Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 2, 1 - 14, 18.12.2023
https://doi.org/10.54565/jphcfum.1321022

Abstract

Project Number

2

References

  • [1] V. I. Parvulescus, F. Epron, H. Garcia and P. Grangers, Recent Progress and Prospect in Catalytic Water Treatment: Chemical Reviews, 2021, 122, 101-112.
  • [2] V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak and S. Agarwal, Chemical Treatment Technologies for Waste-water Recycling, An Overview: RSC Advance, 2012, 2 (16), 6380
  • [3] P. Rajasulochana and V. Preethy, Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage water-a Comprehensive Review: Resource Efficient Technologies, 2016, 2(4), 175-184.
  • [4] A. Kadam, R. Dhabbe, A. Gophane, T. Sathe and K.Garadkar, Template Free Synthesis of ZnO/Ag2O Nanocomposites as a Highly Efficient Visible Active Photocatalyst for Detoxification of Methyl Orange: Journal of Photochemistry and Photobiology, 2016, 154, 24-33.
  • [5] G. Yang, D. Zhang, G. Zhu, A Sm- MOF/GO Nanocomposite Membrane for Efficient Organic Dye Removal from Wastewater: RSC Advance, 2020, 10 (14), 8540-8547.
  • [6] M. T. Amin, A. A. Alazba and U. Manzoor, A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials: Advances in Materials Science and Engineering, 2014, ID 825910, 24.
  • [7] V. A. Escobar-Barrios, D. V.S. Rodrigueez, N. A. C. Rincon and A. B. J. Salcedo, Modified Metallic Oxide for Efficient Photocatalysis, Photocatalysts-Applications and Attributes, Books on Demand, Nor dersted, Germany, 2019.
  • [8] K.A. Isai and V.S. Shrivastava, Photocatalytic Degradation of Methylene Blue using ZnO and 2% Fe-ZnO Semiconductor Nanoparticles Synthesized by Sol-gel Method: A Comparative Study, SN Appl. Sci, 2019, 1, 10, 1-11.
  • [9] A.G. Acedo-Mendoza, A. Infantes-Molina, D. Vargas-Hernandez, C.A Chavez-Sanchez, E. Rodrigues-Castellon, and J.C Tanori-Cordova, Photodegradation of Methylene Blue and Methyl Orange with CuO Supported on ZnO Photocatalysts: The Effect of Copper Loading and Reaction Temperature, Mater. Sci. Semicond. Process, 2021, 119, 10527-10530.
  • [10] A. Dana and S. Sheibani, CNT S-Copper Oxide Nanocomposite Photocatalyst with High Visible Light Degradation Efficiency, Adv.Powder Technol, 2021, 10, 32, 3760-3769.
  • [11] M. Khaksir, M. Amini, and D.M. Bogheei, Efficient and Green Oxidation Degradation of Methylene Blue using Mn-doped ZnO Nanoparticles (Zn1-xMnxO), Exp. Nanosci, 2015, 10, 16, 1256-1268.
  • [12] J. Zhang, Synergistic Effect of Photocatalysis and Thermocatalysis for Selective Oxidation of Aromatic Alcohol to Aromatic Aldehydes using Zn3In2S@ZnO Composite, Appl. Catal. B Environ, 2017, 218, 420-429.
  • [13] N. Soltani, Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles, Int. J. Mol. Sci, 2012, 13, 12242-12258.
  • [14] T. Ahmed, M. Naushad, G.E. Eldesoky et al., Effective and Fast Adsorptive Removal of Toxic Cationic Dye (MB) from Aqueous Medium using Amino-Functionalized Magnetic Multiwall Carbon Nanotubes, Journal of Molecular Liquids, 2019, 282, 154-161.
  • [15] K. V. Karthik, A.V. Raghu, K. R. Reddy et al., Green Synthesis of Cu-doped ZnO Nanoparticles and its Application for the Photocatalytic Degradation of Hazardous Organic Pollutants, Chemosphere, 2022, 287
  • [16] H. R. Mardani, M. Farunzani, M. Ziari and P. Biparva, Visible Light Photo-degradation of Methylene Blue over Fe or Cu Promoted ZnO Nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 27-33.
  • [17] S. G. Aragaw, F. K. Sabir, D. M. Andoshe, and O. A. Zelekew, Green Synthesis of p-Co3O4/n-ZnO Composite Catalyst with Eichhornia crassipes Plant Extract Mediated for Methylene Blue Degradation under Visible Light Irradiation, Materials Research Express, 2020, 7(9), Articles ID 095508.
  • [18] R. Uma, K. Ravichandran, S. Sriram and B. Shakthivel, Cost-Effective Fabrication of ZnO/g-C3N4 Composite Thin Films for Enhanced Photocatalytic Activity against three Different Dyes (MB, MG and RhB), Mater. Chem. Phys, 2017, 201, 147-155.
  • [19] Y. K. Manea, A. M. Khan. Enhanced Photocatalytic Degradation of Methylene blue and Adsorption of Metal Ions by SDS‑TiP Nano composite, Journal of Research Articles SN Appied Science, 2019, 1, 821.
  • [20] X. Chen, H. Sun, J. Zhang et al., Synthesis of Visible Light Responsive Iodine Doped Mesoporous TiO2 by using Biological Renewable Lignin as Template for Degradation of Toxic Organic Pollutants (MB), Applied Catalysis B: Environmental, 2019, 252, 152-163.
  • [21] M. Irani, T. Mohammadi and S. Mohebbi, Photocatalytic Degradation of Methylene Blue with ZnO Nanoparticles: A Joint Experimental and Theoretical Study, J. Mex. Chem. Soc, 2016, 60(4), 218-225.
  • [22] S. Shankar, M. Saroja, M. Venkatachalam, G. Parthasarathy, Photocatalytic Degradation of Methylene Blue Dye using ZnO Thin Films, International Journal of Chemistry. Concepts, 2017, 3, 180-188.
  • [23] W. Vallejo, A. Cantillo, B. Salazar, C. Diaz-Uribe, W. Ramos, E. Romero, M. Hurtado, Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiation, Catalyst, 2020, 10, 528.
  • [24] M. Khadaic, N. Ghasemi, B. Moradi and M. Rahimi, Removal of Methylene Blue from Wastewater by Adsorption onto ZnCl2 Activated Corn Husk Carbon Equilibrium Studies: Journal Chemistry, 2013, 10, 383985.
  • [25] Y. N. Teixeira, F. J. P. Filho, V. P. Bacurau, J. M. C. Menezes, A. Z. Fan, R. P. F. Melo, Removal of Methylene Blue from a Synthetic Effluent by Ionic Flocculation: Heliyon, 2022, 8(10); e10868.
  • [26] H. Eslami, S. S. Khavidak, F. Salehi, R. Khosravi, R. Fallahzadeh, R. Peirovi and S. Sadeghi, Biodegradation of Methylene Blue from Aqueous Solution by Bacteria Isolated from Contaminated Soil: Journal of Advance Environmental Health Research, 2017, 5, 10-15.
  • [27] S. Moharramzaheh and M. Baghdadi, In Situ Sludge Magnetic Impregnation (ISSMI) as an Efficient Technology for Enhancement of Sludge Sedimentation: Removal of Methylene Blue Using Nitrate Acid Treated Graphene Oxide as a Test Process: Journal of Environmental Chemical Engineering, 2016, 4 (2); 2090-2102.
  • [28] N. H. Thang, D. S. Khang, T. D Hai, D. T. Nga, and P. D. Tuan, Methylene Blue Adsorption Mechanism of Activated Carbon Synthesized from Cashew Nut Shells: RSC Advance, 2021, 11, 26563.
  • [29] Y. Kuang, X. Zhang, and S. Zhou, Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification: Water, 2022, 12, 587.
  • [30] Z. Derakhshan, M. A. Baghapour, Ranjbar, M. Faramarzian, Adsorption of Methylene Blue Dye from Aqueous Solution Modified Pumice Stone: Kinetics and Equilibrium Studies, Health Scope, 2013, 2(3), 136-44.
  • [31] G. D. C. Tovar, M. Contreras, W. Vallego, C. C. Lopez, Bio-removal of Methylene Blue from Aqueous Solution by Galactomyces Geotrichum KL20, Water, 2019, 11, 282-13.
  • [32] I. M. F. Cardoso, R. M. F. Cardoso, J. G. Esteves da Silva, Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment, Nanomaterials 11, 2021, 82045.
  • [33] E. M. Cuerda-Correa, M. F. Alexandre-Franco, C. Fernandez-Gonazalez, Advanced Oxidation Processes for the Removal of Antibiotics from Water, An Overview, Water, 2020, 12, 102.
  • [34] M. Z. B. Mukhlish, F. Najnin, M. M. Rahman, M. J. Uddin, Photocatalytic Degradation of Different Dyes using TiO2 with High Surface Area: A Kinetics Study: Journal of Scientific Research, 2013, 5(2), 301-314.
  • [35] M. M. Rashid, A. A. Ismail, I. Osama, I. A. Ibrahim, A. T. Kandil, Photocatalytic Decomposition of Dyes Using ZnO doped SnO2 Nanoparticles by Solvothermal Method: Arabian Journal of Chemistry, 2014, 7, 71-77.
  • [36] D. P. D. Gupta, A. H. Almuhtaseb, G. Sharma, A. Kumar, M. Naushad, T. A. Saad, M. Alshehri, Photocatalytic Degradation of Highly Toxic Dyes Using Chitoson-g-poly (acrylamide) over ZnS in the Presence of Solar Irradiation: Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 61-68.
  • [37] E. Repo, S. Rengaraj, S. Pulkka, E. Castangnola, S. Suihkenen, M. Sopanen, and M, Sillanpaa, Photocatalytic Degradation of Dyes by CdS Microspheres Under Near UV-and Blue LED Radiation: RSC Advance, 2013, 120, 206-214.
  • [38] M.B. Tahir, M. Sagir, A. Ahmed, WO3 Nanostructure Based Photocatalyst Approach Towards Degradation of Rhodamine B Dye: Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1107-1113.
  • [39] N. Elamin and A. Elsanousi, Synthesis of ZnO Nanostructures and their Photocatalytic Activities, Journal of Applied and Industrial Sciences, 2013, 1, 32-35.
  • [40] S. S. Momeni, M. Nasrollahzadeh, and A. Rustaiyan, Green Synthesis of the Cu-doped ZnO Nanoparticles Mediated by Eu Phobia prolifera, Leaf Extract and Investigation of their Catalytic Activity. Journal of Colloid and Interface Science, 2016, 472, 173-179.
  • [41] S. A. Khan, F. Noreen, S. Kanwal, A. Iqbal, and G. Hussain, Green Synthesis of ZnO and Cu-doped ZnO Nanoparticles from Leaf Extract of Abutilon indicum Clerodendrum infortunatum, Clerodendrum inerme and Investigation of their Biological and Photocatalytic Activities: Material Science and Engineering: C, 2018, 82, 46-59.
  • [42] R. Ullah, and J. Duttah, Photocatalytic Degradation of Organic Dyes with Mn-doped ZnO Nanoparticles: Journal of Hazardous Materials, 2008, 156, 194-200.
  • [43] R. E. Adam, H. Alnoor, G. Pozina, X. Liu, M. Willander, and O. Nur, Synthesis of Mg-doped ZnO NPs Via a Chemical Low-Temperature Method and Investigation of the Efficient Photocatalytic Activity for the Degradation of Dyes Under Solar Light: Solid State Sciences, 2020, 99, 106053.
  • [44] A. P.C. Olla, G. Reekman, A. S. Kelchtermans, D. D. Sloovere, et al., Photocatalytic Performance of Undoped and Al-doped ZnO Nanoparticles in the Degradation of Rhodamine B Under UV-Visible Light: The Role of Defect and Morphology: International Journal of Molecular Sciences, 2022, 23, 15459.
  • [45] X. Li, Z. Hu, J. Liu, D. L. Xiao, V. Zhang, and J. C. J. Jialin, Ga-doped ZnO Photonic Crystals with Enhanced Photocatalytic Activity and its Reaction Mechanism: Applied Catalysis B: Environmental, 2016, 195, 29-38.
  • [46] K. A. Isai and V. S. Shrivastava, Photocatalytic Degradation of Methylene Blue Using ZnO and 2% Fe-doped ZnO: SN Applied Science, 2019, 1, 1247.
  • [47] T. M. Elmorsi, M. H. Elsayed. and M. F. Bakir, Na-doped ZnO Nanoparticles Assisted Photocatalytic of Congo Red Dye Using Solar Light: American Journal of Chemistry, 2017 7(2); 48-57.
  • [48] A. Chauhan, R. Verma, R. Kumar, A. Sharma, P. Shandilija, X. Li, K. M. Batoo, A. Imran, S. Kulshrestha, and R. Kumar, Photocatalytic Dye Degradation and Antimicrobial Activiies of Pure and Ag-doped ZnO Using Cannobis Sativa Leaf Extract: Rep 10, 2020, 10, 7881.
  • [49] F. Naz, and K. Saeed, Investigation of Photocatalytic Behaviour of Undoped and Cr-doped ZnO Nanoparticles for the Degradation of Dye. Inorganic and Nano-Metal Chemistry, 2021, 51(1); 1-11.
  • [50] S. Wongrerkdee, S. Wongrerkdee, C. Boonrung, and S. Sujinnaparani, Enhanced Photocatalytic Degradation of Methylene Blue Using Ti-doped ZnO Nanoparticles Synthesized by Rapid Combustion: Toxic, 2023, 11(1); 33.
  • [51] T. M. Elmorsi, Towards Visible-Light Responsive Photocatalysts: Nano-potassium Doping Zinc Oxide (K-ZnO) for Degradation of 2-Naphthol: Physical Chemistry, 2017, 7(2); 42-53.
  • [52] P. Jongnavakit, P. Amoonpitoksuk, S. Suwanboon, and N. J. Ndiege, Preparation and Photocatalytic Activity of Cu-doped ZnO Thin Films Prepared by the Sol-gel Method, Applied Surface Science, 2012, 258, 8192-8198.
  • [53] M. Fu, Y. Li, P. Lu, J. Liu, and F. Dong, Sol-gel Synthesis of Cu-doped ZnO Nanoparticles for Enhanced Photocatalytic Degradation of Methyl Orange: Applied Surface Science, 2011, 28(4); 1587-1591.
  • [54] V. Vaino, G. Lervolino, and L. Rizzo, Cu-doped ZnO as Efficient Photocatalyst for the Oxidataion of Arsenite to Asenate under Visible Light, Appl. Catal. B Environ, 2018, 238, 471-479.
  • [55] P. K. Labhane, V. R. Huse, L. B. Patle, A. L. Chaudhari, and G. H. Sonawane, Synthesis of Cu Doped ZnO Nanoparticles: Crystallographic, Optical, FTIR, Morphological and Photocatalytic Study, Journal of Material Science and Chemical Engineering, 2015, 3(7); 39-51.
  • [56] R. M. Kulkarni, R. S. Malladi, and M. S. Hanagadakar, Cu-ZnO Nanoparticles for Photocatalytic Degradation of Methyl Orange, Research Article, 2018, 3(8), 521-525.
  • [57] A. L. Birukhait, K. S. Fedlu, M. A. Dinseh, S. G. Noto, K. Dong-Hau, E. M. Chen, D. D. Temesgen and A. Z. Osman, Biogenic Synthesis of Cu-doped ZnO Photocatalyst for the Removal of Organic Dye. Hindawi Bio-inorganic Chemistry and Application, 2022, Article ID8081494, 10.
  • [58] J. Ridwan, J. Yunus, A. A. Umar, A. A. Mohd-Raub, A. A. Hamza, J. Kazmi, A. B. Nandiyanto, R. E. Pawinanto, and I. Hamidah, Vertically Aligned Cu-doped ZnO Nanorods for Photocatalytic Activity Enhancement: International Journal of Electrochemical Science, 2022, 17, 220013.
  • [59] F. A. Ahmed, N. Sheeba, S. B. Meera, G. Manikandan, and M. Yuvashree, Green Synthesis Strategy for Producing Doped and Undoped ZnO Nanoparicles: Their Phototocatalytic Studies for Industrial Dye Degradation, Water Science and Technology, 2021, 84(10); 29-58.
  • [60] K. Awais, A. Pervaiz, K. Abdulhameed, M. Saleh, U. K. Mayeen, M. D. A. Mottahir, A. Mohd, U. D. Israf, G. C. Ratiram, K. Dileef, S. Rohit, R. I. F. Mohammad, and B. E. Talha, Effect of Cu Doping on ZnO Nanoparticles as a Photocatalyst for the Removal of Organic Wastewater: Hindawa Bioinorganic Chemistry and Application, 2022, Article ID 9459886, 12.
  • [61] F. Z. Nouasria, D. Selloum, A. Henni, S. Tingry, and J. Hrbac, Improvement of the Photocatalytic Performance of ZnO Thin Films in the UV and Sunlight Range by Cu Doping and Additional Coupling with Cu2O: Ceramic International, 2022, 48(9); 13283-13294.
  • [62] A. S. Aqeel, A. B. Muhammad, T. Aneela, D. C. Ali, A. C. Iftikhar, G. S. Ali, E. C. Seyed, W. Magnus, N. Omer, and H. I. Zafar, Facile Synthesis of Copper-Doped ZnO Nanorods for the Efficient Photodegradation of Methylene Blue and Methyl Orange, Ceramic International, 2019, 46(8), 9997-10005.
  • [63] K. Sini, S. Biswarup, and M. Satyabrata, Highly Efficient Photocatalytic Degradation of Organic Dyes by Cu Doped ZnO Nanostructures, Phys.Chem.Chem.Phys, 2015, 17, 25172.
  • [64] A. H. Yusuf, and U. Gaya, Mechanochemical Synthesis and Characterization of N-Doped TiO2 for the Photocatalytic Degradation of Caffeine, Nanochem. Res, 2018, 3(1), 29-35.
  • [65] C. Rojas-Michea, M. Morel, F. Garcia, G. Morell, and E. Mosquera, Influence of Copper Doping on Structural Morphological, Optical and Vibrational Properties of ZnO Nanoparticles Synthesized by Sol-gel Method, Surface and Interfaces, 2020, 21, Article ID 100700.
  • [66] J. Vasuderan, S. J. Jeyakumar, B. Arunkumar, M. Jothibas, A. Muthuvel, and S. Vijayalakshmi, Optical and Magnetic Investigation of Cu-doped ZnO Nanoparticles Synthesized by Solid State Method: Material Today Proceedings, 2022, 48, 438-442.
  • [67] N. M. Alatawi, L. Ben Saad, L. Soltane, A. Moulahi, J. Mjejri and F. Sediri, Enhanced Solar Photocatalytic Performance of Cu-doped nanosized ZnO, Polyhedron, 2021, 197, 115022.
  • [68] I. Muz, M. Kurban, Zinc Oxide Nanoclusters and their Potential Applications as CH4 and CO2 gas Sensors: Insight from DFT and TD-TDF, Journal of Computational Chemistry, 2022, 43(27), 1839-1847.
  • [69] I. Muz, Enhanced Adsorption of Fluoroquinolone Antibiotic on the Surface of the Mg-, Ca-, Fe- and Zn-doped C60 Fulterence: DFT and TD-DFT Approach, Materiald Today Communications, 2022, 31, 103798.
  • [70] M. Kurban, I. Muz, Theoretical Investigation of the Adsorption Behavior of Fluorouracial as an Anticancer Drug on Pristine and B-, Al-, Ga-doped C36 Nanotube, Journal of Molecular Liquids, 2020, 309, 113209.
  • [71] I. Muz, M. Kurban, A First Principles Evaluation on the Interaction of 1,3, 4-Oxidiazole with Pristine and B-, Al-,Ga-doped C60 Fullerences, Journal of Molecular Liquids, 2021, 335, 116181.
  • [72] I. Muz, F. Goktas, M. Kurban, 3d-transition Metals (Cu, Fe, Mn, Ni, V, and Zn)-doped Pentacene π-Conjugated Organic Molecule for Photovoltaic Applications: DFT and TD-DTF Calculations, Theoretical Chemistry Accounts, 2020, 139(2), 23.
  • [73] L. Anju Chanu, W. Joychandra Singh, K. Jugeshwar Singh, K. Nomita Devi, Effect of Operational Parameters on the Photocatalytic Degradation of Methylene Blue Dye Solution Using Manganese Doped ZnO Nanoparticles: Results in Physics, 2019, 12, 1230-1237.
  • [74] D. Toloman, A. Popa, M. Sten, M. Stefan, G. Vlad, and S. Ulinic, Visible-Light Driven Photocatalytic Degradation of Different Pollutants Using Cu-doped ZnO MWCNT Nanocomposite, Journal of Alloys and Compound, 2021, 886, 159010.
  • [75] P. Suresh, S. Michael, N. Nicholas, G. Miguel, K. Athanassion, H. E. Muhammad, S.M, Patrick, W.J. Jeremy, B. Anthony, O. Kevin, D. D. Dionysios, A Review on the Visible Light Active ZnO Photocatalysts for Environmental Applications: Chemosphere, 2012; 125, 331-349.
  • [76] A. Akhund, and A. Habibi-Yangjeh, Ternaary Magnetic g-C3N4/Fe3O4/AgI Nanocomposites: Novel Recyclable Photocatalysts with Enhanced Activity in Degradation of Different Pollutants under Visible Ligh: Material Chemical Physics. 2016, 174, 59-69.
  • [77] M. Shellofteh-Gohari, and A. Habibi-Yangjeh, Novel Magnetically Separable Fe3O4@ZnO/AgCl Nanocomposites with Highly Enhanced Photocatalytic Activities under Visible Light Irradiation: Sep Purifi Technol, 2015, 147, 194-202.
  • [78] J. Wang, W. J. Jiang, D. Liu, Z. Wei, Y. F. Zhu, Photocatalytic Performance Enhanced via Surface Bismuth Vacancy of Bi6S2O15 Core/Shell Nanowires: Applied Catalysis of B Environment, 2015; 176: 306-314.
  • [79] N. Huang, J.X. Shu, Z. H. Wang, M. Chen, C. G. Ren, W. Zhang, One Step Pyrolytic Synthesis of ZnO Nanorods with Enhanced Photocatalytic Activity and High Photostability Under Visible and UV Light Irradiation: Journal of Alloys Compounds. 2015, 648: 919-929.

Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-tunable p-type ZnO Nanoparticles.

Year 2023, Volume: 6 Issue: 2, 1 - 14, 18.12.2023
https://doi.org/10.54565/jphcfum.1321022

Abstract

Removal of phototoxicity and zootoxicity pollutants from the aqueous environment is of great importance to human and aquatic life. Copper-tunable p-type zinc oxide (Cu-ZnO) photocatalysts have been prepared by the chemical co-precipitation method. The structural, morphological, elemental and optical properties of the obtained catalysts were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) analysis and ultraviolet-visible (UV-Vis) spectrophotometry. The diffraction patterns of the as-synthesized catalysts were matched with that of the hexagonal wurtzite structure for the standard ZnO nanoparticles. The photocatalytic activity of the prepared Cu-doped ZnO catalyst was evaluated using methylene blue (MB) dye under various conditions. The effect of operational parameters such as MB initial concentration, catalyst dosage, and solution pH was optimized using a face central composite design (FCCD) of the response surface methodology (RSM). The optimum photodegradation efficiency of 98.00% was found at 0.30g/L catalyst dose, 10.00mg/L initial concentration of MB and initial pH at 6.00. The degradation model was statistically remarkable with p < 0.0001% in which the MB initial concentration and solution pH were the most significant variables influencing the removal of MB over the Cu tunable p-type ZnO photocatalyst under visible light irradiation. Finally, the photocatalytic degradation of MB using the undoped and Cu-doped ZnO nanoparticles was nicely fitted pseudo-first-order kinetics scheme.

Supporting Institution

Federal University Dutsinma Katsina state Nigeria

Project Number

2

References

  • [1] V. I. Parvulescus, F. Epron, H. Garcia and P. Grangers, Recent Progress and Prospect in Catalytic Water Treatment: Chemical Reviews, 2021, 122, 101-112.
  • [2] V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak and S. Agarwal, Chemical Treatment Technologies for Waste-water Recycling, An Overview: RSC Advance, 2012, 2 (16), 6380
  • [3] P. Rajasulochana and V. Preethy, Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage water-a Comprehensive Review: Resource Efficient Technologies, 2016, 2(4), 175-184.
  • [4] A. Kadam, R. Dhabbe, A. Gophane, T. Sathe and K.Garadkar, Template Free Synthesis of ZnO/Ag2O Nanocomposites as a Highly Efficient Visible Active Photocatalyst for Detoxification of Methyl Orange: Journal of Photochemistry and Photobiology, 2016, 154, 24-33.
  • [5] G. Yang, D. Zhang, G. Zhu, A Sm- MOF/GO Nanocomposite Membrane for Efficient Organic Dye Removal from Wastewater: RSC Advance, 2020, 10 (14), 8540-8547.
  • [6] M. T. Amin, A. A. Alazba and U. Manzoor, A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials: Advances in Materials Science and Engineering, 2014, ID 825910, 24.
  • [7] V. A. Escobar-Barrios, D. V.S. Rodrigueez, N. A. C. Rincon and A. B. J. Salcedo, Modified Metallic Oxide for Efficient Photocatalysis, Photocatalysts-Applications and Attributes, Books on Demand, Nor dersted, Germany, 2019.
  • [8] K.A. Isai and V.S. Shrivastava, Photocatalytic Degradation of Methylene Blue using ZnO and 2% Fe-ZnO Semiconductor Nanoparticles Synthesized by Sol-gel Method: A Comparative Study, SN Appl. Sci, 2019, 1, 10, 1-11.
  • [9] A.G. Acedo-Mendoza, A. Infantes-Molina, D. Vargas-Hernandez, C.A Chavez-Sanchez, E. Rodrigues-Castellon, and J.C Tanori-Cordova, Photodegradation of Methylene Blue and Methyl Orange with CuO Supported on ZnO Photocatalysts: The Effect of Copper Loading and Reaction Temperature, Mater. Sci. Semicond. Process, 2021, 119, 10527-10530.
  • [10] A. Dana and S. Sheibani, CNT S-Copper Oxide Nanocomposite Photocatalyst with High Visible Light Degradation Efficiency, Adv.Powder Technol, 2021, 10, 32, 3760-3769.
  • [11] M. Khaksir, M. Amini, and D.M. Bogheei, Efficient and Green Oxidation Degradation of Methylene Blue using Mn-doped ZnO Nanoparticles (Zn1-xMnxO), Exp. Nanosci, 2015, 10, 16, 1256-1268.
  • [12] J. Zhang, Synergistic Effect of Photocatalysis and Thermocatalysis for Selective Oxidation of Aromatic Alcohol to Aromatic Aldehydes using Zn3In2S@ZnO Composite, Appl. Catal. B Environ, 2017, 218, 420-429.
  • [13] N. Soltani, Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles, Int. J. Mol. Sci, 2012, 13, 12242-12258.
  • [14] T. Ahmed, M. Naushad, G.E. Eldesoky et al., Effective and Fast Adsorptive Removal of Toxic Cationic Dye (MB) from Aqueous Medium using Amino-Functionalized Magnetic Multiwall Carbon Nanotubes, Journal of Molecular Liquids, 2019, 282, 154-161.
  • [15] K. V. Karthik, A.V. Raghu, K. R. Reddy et al., Green Synthesis of Cu-doped ZnO Nanoparticles and its Application for the Photocatalytic Degradation of Hazardous Organic Pollutants, Chemosphere, 2022, 287
  • [16] H. R. Mardani, M. Farunzani, M. Ziari and P. Biparva, Visible Light Photo-degradation of Methylene Blue over Fe or Cu Promoted ZnO Nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 27-33.
  • [17] S. G. Aragaw, F. K. Sabir, D. M. Andoshe, and O. A. Zelekew, Green Synthesis of p-Co3O4/n-ZnO Composite Catalyst with Eichhornia crassipes Plant Extract Mediated for Methylene Blue Degradation under Visible Light Irradiation, Materials Research Express, 2020, 7(9), Articles ID 095508.
  • [18] R. Uma, K. Ravichandran, S. Sriram and B. Shakthivel, Cost-Effective Fabrication of ZnO/g-C3N4 Composite Thin Films for Enhanced Photocatalytic Activity against three Different Dyes (MB, MG and RhB), Mater. Chem. Phys, 2017, 201, 147-155.
  • [19] Y. K. Manea, A. M. Khan. Enhanced Photocatalytic Degradation of Methylene blue and Adsorption of Metal Ions by SDS‑TiP Nano composite, Journal of Research Articles SN Appied Science, 2019, 1, 821.
  • [20] X. Chen, H. Sun, J. Zhang et al., Synthesis of Visible Light Responsive Iodine Doped Mesoporous TiO2 by using Biological Renewable Lignin as Template for Degradation of Toxic Organic Pollutants (MB), Applied Catalysis B: Environmental, 2019, 252, 152-163.
  • [21] M. Irani, T. Mohammadi and S. Mohebbi, Photocatalytic Degradation of Methylene Blue with ZnO Nanoparticles: A Joint Experimental and Theoretical Study, J. Mex. Chem. Soc, 2016, 60(4), 218-225.
  • [22] S. Shankar, M. Saroja, M. Venkatachalam, G. Parthasarathy, Photocatalytic Degradation of Methylene Blue Dye using ZnO Thin Films, International Journal of Chemistry. Concepts, 2017, 3, 180-188.
  • [23] W. Vallejo, A. Cantillo, B. Salazar, C. Diaz-Uribe, W. Ramos, E. Romero, M. Hurtado, Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiation, Catalyst, 2020, 10, 528.
  • [24] M. Khadaic, N. Ghasemi, B. Moradi and M. Rahimi, Removal of Methylene Blue from Wastewater by Adsorption onto ZnCl2 Activated Corn Husk Carbon Equilibrium Studies: Journal Chemistry, 2013, 10, 383985.
  • [25] Y. N. Teixeira, F. J. P. Filho, V. P. Bacurau, J. M. C. Menezes, A. Z. Fan, R. P. F. Melo, Removal of Methylene Blue from a Synthetic Effluent by Ionic Flocculation: Heliyon, 2022, 8(10); e10868.
  • [26] H. Eslami, S. S. Khavidak, F. Salehi, R. Khosravi, R. Fallahzadeh, R. Peirovi and S. Sadeghi, Biodegradation of Methylene Blue from Aqueous Solution by Bacteria Isolated from Contaminated Soil: Journal of Advance Environmental Health Research, 2017, 5, 10-15.
  • [27] S. Moharramzaheh and M. Baghdadi, In Situ Sludge Magnetic Impregnation (ISSMI) as an Efficient Technology for Enhancement of Sludge Sedimentation: Removal of Methylene Blue Using Nitrate Acid Treated Graphene Oxide as a Test Process: Journal of Environmental Chemical Engineering, 2016, 4 (2); 2090-2102.
  • [28] N. H. Thang, D. S. Khang, T. D Hai, D. T. Nga, and P. D. Tuan, Methylene Blue Adsorption Mechanism of Activated Carbon Synthesized from Cashew Nut Shells: RSC Advance, 2021, 11, 26563.
  • [29] Y. Kuang, X. Zhang, and S. Zhou, Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification: Water, 2022, 12, 587.
  • [30] Z. Derakhshan, M. A. Baghapour, Ranjbar, M. Faramarzian, Adsorption of Methylene Blue Dye from Aqueous Solution Modified Pumice Stone: Kinetics and Equilibrium Studies, Health Scope, 2013, 2(3), 136-44.
  • [31] G. D. C. Tovar, M. Contreras, W. Vallego, C. C. Lopez, Bio-removal of Methylene Blue from Aqueous Solution by Galactomyces Geotrichum KL20, Water, 2019, 11, 282-13.
  • [32] I. M. F. Cardoso, R. M. F. Cardoso, J. G. Esteves da Silva, Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment, Nanomaterials 11, 2021, 82045.
  • [33] E. M. Cuerda-Correa, M. F. Alexandre-Franco, C. Fernandez-Gonazalez, Advanced Oxidation Processes for the Removal of Antibiotics from Water, An Overview, Water, 2020, 12, 102.
  • [34] M. Z. B. Mukhlish, F. Najnin, M. M. Rahman, M. J. Uddin, Photocatalytic Degradation of Different Dyes using TiO2 with High Surface Area: A Kinetics Study: Journal of Scientific Research, 2013, 5(2), 301-314.
  • [35] M. M. Rashid, A. A. Ismail, I. Osama, I. A. Ibrahim, A. T. Kandil, Photocatalytic Decomposition of Dyes Using ZnO doped SnO2 Nanoparticles by Solvothermal Method: Arabian Journal of Chemistry, 2014, 7, 71-77.
  • [36] D. P. D. Gupta, A. H. Almuhtaseb, G. Sharma, A. Kumar, M. Naushad, T. A. Saad, M. Alshehri, Photocatalytic Degradation of Highly Toxic Dyes Using Chitoson-g-poly (acrylamide) over ZnS in the Presence of Solar Irradiation: Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 61-68.
  • [37] E. Repo, S. Rengaraj, S. Pulkka, E. Castangnola, S. Suihkenen, M. Sopanen, and M, Sillanpaa, Photocatalytic Degradation of Dyes by CdS Microspheres Under Near UV-and Blue LED Radiation: RSC Advance, 2013, 120, 206-214.
  • [38] M.B. Tahir, M. Sagir, A. Ahmed, WO3 Nanostructure Based Photocatalyst Approach Towards Degradation of Rhodamine B Dye: Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1107-1113.
  • [39] N. Elamin and A. Elsanousi, Synthesis of ZnO Nanostructures and their Photocatalytic Activities, Journal of Applied and Industrial Sciences, 2013, 1, 32-35.
  • [40] S. S. Momeni, M. Nasrollahzadeh, and A. Rustaiyan, Green Synthesis of the Cu-doped ZnO Nanoparticles Mediated by Eu Phobia prolifera, Leaf Extract and Investigation of their Catalytic Activity. Journal of Colloid and Interface Science, 2016, 472, 173-179.
  • [41] S. A. Khan, F. Noreen, S. Kanwal, A. Iqbal, and G. Hussain, Green Synthesis of ZnO and Cu-doped ZnO Nanoparticles from Leaf Extract of Abutilon indicum Clerodendrum infortunatum, Clerodendrum inerme and Investigation of their Biological and Photocatalytic Activities: Material Science and Engineering: C, 2018, 82, 46-59.
  • [42] R. Ullah, and J. Duttah, Photocatalytic Degradation of Organic Dyes with Mn-doped ZnO Nanoparticles: Journal of Hazardous Materials, 2008, 156, 194-200.
  • [43] R. E. Adam, H. Alnoor, G. Pozina, X. Liu, M. Willander, and O. Nur, Synthesis of Mg-doped ZnO NPs Via a Chemical Low-Temperature Method and Investigation of the Efficient Photocatalytic Activity for the Degradation of Dyes Under Solar Light: Solid State Sciences, 2020, 99, 106053.
  • [44] A. P.C. Olla, G. Reekman, A. S. Kelchtermans, D. D. Sloovere, et al., Photocatalytic Performance of Undoped and Al-doped ZnO Nanoparticles in the Degradation of Rhodamine B Under UV-Visible Light: The Role of Defect and Morphology: International Journal of Molecular Sciences, 2022, 23, 15459.
  • [45] X. Li, Z. Hu, J. Liu, D. L. Xiao, V. Zhang, and J. C. J. Jialin, Ga-doped ZnO Photonic Crystals with Enhanced Photocatalytic Activity and its Reaction Mechanism: Applied Catalysis B: Environmental, 2016, 195, 29-38.
  • [46] K. A. Isai and V. S. Shrivastava, Photocatalytic Degradation of Methylene Blue Using ZnO and 2% Fe-doped ZnO: SN Applied Science, 2019, 1, 1247.
  • [47] T. M. Elmorsi, M. H. Elsayed. and M. F. Bakir, Na-doped ZnO Nanoparticles Assisted Photocatalytic of Congo Red Dye Using Solar Light: American Journal of Chemistry, 2017 7(2); 48-57.
  • [48] A. Chauhan, R. Verma, R. Kumar, A. Sharma, P. Shandilija, X. Li, K. M. Batoo, A. Imran, S. Kulshrestha, and R. Kumar, Photocatalytic Dye Degradation and Antimicrobial Activiies of Pure and Ag-doped ZnO Using Cannobis Sativa Leaf Extract: Rep 10, 2020, 10, 7881.
  • [49] F. Naz, and K. Saeed, Investigation of Photocatalytic Behaviour of Undoped and Cr-doped ZnO Nanoparticles for the Degradation of Dye. Inorganic and Nano-Metal Chemistry, 2021, 51(1); 1-11.
  • [50] S. Wongrerkdee, S. Wongrerkdee, C. Boonrung, and S. Sujinnaparani, Enhanced Photocatalytic Degradation of Methylene Blue Using Ti-doped ZnO Nanoparticles Synthesized by Rapid Combustion: Toxic, 2023, 11(1); 33.
  • [51] T. M. Elmorsi, Towards Visible-Light Responsive Photocatalysts: Nano-potassium Doping Zinc Oxide (K-ZnO) for Degradation of 2-Naphthol: Physical Chemistry, 2017, 7(2); 42-53.
  • [52] P. Jongnavakit, P. Amoonpitoksuk, S. Suwanboon, and N. J. Ndiege, Preparation and Photocatalytic Activity of Cu-doped ZnO Thin Films Prepared by the Sol-gel Method, Applied Surface Science, 2012, 258, 8192-8198.
  • [53] M. Fu, Y. Li, P. Lu, J. Liu, and F. Dong, Sol-gel Synthesis of Cu-doped ZnO Nanoparticles for Enhanced Photocatalytic Degradation of Methyl Orange: Applied Surface Science, 2011, 28(4); 1587-1591.
  • [54] V. Vaino, G. Lervolino, and L. Rizzo, Cu-doped ZnO as Efficient Photocatalyst for the Oxidataion of Arsenite to Asenate under Visible Light, Appl. Catal. B Environ, 2018, 238, 471-479.
  • [55] P. K. Labhane, V. R. Huse, L. B. Patle, A. L. Chaudhari, and G. H. Sonawane, Synthesis of Cu Doped ZnO Nanoparticles: Crystallographic, Optical, FTIR, Morphological and Photocatalytic Study, Journal of Material Science and Chemical Engineering, 2015, 3(7); 39-51.
  • [56] R. M. Kulkarni, R. S. Malladi, and M. S. Hanagadakar, Cu-ZnO Nanoparticles for Photocatalytic Degradation of Methyl Orange, Research Article, 2018, 3(8), 521-525.
  • [57] A. L. Birukhait, K. S. Fedlu, M. A. Dinseh, S. G. Noto, K. Dong-Hau, E. M. Chen, D. D. Temesgen and A. Z. Osman, Biogenic Synthesis of Cu-doped ZnO Photocatalyst for the Removal of Organic Dye. Hindawi Bio-inorganic Chemistry and Application, 2022, Article ID8081494, 10.
  • [58] J. Ridwan, J. Yunus, A. A. Umar, A. A. Mohd-Raub, A. A. Hamza, J. Kazmi, A. B. Nandiyanto, R. E. Pawinanto, and I. Hamidah, Vertically Aligned Cu-doped ZnO Nanorods for Photocatalytic Activity Enhancement: International Journal of Electrochemical Science, 2022, 17, 220013.
  • [59] F. A. Ahmed, N. Sheeba, S. B. Meera, G. Manikandan, and M. Yuvashree, Green Synthesis Strategy for Producing Doped and Undoped ZnO Nanoparicles: Their Phototocatalytic Studies for Industrial Dye Degradation, Water Science and Technology, 2021, 84(10); 29-58.
  • [60] K. Awais, A. Pervaiz, K. Abdulhameed, M. Saleh, U. K. Mayeen, M. D. A. Mottahir, A. Mohd, U. D. Israf, G. C. Ratiram, K. Dileef, S. Rohit, R. I. F. Mohammad, and B. E. Talha, Effect of Cu Doping on ZnO Nanoparticles as a Photocatalyst for the Removal of Organic Wastewater: Hindawa Bioinorganic Chemistry and Application, 2022, Article ID 9459886, 12.
  • [61] F. Z. Nouasria, D. Selloum, A. Henni, S. Tingry, and J. Hrbac, Improvement of the Photocatalytic Performance of ZnO Thin Films in the UV and Sunlight Range by Cu Doping and Additional Coupling with Cu2O: Ceramic International, 2022, 48(9); 13283-13294.
  • [62] A. S. Aqeel, A. B. Muhammad, T. Aneela, D. C. Ali, A. C. Iftikhar, G. S. Ali, E. C. Seyed, W. Magnus, N. Omer, and H. I. Zafar, Facile Synthesis of Copper-Doped ZnO Nanorods for the Efficient Photodegradation of Methylene Blue and Methyl Orange, Ceramic International, 2019, 46(8), 9997-10005.
  • [63] K. Sini, S. Biswarup, and M. Satyabrata, Highly Efficient Photocatalytic Degradation of Organic Dyes by Cu Doped ZnO Nanostructures, Phys.Chem.Chem.Phys, 2015, 17, 25172.
  • [64] A. H. Yusuf, and U. Gaya, Mechanochemical Synthesis and Characterization of N-Doped TiO2 for the Photocatalytic Degradation of Caffeine, Nanochem. Res, 2018, 3(1), 29-35.
  • [65] C. Rojas-Michea, M. Morel, F. Garcia, G. Morell, and E. Mosquera, Influence of Copper Doping on Structural Morphological, Optical and Vibrational Properties of ZnO Nanoparticles Synthesized by Sol-gel Method, Surface and Interfaces, 2020, 21, Article ID 100700.
  • [66] J. Vasuderan, S. J. Jeyakumar, B. Arunkumar, M. Jothibas, A. Muthuvel, and S. Vijayalakshmi, Optical and Magnetic Investigation of Cu-doped ZnO Nanoparticles Synthesized by Solid State Method: Material Today Proceedings, 2022, 48, 438-442.
  • [67] N. M. Alatawi, L. Ben Saad, L. Soltane, A. Moulahi, J. Mjejri and F. Sediri, Enhanced Solar Photocatalytic Performance of Cu-doped nanosized ZnO, Polyhedron, 2021, 197, 115022.
  • [68] I. Muz, M. Kurban, Zinc Oxide Nanoclusters and their Potential Applications as CH4 and CO2 gas Sensors: Insight from DFT and TD-TDF, Journal of Computational Chemistry, 2022, 43(27), 1839-1847.
  • [69] I. Muz, Enhanced Adsorption of Fluoroquinolone Antibiotic on the Surface of the Mg-, Ca-, Fe- and Zn-doped C60 Fulterence: DFT and TD-DFT Approach, Materiald Today Communications, 2022, 31, 103798.
  • [70] M. Kurban, I. Muz, Theoretical Investigation of the Adsorption Behavior of Fluorouracial as an Anticancer Drug on Pristine and B-, Al-, Ga-doped C36 Nanotube, Journal of Molecular Liquids, 2020, 309, 113209.
  • [71] I. Muz, M. Kurban, A First Principles Evaluation on the Interaction of 1,3, 4-Oxidiazole with Pristine and B-, Al-,Ga-doped C60 Fullerences, Journal of Molecular Liquids, 2021, 335, 116181.
  • [72] I. Muz, F. Goktas, M. Kurban, 3d-transition Metals (Cu, Fe, Mn, Ni, V, and Zn)-doped Pentacene π-Conjugated Organic Molecule for Photovoltaic Applications: DFT and TD-DTF Calculations, Theoretical Chemistry Accounts, 2020, 139(2), 23.
  • [73] L. Anju Chanu, W. Joychandra Singh, K. Jugeshwar Singh, K. Nomita Devi, Effect of Operational Parameters on the Photocatalytic Degradation of Methylene Blue Dye Solution Using Manganese Doped ZnO Nanoparticles: Results in Physics, 2019, 12, 1230-1237.
  • [74] D. Toloman, A. Popa, M. Sten, M. Stefan, G. Vlad, and S. Ulinic, Visible-Light Driven Photocatalytic Degradation of Different Pollutants Using Cu-doped ZnO MWCNT Nanocomposite, Journal of Alloys and Compound, 2021, 886, 159010.
  • [75] P. Suresh, S. Michael, N. Nicholas, G. Miguel, K. Athanassion, H. E. Muhammad, S.M, Patrick, W.J. Jeremy, B. Anthony, O. Kevin, D. D. Dionysios, A Review on the Visible Light Active ZnO Photocatalysts for Environmental Applications: Chemosphere, 2012; 125, 331-349.
  • [76] A. Akhund, and A. Habibi-Yangjeh, Ternaary Magnetic g-C3N4/Fe3O4/AgI Nanocomposites: Novel Recyclable Photocatalysts with Enhanced Activity in Degradation of Different Pollutants under Visible Ligh: Material Chemical Physics. 2016, 174, 59-69.
  • [77] M. Shellofteh-Gohari, and A. Habibi-Yangjeh, Novel Magnetically Separable Fe3O4@ZnO/AgCl Nanocomposites with Highly Enhanced Photocatalytic Activities under Visible Light Irradiation: Sep Purifi Technol, 2015, 147, 194-202.
  • [78] J. Wang, W. J. Jiang, D. Liu, Z. Wei, Y. F. Zhu, Photocatalytic Performance Enhanced via Surface Bismuth Vacancy of Bi6S2O15 Core/Shell Nanowires: Applied Catalysis of B Environment, 2015; 176: 306-314.
  • [79] N. Huang, J.X. Shu, Z. H. Wang, M. Chen, C. G. Ren, W. Zhang, One Step Pyrolytic Synthesis of ZnO Nanorods with Enhanced Photocatalytic Activity and High Photostability Under Visible and UV Light Irradiation: Journal of Alloys Compounds. 2015, 648: 919-929.
There are 79 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Abdullahi Muhammad 0000-0002-2313-4621

Kamaludeen Sulaiman Kabo 0000-0003-4000-6901

Auwal Yushau 0000-0002-1713-9434

Project Number 2
Publication Date December 18, 2023
Submission Date June 29, 2023
Acceptance Date July 1, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Muhammad, A., Sulaiman Kabo, K., & Yushau, A. (2023). Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-tunable p-type ZnO Nanoparticles. Journal of Physical Chemistry and Functional Materials, 6(2), 1-14. https://doi.org/10.54565/jphcfum.1321022
AMA Muhammad A, Sulaiman Kabo K, Yushau A. Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-tunable p-type ZnO Nanoparticles. Journal of Physical Chemistry and Functional Materials. December 2023;6(2):1-14. doi:10.54565/jphcfum.1321022
Chicago Muhammad, Abdullahi, Kamaludeen Sulaiman Kabo, and Auwal Yushau. “Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-Tunable P-Type ZnO Nanoparticles”. Journal of Physical Chemistry and Functional Materials 6, no. 2 (December 2023): 1-14. https://doi.org/10.54565/jphcfum.1321022.
EndNote Muhammad A, Sulaiman Kabo K, Yushau A (December 1, 2023) Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-tunable p-type ZnO Nanoparticles. Journal of Physical Chemistry and Functional Materials 6 2 1–14.
IEEE A. Muhammad, K. Sulaiman Kabo, and A. Yushau, “Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-tunable p-type ZnO Nanoparticles”., Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, pp. 1–14, 2023, doi: 10.54565/jphcfum.1321022.
ISNAD Muhammad, Abdullahi et al. “Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-Tunable P-Type ZnO Nanoparticles”. Journal of Physical Chemistry and Functional Materials 6/2 (December 2023), 1-14. https://doi.org/10.54565/jphcfum.1321022.
JAMA Muhammad A, Sulaiman Kabo K, Yushau A. Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-tunable p-type ZnO Nanoparticles. Journal of Physical Chemistry and Functional Materials. 2023;6:1–14.
MLA Muhammad, Abdullahi et al. “Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-Tunable P-Type ZnO Nanoparticles”. Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, 2023, pp. 1-14, doi:10.54565/jphcfum.1321022.
Vancouver Muhammad A, Sulaiman Kabo K, Yushau A. Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-tunable p-type ZnO Nanoparticles. Journal of Physical Chemistry and Functional Materials. 2023;6(2):1-14.