Research Article
BibTex RIS Cite

Investigation of Recyclability of Domestic Gray Water

Year 2023, Volume: 7 Issue: 1, 6 - 18, 30.06.2023
https://doi.org/10.29002/asujse.1213829

Abstract

It is aimed to treat and reuse gray water in order to meet the increased water requirements as a result of the decrease in water resources. Purifying and recycling gray water with the aim of protecting drinking water is an alternative resource. Gray water from showers, bathroom and kitchen sinks, washing machines and dishwashers constitute a large part of domestic wastewater. Gray water contains a low amount of total pollutant load. Gray waters, which include waste water other than toilets, constitute 55-80% of the total domestic water use.
The gray water used in this study was obtained from a residence of 20-24 people consisting of 6 flats in Kocaeli province, Izmit district. Among the various gray water recycling treatment technologies, SBR (Sequential Batch Reactor) is an effective treatment technique for reducing dissolved suspended solids and nutrient removal from gray water. A lab-scale SBR was designed as a pilot plant to treat gray water. Water samples were collected at 1-day and 2.5-day hydraulic reaction times (HRT). In the results obtained in 1 day of HRT; avg. pH value 7.32, avg. EC value 586.8 µS/cm, avg. DO value 3.30 mg/L, avg. turbidity value of 7.39 NTU and avg. turbidity removal efficiency 99%, avg. TSS value of 6.92 mg/L and avg. TSS removal efficiency 98%, avg. phosphorus value is 7.51 mg/L and avg. phosphorus removal efficiency 84%, avg. nitrogen value is 15.92 mg/L and avg. nitrogen removal efficiency 59% and avg. COD value is 569 mg/L and avg. removal efficiency was measured as 69%. In the results obtained in 2.5 days of HRT; avg. pH value 7.76, avg. EC value 574.6 µS/cm, avg. DO value 5.07 mg/L, avg. turbidity value of 4.34 NTU and avg. turbidity removal efficiency 99%, avg. TSS value of 4.72 mg/L and avg. TSS removal efficiency 98%, avg. phosphorus value is 3.79 mg/L and avg. phosphorus removal efficiency 89%, avg. nitrogen value 13.02 mg/L and avg. nitrogen removal efficiency 54% and avg. COD value is 368 mg/L and avg. the removal efficiency was measured as 70%.

Project Number

2020-7-24-32

References

  • [1] Z. Huang, X. Yuan, X. Liu, (2021). “One of the key drivers of changes in global water scarcity: withdrawal and water availability”, Journal of Hydrology, 601, 126658.
  • [2] M. Kummu, J.H.A. Guillaume, H.D. Moel, S. Eisner, M. Flörke, M. Porkka, S. Siebert, T.I.E. Veldkamp, P.J. Ward, (2016). “The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability”, Scientific Reports, 6(1), 1-16.
  • [3] S. Liu, D. Butler, F.A. Memon, C. Makropoulos, L. Avery, B. Jefferson, (2010). “Impacts of residence time during storage on potential of water saving for grey water recycling system”, Water Research, 44(1), 267-277.
  • [4] Ü. Hristov, I. Barreiro-Hurle, G.Salputra, M. Blanco, P. Witzke, (2021). “Reuse of Treated Water in European Agriculture: The Potential to Relieve Water Scarcity Under Climate Change” Agricultural Water Management, 251, 106872.
  • [5] A. Boyer, Y. Lay, P. Marthy, (2021). “Coping with Scarcity: The Construction of the Water Conservation Mandate in Newspapers (1992-208)”, Global Environmental Change, 71, 102387.
  • [6] Ç.B. Muluk, B. Kurt, A. Turak, A., Türker, M.A. Çalışkan, Ö. Balkız, S. Gümrükçü, G. Sarıgül, U. Zeydanlı, (2013). “Türkiye’de Suyun Durumu ve Su Yönetiminde Yeni Yaklaşımlar: Çevresel Perspektif”, İş Dünyası ve Sürdürülebilir Kalkınma Derneği- Doğa Koruma Merkezi, 8, 9.
  • [7] Y.M. Patil, G.R. Munavalli, (2016). “Performance evalutation of an Integrated On-site Greywater Treatment System in a tropical region” Ecological Engineering, 95, 492-500.
  • [8] E. Eriksson, K. Auffarth, M. Henze, A. Ledin, (2002). “Characteristics of grey wastewater”, Urban Water, 4(1), 85-104.
  • [9] A.A. Al-Geethi, A.N. Efaq, J.D. Bala, İ. Norli, M.O. Abdel-Monem, M.O., Ab.Kadir, (2018). “Removal of pathogenic bacteria from sawage-reated effluent and biosolids for agricultural puposes” Applied Water Science, 8(2), 1-25.
  • [10] A. Gross, A., Maimon, Y. Alfiya, E. Friedler, (2015). “Greywater Reuse”, (CRC Press).
  • [11] K. Khanam, S.K. Patidar, (2022). “Greywater characteristics in developed and developing countries” Materials Today: Proceedings, 57, 1494-1499.
  • [12] A. Morel, S. Diener, (2006). “Grey water management inlow and middle-income countries Water and Sanitation in Devoloping Countries (Sandec)”, Swiss Federal institute of Aquatic Science and Technology.
  • [13] G. Üstün, A. Tırpancı, (2015). “Gri suyun arıtımı ve yeniden kullanımı”, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(2), 119-139.
  • [14] M. Chen, S. Ding, J. Lin, Z. Fu, W. Tang, X. Fan, M. Gong, Y. Wang, (2019). “Seasonal changes of lead mobility in sediments in algea-and macrophyte-dominated zones of the lake”, Science of The Total Environmental, 660, 484-492.
  • [15] J.C.A. Marin, A.H. Caravelli, N.E. Zaritzky, (2016). “Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor”, Bioresource Technology, 200, 380-387.
  • [16] K. Kolecka, M. Gajewsha, S. Cyawa, P. Stephowski, M. Caban, (2020). “Is Sequential Batch Reactor An Effective Technology To Protect Against Non-Steroidal Anti-Inflammatory Drugs And Paracetamols In Recipient-Treated Wastewater”, Bioresource Technology, 318, 124068.
  • [17] B.S. Akın, A. Uğurlu, (2005). “Monitoring and control of biological nutrient removal in a Sequencing batch Reactor”, Process Biochemistry, 40(8), 2873-2878.
  • [18] M. Lamine, L. Bousselmi, A. Ghrabi, (2007). “Biological treatment of grey water using sequencing batch reactor”, Desalination, 215(1-3), 127-132.
  • [19] L.H. Leal, H. Temmink, G. Zeeman, C.J.N. Buisman, (2010). “Comparison of three system for biological greywater treatment”, Water, 2, 155-169.
  • [20] H.K. Khuntia, M.B. Sushmitha, S. Hameed, N. Janardhana, M.G. Karthik, K.S. Madhuri, H.N. Chanakya, (2021), “Bench scale demonstration of greywater treatment in a 3-stage sequential process comprising anaerobic, aerobic, and vertical greenery system”, Journal of Water Process Engineering, 43, 102246.
  • [21] S.S. Rakesh, P.T. Ramesh, R. Murugaragavan, S. Avudainayagam, S., Karthikeyan, (2020). “Characterization and treatment of grey water: A review”, İnternational Journal of Chemical Studies, 8(1), 34-40.
  • [22] D.M. Ghaitidak, K.D. Yadav, (2013). “Characteristics an treatment of greywater - a review”, Environmental Science and Pollution Research, 20(5), 2795-2809.
  • [23] R.D.R. Turner, M.S.J. Warne, L.A. Deniz, K. Thompson, G.D. Vasiyet, (2019). “Greywater irrigation as a source of organic micro- pollutants to shallow groundwater and nearby surface water”, Science of The Total Environment, 669, 570-578.
  • [24] I.N. Shaikh, M. Mansoor Ahammed, (2020). “Quantity and quality characteristics of greywater: A review”, Journal of Environmental Management, 261, 110266.
  • [25] C. Noutsopoulos, A. Andreadakis, N. Kouris, D. Chaechousi, P. Mendrinou, A. Galani, I. Mantziaras, E. Koumaki, (2018). “Greywater characterization and loading – Physicochemical treatment to promote onsite reuse”, Journal of Environmental Management, 216, 337-346.
  • [26] A.A. Pathan, R.B. Mahar, K. Ansarı, (2011), “Preliminary study of greywater treatment througy rotating biological contactor”, Mehran University Research Journal of Engineering&Technology, 30(3), 531-538.
  • [27] J. Lamichhane, B.B. Upadhyaya, N. Chalise, S. Makaju, (2011). “Evaluation of waste water treatment units located at different parts of Nepal”, Nepal Jordan of Science and Technology, 12, 201-210.
  • [28] A. Traore, S. Grieu, S., Puig, L. Corominas, F. Thiery, M. Polit, J. Colprim, (2005) .“Fuzzy control of dissolved oxgyen in a sequencing batch reactor pilot plant”, Chemical Engineering Journal, 111(1), 13-19.
  • [29] N. Manav, (2006). “Ardışık kesikli reaktör ile evsel atıksulardan azot ve fosfor giderimi”, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Ana Bilim Dalı, Yüksek Lisans Tezi.
  • [30] V. Krishnan, D. Ahmad, J.B. Jeru, (2008), “Influence of COD:N:P ratio on dark greywater treatment using a sequencing batch reactor”, Journal of Chemical Technology and Biorechnology, 83(5), 756-762.
  • [31] M. Mousazadeh, E.K. Niaragh, M. Usman, S.U. Khan, M.A. Sandoval, Z. Al-Qodah, Z.B. Khalid, V. Gilhotra, M.M. Emamjomeh, (2021). “A critical review of state-of-the-art electrocoagulation technique applied to COD-rich industrial wastewaters”, Environmental Science and Pollution Research, 28(32), 43143-43172.
  • [32] SKKY, (2008). Su kirliliği kontrol yönetmeliği, Tablo 22. Su Kirliliği Kontrolü Yönetmeliği (mevzuat.gov.tr) Erişim Tarihi: 08.11.2022
  • [33] KAAY, (2006). Kentsel atıksu arıtımı yçnetmeliği, Tablo 1, Tablo 2. Kentsel Atiksu Aritimi Yönetmeliği (mevzuat.gov.tr) Erişim Tarihi:08.11.2022.
  • [34] WHO, (2006). World Health Report 2006: Working together for health. World Health Organization.

Evsel Nitelikli Gri Suyun Geri Kazanılabilirliğinin Araştırılması

Year 2023, Volume: 7 Issue: 1, 6 - 18, 30.06.2023
https://doi.org/10.29002/asujse.1213829

Abstract

Su kaynaklarının azalması sonucu artan su gereksinimlerini sağlamak için gri suların arıtılması ve yeniden kullanılması amaçlanmaktadır. İçme sularını korumak hedefiyle gri suların arıtılarak geri kazanılması alternatif bir kaynak oluşturmaktadır. Duşlardan, banyo ve mutfak lavabolarından, çamaşır ve bulaşık makinelerinden gelen gri sular evsel atık suyun büyük bir kısmını oluşturmaktadır. Gri su toplam kirletici yükünü düşük miktarda içermektedir. Tuvalet harici atık suları içeren gri sular toplam evsel su kullanımının %55-80’lik kısmını oluşturmaktadır.
Bu çalışmada kullanılan gri su, Kocaeli İl’i İzmit İlçesi’nde 6 daireden oluşan 20-24 kişilik konuttan temin edilmiştir. Çeşitli gri su geri dönüşüm arıtma teknolojileri arasında AKR (Ardışık Kesikli Reaktör), gri sudan çözünmüş askıda katı madde ve nutrient gideriminin azaltılmasında etkili bir arıtma tekniğidir. Gri suyu arıtmak için laboratuar ölçekli bir AKR, pilot tesis olarak tasarlanmıştır. 1 günlük ve 2.5 günlük hidrolik reaksiyon sürelerinde(HRT) su örnekleri toplanmıştır. HRT 1 günde elde edilen sonuçlarda; ort. pH değeri 7.32, ort. E.İ. değeri 586.8 µS/cm, ort. Ç.O. değeri 3.30 mg/L, ort. bulanıklık değeri 7.39 NTU ve ort. bulanıklık giderim verimi %99, ort. AKM değeri 6.92 mg/L ve ort. AKM giderim verimi %98, ort. fosfor değeri 7.51 mg/L ve ort. fosfor giderim verimi %84, ort. azot değeri 15.92 mg/L ve ort. azot giderim verimi %59 ve ort. KOİ değeri 569 mg/L ve ort. giderim verimi %69 olarak ölçülmüştür. HRT 2.5 günde elde edilen sonuçlarda; ort. pH değeri 7.76, ort. E.İ. değeri 574.6 µS/cm, ort. Ç.O. değeri 5.07 mg/L, ort. bulanıklık değeri 4.34 NTU ve ort. bulanıklık giderim verimi %99, ort. AKM değeri 4.72 mg/L ve ort. AKM giderim verimi %98, ort. fosfor değeri 3.79 mg/L ve ort. fosfor giderim verimi %89, ort. azot değeri 13.02 mg/L ve ort. azot giderim verimi %54 ve ort. KOİ değeri 368 mg/L ve ort. giderim verimi %70 olarak ölçülmüştür.

Project Number

2020-7-24-32

Thanks

Sakarya Üniversitesi başta olmak üzere BAPK'lüğüne de teşekürlerimi sunarım.

References

  • [1] Z. Huang, X. Yuan, X. Liu, (2021). “One of the key drivers of changes in global water scarcity: withdrawal and water availability”, Journal of Hydrology, 601, 126658.
  • [2] M. Kummu, J.H.A. Guillaume, H.D. Moel, S. Eisner, M. Flörke, M. Porkka, S. Siebert, T.I.E. Veldkamp, P.J. Ward, (2016). “The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability”, Scientific Reports, 6(1), 1-16.
  • [3] S. Liu, D. Butler, F.A. Memon, C. Makropoulos, L. Avery, B. Jefferson, (2010). “Impacts of residence time during storage on potential of water saving for grey water recycling system”, Water Research, 44(1), 267-277.
  • [4] Ü. Hristov, I. Barreiro-Hurle, G.Salputra, M. Blanco, P. Witzke, (2021). “Reuse of Treated Water in European Agriculture: The Potential to Relieve Water Scarcity Under Climate Change” Agricultural Water Management, 251, 106872.
  • [5] A. Boyer, Y. Lay, P. Marthy, (2021). “Coping with Scarcity: The Construction of the Water Conservation Mandate in Newspapers (1992-208)”, Global Environmental Change, 71, 102387.
  • [6] Ç.B. Muluk, B. Kurt, A. Turak, A., Türker, M.A. Çalışkan, Ö. Balkız, S. Gümrükçü, G. Sarıgül, U. Zeydanlı, (2013). “Türkiye’de Suyun Durumu ve Su Yönetiminde Yeni Yaklaşımlar: Çevresel Perspektif”, İş Dünyası ve Sürdürülebilir Kalkınma Derneği- Doğa Koruma Merkezi, 8, 9.
  • [7] Y.M. Patil, G.R. Munavalli, (2016). “Performance evalutation of an Integrated On-site Greywater Treatment System in a tropical region” Ecological Engineering, 95, 492-500.
  • [8] E. Eriksson, K. Auffarth, M. Henze, A. Ledin, (2002). “Characteristics of grey wastewater”, Urban Water, 4(1), 85-104.
  • [9] A.A. Al-Geethi, A.N. Efaq, J.D. Bala, İ. Norli, M.O. Abdel-Monem, M.O., Ab.Kadir, (2018). “Removal of pathogenic bacteria from sawage-reated effluent and biosolids for agricultural puposes” Applied Water Science, 8(2), 1-25.
  • [10] A. Gross, A., Maimon, Y. Alfiya, E. Friedler, (2015). “Greywater Reuse”, (CRC Press).
  • [11] K. Khanam, S.K. Patidar, (2022). “Greywater characteristics in developed and developing countries” Materials Today: Proceedings, 57, 1494-1499.
  • [12] A. Morel, S. Diener, (2006). “Grey water management inlow and middle-income countries Water and Sanitation in Devoloping Countries (Sandec)”, Swiss Federal institute of Aquatic Science and Technology.
  • [13] G. Üstün, A. Tırpancı, (2015). “Gri suyun arıtımı ve yeniden kullanımı”, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(2), 119-139.
  • [14] M. Chen, S. Ding, J. Lin, Z. Fu, W. Tang, X. Fan, M. Gong, Y. Wang, (2019). “Seasonal changes of lead mobility in sediments in algea-and macrophyte-dominated zones of the lake”, Science of The Total Environmental, 660, 484-492.
  • [15] J.C.A. Marin, A.H. Caravelli, N.E. Zaritzky, (2016). “Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor”, Bioresource Technology, 200, 380-387.
  • [16] K. Kolecka, M. Gajewsha, S. Cyawa, P. Stephowski, M. Caban, (2020). “Is Sequential Batch Reactor An Effective Technology To Protect Against Non-Steroidal Anti-Inflammatory Drugs And Paracetamols In Recipient-Treated Wastewater”, Bioresource Technology, 318, 124068.
  • [17] B.S. Akın, A. Uğurlu, (2005). “Monitoring and control of biological nutrient removal in a Sequencing batch Reactor”, Process Biochemistry, 40(8), 2873-2878.
  • [18] M. Lamine, L. Bousselmi, A. Ghrabi, (2007). “Biological treatment of grey water using sequencing batch reactor”, Desalination, 215(1-3), 127-132.
  • [19] L.H. Leal, H. Temmink, G. Zeeman, C.J.N. Buisman, (2010). “Comparison of three system for biological greywater treatment”, Water, 2, 155-169.
  • [20] H.K. Khuntia, M.B. Sushmitha, S. Hameed, N. Janardhana, M.G. Karthik, K.S. Madhuri, H.N. Chanakya, (2021), “Bench scale demonstration of greywater treatment in a 3-stage sequential process comprising anaerobic, aerobic, and vertical greenery system”, Journal of Water Process Engineering, 43, 102246.
  • [21] S.S. Rakesh, P.T. Ramesh, R. Murugaragavan, S. Avudainayagam, S., Karthikeyan, (2020). “Characterization and treatment of grey water: A review”, İnternational Journal of Chemical Studies, 8(1), 34-40.
  • [22] D.M. Ghaitidak, K.D. Yadav, (2013). “Characteristics an treatment of greywater - a review”, Environmental Science and Pollution Research, 20(5), 2795-2809.
  • [23] R.D.R. Turner, M.S.J. Warne, L.A. Deniz, K. Thompson, G.D. Vasiyet, (2019). “Greywater irrigation as a source of organic micro- pollutants to shallow groundwater and nearby surface water”, Science of The Total Environment, 669, 570-578.
  • [24] I.N. Shaikh, M. Mansoor Ahammed, (2020). “Quantity and quality characteristics of greywater: A review”, Journal of Environmental Management, 261, 110266.
  • [25] C. Noutsopoulos, A. Andreadakis, N. Kouris, D. Chaechousi, P. Mendrinou, A. Galani, I. Mantziaras, E. Koumaki, (2018). “Greywater characterization and loading – Physicochemical treatment to promote onsite reuse”, Journal of Environmental Management, 216, 337-346.
  • [26] A.A. Pathan, R.B. Mahar, K. Ansarı, (2011), “Preliminary study of greywater treatment througy rotating biological contactor”, Mehran University Research Journal of Engineering&Technology, 30(3), 531-538.
  • [27] J. Lamichhane, B.B. Upadhyaya, N. Chalise, S. Makaju, (2011). “Evaluation of waste water treatment units located at different parts of Nepal”, Nepal Jordan of Science and Technology, 12, 201-210.
  • [28] A. Traore, S. Grieu, S., Puig, L. Corominas, F. Thiery, M. Polit, J. Colprim, (2005) .“Fuzzy control of dissolved oxgyen in a sequencing batch reactor pilot plant”, Chemical Engineering Journal, 111(1), 13-19.
  • [29] N. Manav, (2006). “Ardışık kesikli reaktör ile evsel atıksulardan azot ve fosfor giderimi”, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Ana Bilim Dalı, Yüksek Lisans Tezi.
  • [30] V. Krishnan, D. Ahmad, J.B. Jeru, (2008), “Influence of COD:N:P ratio on dark greywater treatment using a sequencing batch reactor”, Journal of Chemical Technology and Biorechnology, 83(5), 756-762.
  • [31] M. Mousazadeh, E.K. Niaragh, M. Usman, S.U. Khan, M.A. Sandoval, Z. Al-Qodah, Z.B. Khalid, V. Gilhotra, M.M. Emamjomeh, (2021). “A critical review of state-of-the-art electrocoagulation technique applied to COD-rich industrial wastewaters”, Environmental Science and Pollution Research, 28(32), 43143-43172.
  • [32] SKKY, (2008). Su kirliliği kontrol yönetmeliği, Tablo 22. Su Kirliliği Kontrolü Yönetmeliği (mevzuat.gov.tr) Erişim Tarihi: 08.11.2022
  • [33] KAAY, (2006). Kentsel atıksu arıtımı yçnetmeliği, Tablo 1, Tablo 2. Kentsel Atiksu Aritimi Yönetmeliği (mevzuat.gov.tr) Erişim Tarihi:08.11.2022.
  • [34] WHO, (2006). World Health Report 2006: Working together for health. World Health Organization.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Waste Management, Reduction, Reuse and Recycling
Journal Section Research Article
Authors

Ayşenur Özgün 0000-0002-5900-3199

Yasemin Damar Arifoğlu 0000-0003-1281-0847

Project Number 2020-7-24-32
Publication Date June 30, 2023
Submission Date December 2, 2022
Acceptance Date January 19, 2023
Published in Issue Year 2023Volume: 7 Issue: 1

Cite

APA Özgün, A., & Damar Arifoğlu, Y. (2023). Evsel Nitelikli Gri Suyun Geri Kazanılabilirliğinin Araştırılması. Aksaray University Journal of Science and Engineering, 7(1), 6-18. https://doi.org/10.29002/asujse.1213829

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License