] Bennett DA, Dalley SA, Truex D, Goldfarb M, A. “Multigrasp Hand Prosthesis for Providing Precision and Conformal Grasps”, IEEE/ASME Transactions on Mechatronics, 99:1-8, (2015).
  • [14] Jin H, Dong E, Xu M, Yang J. “A Smart and Hybrid Composite Finger with Biomimetic Tapping Motion for Soft Prosthetic Hand”, Journal of Bionic Engineering, 17:484-500, (2020).
  • [15] Liu S, Van M, Chen Z, Angeles J, Chen C. “A novel prosthetic finger design with high load-carrying capacity”, Mechanism and Machine Theory, (2020).
  • [16] Jaber HM, Sattar MA, Abd Al-Sahib NK. Low Cost “Prosthesis for People with Transradial Amputations”, Nahrain Journal for Engineering Sciences, 23(2):167-177, (2020).
  • [17] Romero RC, Machado AA, Costa KA, Reis PHRG, Brito PP, “Vimieiro CBS. Development of a Passive Prosthetic Hand That Restores Finger Movements Made by Additive Manufacturing”, Recent Advances in Assistive Robots, 10(12):41-48, (2020).
  • [18] Carrozza MC, Cappiello G, Micera S, Edin A. “Design of a cybernetic hand for perception and action”, Design of a cybernetic hand for perception and action, 95(6):629-644, (2020).
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Çağatay Taşdemirci 0000-0002-6471-0867

Arif Özkan 0000-0002-1288-6166

Publication Date October 1, 2022
Submission Date February 24, 2021
Published in Issue Year 2022 Volume: 25 Issue: 3

Cite

APA Taşdemirci, Ç., & Özkan, A. (2022). Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images. Politeknik Dergisi, 25(3), 1091-1097. https://doi.org/10.2339/politeknik.885995
AMA Taşdemirci Ç, Özkan A. Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images. Politeknik Dergisi. October 2022;25(3):1091-1097. doi:10.2339/politeknik.885995
Chicago Taşdemirci, Çağatay, and Arif Özkan. “Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images”. Politeknik Dergisi 25, no. 3 (October 2022): 1091-97. https://doi.org/10.2339/politeknik.885995.
EndNote Taşdemirci Ç, Özkan A (October 1, 2022) Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images. Politeknik Dergisi 25 3 1091–1097.
IEEE Ç. Taşdemirci and A. Özkan, “Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images”, Politeknik Dergisi, vol. 25, no. 3, pp. 1091–1097, 2022, doi: 10.2339/politeknik.885995.
ISNAD Taşdemirci, Çağatay - Özkan, Arif. “Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images”. Politeknik Dergisi 25/3 (October 2022), 1091-1097. https://doi.org/10.2339/politeknik.885995.
JAMA Taşdemirci Ç, Özkan A. Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images. Politeknik Dergisi. 2022;25:1091–1097.
MLA Taşdemirci, Çağatay and Arif Özkan. “Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images”. Politeknik Dergisi, vol. 25, no. 3, 2022, pp. 1091-7, doi:10.2339/politeknik.885995.
Vancouver Taşdemirci Ç, Özkan A. Mechanical Design and Kinematic Analysis of a Hand Prosthesis from Computerized Tomography Images. Politeknik Dergisi. 2022;25(3):1091-7.