Research Article
BibTex RIS Cite

Marmara Denizi Yüzeyinden Toplanan Müsilaj Biyokütlesinin Suyunun Giderilmesi: Koagülasyon ve Santrifüj Proseslerinin Optimizasyonu

Year 2021, Volume: 5 Issue: 2, 138 - 157, 30.12.2021
https://doi.org/10.29002/asujse.1002134

Abstract

Marmara Denizi’nde 2021 yılı ilk yarısında deniz yüzeyi ve dip sedimentinde gözlenen müsilaj oluşumu, sucul ekosistemi estetik ve ekolojik açıdan olumsuz yönde etkilemiştir. Suya oksijen girişini engelleyen yüzeyde oluşan müsilaj tabakası ilk aşamada deniz süpürgeleri ve vidanjörler ile uzaklaştırılmıştır. Vidanjörler ile uzaklaştırılan müsilajın hidrofilik yapısından dolayı su içeriğinin oldukça yüksek olması bertaraf/geri kazanım proseslerinin uygulamasını kısıtlamaktadır. Bu nedenle öncelikle suyunun uzaklaştırılması gerekmektedir. Bu çalışmada deniz yüzeyinden vidanjörler ile toplanan müsilaj biyokütlesinin suyunun uzaklaştırılması için koagülasyon ve santrifügasyon prosesleri uygulanmıştır. Koagülasyon prosesi düşük işletme maliyeti ile iyi bir süspanse katı çökelme oranı ve üst sıvıda düşük bulanıklık, santrifügasyon prosesi ise düşük bulanıklık ve düşük işletme maliyeti sağlayacak şekilde optimize edilmiştir. Optimizasyonda Taguchi Deneysel Tasarım yaklaşımı uygulanmıştır. Koagülasyon prosesinde belirlenen 0.5 g/L FeCl3 dozu, pH 11.5, 30 rpm 5 dk yavaş karıştırma ve 100 rpm 5 dk hızlı karıştırma optimum şartlarında 0.594 Euro/L işletme maliyetinde 85 ml çökelen katı ve 8.28 NTU üst sıvı bulanıklığı elde edilmiştir. Santrifügasyon prosesinde 30 dakika 3500 rpm optimum şartlarında 0.042 Euro/L işletme maliyetinde 180 NTU üst sıvı bulanıklığı elde edilmiştir. Koagülasyon prosesi için gerçekleştirilen Pareto analizi ile koagülasyonda en etkili parametrelerin hızlı ve yavaş karıştırma süreleri ve pH olduğu belirlenmiştir.

References

  • [1] B. Toklu-Alicli, S. Polat, N. Balkis-Ozdelice, Temporal variations in the abundance of picoplanktonic Synechococcus (Cyanobacteria) during a mucilage event in the Gulfs of Bandırma and Erdek. Estuarine, Coastal and Shelf Science, 233 (2020) 106513.
  • [2] S. Genitsaris, N. Stefanidou, U. Sommer, and M. Moustaka-Gouni, Phytoplankton blooms, red tides and mucilaginous aggregates in the urban Thessaloniki Bay, Eastern Mediterranean. Diversity, 11 (8) (2019) 136.
  • [3] M. M. Tosif A. Najda, A. Bains, R. Kaushik, S.B. Dhull, P. Chawla, and M. Walasek-Janusz, A Comprehensive Review on Plant-Derived Mucilage: Characterization, Functional Properties, Applications, and Its Utilization for Nanocarrier Fabrication. Polymers, 13(7) (2021) 1066.
  • [4] F. Ricci, N. Penna, S. Capellacci, and A. Penna, Potential environmental factors influencing mucilage formation in the northern Adriatic Sea. Chemistry and Ecology, 30(4) (2014) 364-375.
  • [5] R. R. Soomro, T. Ndikubwimana, X. Zeng, Y. Lu, L. Lin, and M. K. Danquah, Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach. Frontiers in Plant Science, 7 (2016) 113.
  • [6] V. Gejji, R. Lacey, and S. D. Fernando, The use of polyelectrolytes for simultaneous dewatering and fractionation of microalgal proteins, lipids, and pigments. Algal Research, 44 (2019) 101675. [7] A. Sandip, V. H. Smith, and T. N. Faddis, An experimental investigation of microalgal dewatering efficiency of belt filter system. Energy Reports, 1 (2015) 169-174.
  • [8] M. Sadrzadeh and T. Mohammadi, Sea water desalination using electrodialysis. Desalination, 221 (2008) 440-447.
  • [9] S. Aber, D. Salari, and M. R. Parsa, Employing the Taguchi method to obtain the optimum conditions of coagulation–flocculation process in tannery wastewater treatment. Chemical Engineering Journal, 162(1) (2010) 127-134.
  • [10] S. H. Dhawane, T. Kumar, and G. Halder, Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renewable Energy, 89 (2016) 506-514.
  • [11] N. Genç, E. Durna, and E. Erkişi, Optimization of the adsorption of diclofenac by activated carbon and the acidic regeneration of spent activated carbon. Water Science and Technology, 83(2) (2021) 396-408.
  • [12] M. M. Abdulredha, S. A. Hussain, and L. C. Abdullah, Separation Emulsion via Non-Ionic Surfactant: An Optimization. Process, 7(6) (2019) 382.
  • [13] M. Asem, W. M. F. W. Nawawi, and D. N. Jimat, Evaluation of water absorption of polyvinyl alcohol-starch biocomposite reinforced with sugarcane bagasse nanofibre: Optimization using Two-Level Factorial Design. IOP Conference Series: Materials Science and Engineering, 368 (1) (2018) 012005.
  • [14] İ. Öztürk, M. Yanalak, Ö. Arslan, İ. Koyuncu, E. Dilekgürgen, M.E. Erşahin, T. Türken, Marmara Denizi'nde deniz salyası sorunu ile ilgili görüş ve öneriler (Rapor), İstanbul, İstanbul Teknik Üniversitesi, 73, (2021).

Dewatering of Mucilage Biomass Collected from the Marmara Sea Surface: Optimization of Coagulation and Centrifugation Processes

Year 2021, Volume: 5 Issue: 2, 138 - 157, 30.12.2021
https://doi.org/10.29002/asujse.1002134

Abstract

The formation of mucilage observed in the sea surface and bottom sediment in the Marmara Sea in the first half of 2021 adversely affected the aquatic ecosystem aesthetically and ecologically. The mucilage layer formed on the surface, which prevents oxygen entering the water, was first removed with sea sweepers and vacuum trucks. Due to the hydrophilic nature of the mucilage removed by vacuum trucks, the high water content limits the application of disposal/recovery processes. Therefore, the water must be removed first. In this study, coagulation and centrifugation processes were applied to remove the water of mucilage biomass collected from the sea surface with vacuum trucks. The coagulation process is optimized to provide a good suspended solids settling rate and low turbidity in the supernatant with low operating cost, while the centrifugation process is optimized to provide low turbidity and low operating cost. Optimization was implemented with the Taguchi Experimental Design approach. In the coagulation process, 85 ml of precipitated solid, 8.28 NTU supernatant turbidity and 0.594 Euro/L operating cost were determined in optimum conditions (FeCl3 dose of 0.5 g/L, pH of 11.5, slow mixing of 30 rpm 5 minute and fast mixing of 100 rpm 5 minutes) has been obtained. In the centrifugation process, 180 NTU supernatant turbidity was obtained at an operating cost of 0.042 euro/L at optimum conditions of centrifugation speed of 3500 rpm for 30 minutes. With the Pareto analysis performed for the coagulation process, it was determined that the most effective parameters in coagulation were fast and slow mixing times and pH.

References

  • [1] B. Toklu-Alicli, S. Polat, N. Balkis-Ozdelice, Temporal variations in the abundance of picoplanktonic Synechococcus (Cyanobacteria) during a mucilage event in the Gulfs of Bandırma and Erdek. Estuarine, Coastal and Shelf Science, 233 (2020) 106513.
  • [2] S. Genitsaris, N. Stefanidou, U. Sommer, and M. Moustaka-Gouni, Phytoplankton blooms, red tides and mucilaginous aggregates in the urban Thessaloniki Bay, Eastern Mediterranean. Diversity, 11 (8) (2019) 136.
  • [3] M. M. Tosif A. Najda, A. Bains, R. Kaushik, S.B. Dhull, P. Chawla, and M. Walasek-Janusz, A Comprehensive Review on Plant-Derived Mucilage: Characterization, Functional Properties, Applications, and Its Utilization for Nanocarrier Fabrication. Polymers, 13(7) (2021) 1066.
  • [4] F. Ricci, N. Penna, S. Capellacci, and A. Penna, Potential environmental factors influencing mucilage formation in the northern Adriatic Sea. Chemistry and Ecology, 30(4) (2014) 364-375.
  • [5] R. R. Soomro, T. Ndikubwimana, X. Zeng, Y. Lu, L. Lin, and M. K. Danquah, Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach. Frontiers in Plant Science, 7 (2016) 113.
  • [6] V. Gejji, R. Lacey, and S. D. Fernando, The use of polyelectrolytes for simultaneous dewatering and fractionation of microalgal proteins, lipids, and pigments. Algal Research, 44 (2019) 101675. [7] A. Sandip, V. H. Smith, and T. N. Faddis, An experimental investigation of microalgal dewatering efficiency of belt filter system. Energy Reports, 1 (2015) 169-174.
  • [8] M. Sadrzadeh and T. Mohammadi, Sea water desalination using electrodialysis. Desalination, 221 (2008) 440-447.
  • [9] S. Aber, D. Salari, and M. R. Parsa, Employing the Taguchi method to obtain the optimum conditions of coagulation–flocculation process in tannery wastewater treatment. Chemical Engineering Journal, 162(1) (2010) 127-134.
  • [10] S. H. Dhawane, T. Kumar, and G. Halder, Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renewable Energy, 89 (2016) 506-514.
  • [11] N. Genç, E. Durna, and E. Erkişi, Optimization of the adsorption of diclofenac by activated carbon and the acidic regeneration of spent activated carbon. Water Science and Technology, 83(2) (2021) 396-408.
  • [12] M. M. Abdulredha, S. A. Hussain, and L. C. Abdullah, Separation Emulsion via Non-Ionic Surfactant: An Optimization. Process, 7(6) (2019) 382.
  • [13] M. Asem, W. M. F. W. Nawawi, and D. N. Jimat, Evaluation of water absorption of polyvinyl alcohol-starch biocomposite reinforced with sugarcane bagasse nanofibre: Optimization using Two-Level Factorial Design. IOP Conference Series: Materials Science and Engineering, 368 (1) (2018) 012005.
  • [14] İ. Öztürk, M. Yanalak, Ö. Arslan, İ. Koyuncu, E. Dilekgürgen, M.E. Erşahin, T. Türken, Marmara Denizi'nde deniz salyası sorunu ile ilgili görüş ve öneriler (Rapor), İstanbul, İstanbul Teknik Üniversitesi, 73, (2021).
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Nevim Genç 0000-0002-6185-1090

Elif Durna 0000-0003-4478-2967

Fatma Ece Sayın 0000-0003-3927-1863

Publication Date December 30, 2021
Submission Date September 29, 2021
Acceptance Date December 10, 2021
Published in Issue Year 2021Volume: 5 Issue: 2

Cite

APA Genç, N., Durna, E., & Sayın, F. E. (2021). Marmara Denizi Yüzeyinden Toplanan Müsilaj Biyokütlesinin Suyunun Giderilmesi: Koagülasyon ve Santrifüj Proseslerinin Optimizasyonu. Aksaray University Journal of Science and Engineering, 5(2), 138-157. https://doi.org/10.29002/asujse.1002134

Aksaray J. Sci. Eng. | e-ISSN: 2587-1277 | Period: Biannually | Founded: 2017 | Publisher: Aksaray University | https://asujse.aksaray.edu.tr




ASUJSE is indexing&Archiving in

crossref-logo-landscape-100.png    scholar_logo_30dp.png          oaliblogo2.jpg   GettyImages_90309427_montage_255x130px.png search-result-logo-horizontal-TEST.jpg

22644 EBSCO



Creative Commons License