Research Article
BibTex RIS Cite

Bükümlü Işıkların Yarıiletken Üzerindeki Elektriksel Etkisinin Deneysel Olarak İncelenmesi

Year 2023, Volume: 11 Issue: 2, 40 - 44, 31.12.2023
https://doi.org/10.18586/msufbd.1298908

Abstract

Orbital Açısal Momentum (OAM) ışınları, optik alanın dairesel simetrisini bozan ve ışığın açısal momentumunu taşıyan özel bir ışık türüdür. Bu ışınlar, optik cihazlarda ve iletişimde yeni uygulamalara olanak sağlamaktadır. Bunun yanı sıra, OAM ışınları madde ile etkileşimi sonucunda hem foton enerjisi hem de açısal momentum aktarabilmeleri, daha yüksek akımların oluşumunu sağlamaktadır. Böylece OAM ışınları fotovoltaik verimliliğin artırılmasında ve daha yüksek enerjilerin elde edilmesinde kullanılabileceği göstermektedir. OAM ışınlarının fotovoltaik verimlilik üzerine etkisi, son yıllarda araştırma konusu olmuştur. Bazı çalışmalar, OAM ışınlarının güneş hücrelerinin elektrik üretimini artırabileceğini teorik olarak göstermiştir. Bunun nedeni, OAM ışınlarının elektrona foton enerjisine ek olarak açısal momentum kazandırmasıdır. Bu çalışmanın amacı, SLM (Spatial Light Modulator) kullanarak üretilen OAM ışın spotunun, yarıiletken bir güneş paneli üzerindeki elektriksel etkisini deneysel olarak incelemektir. OAM ışını fotovoltaikler üzerine düşürülerek daha yüksek akımlar elde edilmiştir. Akım artışı %18,2 oranında gerçekleşmiştir.

References

  • [1] Yalcinkaya, F., Koc, T., Pala, Z. Spatial light modulator design and generation of structured electromagnetic waves using digital light processors, Optica Applicata. 52:3 461–479, 2022.
  • [2] Franke-Arnold, S., Leach, J., Padgett, M. J., Lembessis, V. E., Ellinas, D., Wright, A. J., Girkin, J. M., Öhberg, P. ve Arnold, A. S. Optical ferris wheel for ultracold atoms. Optics Express, 15:14 8619, 2007.
  • [3] Dávila Romero, L. C., Andrews, D. L., Babiker, M. A. Quantum electrodynamics framework for the nonlinear optics of twisted beams. Journal of Optics B: Quantum and Semiclassical Optics, 4:2 S66-S72, 2002.
  • [4] Brüning, R., Ndagano, B., McLaren, M., Schröter, S., Kobelke, J., Duparré, M., Forbes, A. Data transmission with twisted light through a free-space to fiber optical communication link. Journal of Optics (United Kingdom), 18:3 03LT01, 2016.
  • [5] Quinteiro, G. F., Tamborenea, P. I. Theory of the optical absorption of light carrying orbital angular momentum by semiconductors. Epl, 85:4 0–5, 2009.
  • [6] Tamburini, F., Thidé, B., Della Valle, M. Measurement of the spin of the M87 black hole from its observed twisted light. Monthly Notices of the Royal Astronomical Society: Letters, 492:1 L22–L27, 2020.
  • [7] Jing, H., Cheng, W., Zhang, W., Lyu, R. OAM based wireless communications with non-coaxial uca transceiver. 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). 1-6, 2019.
  • [8] Feng, P.-Y., Qu, S.-W., Yang, S. OAM-generating transmitarray antenna with circular phased array antenna feed. IEEE Transactions on Antennas and Propagation, 68:6 4540–4548, 2020.
  • [9] Jing, H., Cheng, W., Li, Z., Zhang, H. Concentric ucas based low-order oam for high capacity in radio vortex wireless communications. Journal of Communications and Information Networks, 3:4 85–100, 2018.
  • [10] Barreiro, S., Tabosa, J. W. R. Generation of light carrying orbital angular momentum via ınduced coherence grating in cold atoms. Physical Review Letters, 90:13 133001, 2003. [11] Quinteiro, G. F., Tamborenea, P. I., Berakdar, J. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light. Optics express, 19:27 26733-26741, 2011.
  • [12] Wätzel, J., Berakdar, J. Centrifugal photovoltaic and photogalvanic effects driven by structured light. Scientific Reports, 6:1 1–7, 2016.
  • [13] Heckenberg, N. R., McDuff, R., Smith, C. P., White, A. G. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 17:3 221, 1992.
  • [14] Kennedy, S. A., Szabo, M. J., Teslow, H., Porterfield, J. Z., Abraham, E. R. I. Creation of Laguerre-Gaussian laser modes using diffractive optics. Physical Review A, 66:4 043801, 2002.
  • [15] Carpentier, A. V., Michinel, H., Salgueiro, J. R. Olivieri, D. Making optical vortices with computer-generated holograms. American Journal of Physics, 76:10 916–921, 2008.
  • [16] Beijersbergen, M. W., Allen, L., van der Veen, H. E. L. O., Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Optical Angular Momentum, 96 135–144, 2016.
  • [17] Wätzel, J., Moskalenko, A. S., Berakdar, J. Photovoltaic effect of light carrying orbital angular momentum on a semiconducting stripe. Optics Express, 20:25 27792, 2012.
  • [18] Quinteiro, G. F. ve Berakdar, J. Electric currents induced by twisted light in quantum rings. Optics Express, 17:22 20465, 2009.
  • [19] Quinteiro, G. F., Reiter, D. E., Kuhn, T. Formulation of the twisted-light–matter interaction at the phase singularity: The twisted-light gauge. Physical Review A, 91:3 033808, 2015.
  • [20] Grätzel, M. Photoelectrochemical cells. nature, 414:6861 338-344, 2001.
  • [21] Peet, J., Kim, J. Y., Coates, N. E., Ma, W. L., Moses, D., Heeger, A. J., Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials, 6:7 497–500, 2007.
  • [22] Thompson, B. C., Fréchet, J. M. J. Polymer–fullerene composite solar cells. Angewandte Chemie International Edition, 47:1 58–77, 2008.
  • [23] Yang, X., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J., Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Letters, 5:4 579–583, 2005.
  • [24] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 4:11 864–868, 2005.
  • [25] Timmerman, D., Izeddin, I., Stallinga, P., Yassievich, I. N., Gregorkiewicz, T. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photonics, 2:2 105–109, 2008.
  • [26] Koç, T. Bükümlü ışıkların fotovoltaikler üzerindeki elektriksel etkisinin deneysel olarak incelenmesi, Yüksek Lisans Tezi, Kırıkkale Üniversitesi, 2022.

Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor

Year 2023, Volume: 11 Issue: 2, 40 - 44, 31.12.2023
https://doi.org/10.18586/msufbd.1298908

Abstract

Orbital Angular Momentum (OAM) beams are a special type of light that disrupts the circular symmetry of the optical field and carries the angular momentum of light. These beams enable new applications in optical devices and communication. In addition, as a result of their interaction with matter, OAM beams can transfer both photon energy and angular momentum, enabling the formation of higher currents. Thus, it has been shown that OAM beams can be used to obtain higher energies in increasing photovoltaic efficiency. The effect of OAM beams on photovoltaic efficiency has been a research topic in recent years. Some studies have theoretically shown that OAM beams can increase the electrical production of solar cells. The reason for this is that OAM beams impart angular momentum to electrons in addition to photon energy. The aim of this study is to experimentally investigate the electrical effect of an OAM beam spot produced using an SLM (Spatial Light Modulator) on a semiconductor solar panel. Higher currents were obtained by dropping the OAM beam onto photovoltaics. The current increase was 18.2%.

References

  • [1] Yalcinkaya, F., Koc, T., Pala, Z. Spatial light modulator design and generation of structured electromagnetic waves using digital light processors, Optica Applicata. 52:3 461–479, 2022.
  • [2] Franke-Arnold, S., Leach, J., Padgett, M. J., Lembessis, V. E., Ellinas, D., Wright, A. J., Girkin, J. M., Öhberg, P. ve Arnold, A. S. Optical ferris wheel for ultracold atoms. Optics Express, 15:14 8619, 2007.
  • [3] Dávila Romero, L. C., Andrews, D. L., Babiker, M. A. Quantum electrodynamics framework for the nonlinear optics of twisted beams. Journal of Optics B: Quantum and Semiclassical Optics, 4:2 S66-S72, 2002.
  • [4] Brüning, R., Ndagano, B., McLaren, M., Schröter, S., Kobelke, J., Duparré, M., Forbes, A. Data transmission with twisted light through a free-space to fiber optical communication link. Journal of Optics (United Kingdom), 18:3 03LT01, 2016.
  • [5] Quinteiro, G. F., Tamborenea, P. I. Theory of the optical absorption of light carrying orbital angular momentum by semiconductors. Epl, 85:4 0–5, 2009.
  • [6] Tamburini, F., Thidé, B., Della Valle, M. Measurement of the spin of the M87 black hole from its observed twisted light. Monthly Notices of the Royal Astronomical Society: Letters, 492:1 L22–L27, 2020.
  • [7] Jing, H., Cheng, W., Zhang, W., Lyu, R. OAM based wireless communications with non-coaxial uca transceiver. 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). 1-6, 2019.
  • [8] Feng, P.-Y., Qu, S.-W., Yang, S. OAM-generating transmitarray antenna with circular phased array antenna feed. IEEE Transactions on Antennas and Propagation, 68:6 4540–4548, 2020.
  • [9] Jing, H., Cheng, W., Li, Z., Zhang, H. Concentric ucas based low-order oam for high capacity in radio vortex wireless communications. Journal of Communications and Information Networks, 3:4 85–100, 2018.
  • [10] Barreiro, S., Tabosa, J. W. R. Generation of light carrying orbital angular momentum via ınduced coherence grating in cold atoms. Physical Review Letters, 90:13 133001, 2003. [11] Quinteiro, G. F., Tamborenea, P. I., Berakdar, J. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light. Optics express, 19:27 26733-26741, 2011.
  • [12] Wätzel, J., Berakdar, J. Centrifugal photovoltaic and photogalvanic effects driven by structured light. Scientific Reports, 6:1 1–7, 2016.
  • [13] Heckenberg, N. R., McDuff, R., Smith, C. P., White, A. G. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 17:3 221, 1992.
  • [14] Kennedy, S. A., Szabo, M. J., Teslow, H., Porterfield, J. Z., Abraham, E. R. I. Creation of Laguerre-Gaussian laser modes using diffractive optics. Physical Review A, 66:4 043801, 2002.
  • [15] Carpentier, A. V., Michinel, H., Salgueiro, J. R. Olivieri, D. Making optical vortices with computer-generated holograms. American Journal of Physics, 76:10 916–921, 2008.
  • [16] Beijersbergen, M. W., Allen, L., van der Veen, H. E. L. O., Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Optical Angular Momentum, 96 135–144, 2016.
  • [17] Wätzel, J., Moskalenko, A. S., Berakdar, J. Photovoltaic effect of light carrying orbital angular momentum on a semiconducting stripe. Optics Express, 20:25 27792, 2012.
  • [18] Quinteiro, G. F. ve Berakdar, J. Electric currents induced by twisted light in quantum rings. Optics Express, 17:22 20465, 2009.
  • [19] Quinteiro, G. F., Reiter, D. E., Kuhn, T. Formulation of the twisted-light–matter interaction at the phase singularity: The twisted-light gauge. Physical Review A, 91:3 033808, 2015.
  • [20] Grätzel, M. Photoelectrochemical cells. nature, 414:6861 338-344, 2001.
  • [21] Peet, J., Kim, J. Y., Coates, N. E., Ma, W. L., Moses, D., Heeger, A. J., Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials, 6:7 497–500, 2007.
  • [22] Thompson, B. C., Fréchet, J. M. J. Polymer–fullerene composite solar cells. Angewandte Chemie International Edition, 47:1 58–77, 2008.
  • [23] Yang, X., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J., Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Letters, 5:4 579–583, 2005.
  • [24] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 4:11 864–868, 2005.
  • [25] Timmerman, D., Izeddin, I., Stallinga, P., Yassievich, I. N., Gregorkiewicz, T. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photonics, 2:2 105–109, 2008.
  • [26] Koç, T. Bükümlü ışıkların fotovoltaikler üzerindeki elektriksel etkisinin deneysel olarak incelenmesi, Yüksek Lisans Tezi, Kırıkkale Üniversitesi, 2022.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Tarık Koç 0000-0001-9192-4257

Fikret Yalçınkaya 0000-0002-2174-918X

Early Pub Date December 12, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Koç, T., & Yalçınkaya, F. (2023). Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 11(2), 40-44. https://doi.org/10.18586/msufbd.1298908
AMA Koç T, Yalçınkaya F. Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor. MAUN Fen Bil. Dergi. December 2023;11(2):40-44. doi:10.18586/msufbd.1298908
Chicago Koç, Tarık, and Fikret Yalçınkaya. “Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 11, no. 2 (December 2023): 40-44. https://doi.org/10.18586/msufbd.1298908.
EndNote Koç T, Yalçınkaya F (December 1, 2023) Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 11 2 40–44.
IEEE T. Koç and F. Yalçınkaya, “Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor”, MAUN Fen Bil. Dergi., vol. 11, no. 2, pp. 40–44, 2023, doi: 10.18586/msufbd.1298908.
ISNAD Koç, Tarık - Yalçınkaya, Fikret. “Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 11/2 (December 2023), 40-44. https://doi.org/10.18586/msufbd.1298908.
JAMA Koç T, Yalçınkaya F. Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor. MAUN Fen Bil. Dergi. 2023;11:40–44.
MLA Koç, Tarık and Fikret Yalçınkaya. “Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 2, 2023, pp. 40-44, doi:10.18586/msufbd.1298908.
Vancouver Koç T, Yalçınkaya F. Experimental Investigation of the Electrical Effect of Twisted Lights on a Semiconductor. MAUN Fen Bil. Dergi. 2023;11(2):40-4.