Research Article
BibTex RIS Cite

Poli (ɛ-Kaprolakton)’ un Yapısı ve Elektronik Özelliklerinin Yoğunluk Fonksiyonel Yöntemiyle Teorik Bir Çalışması

Year 2022, Volume: 8 Issue: 2, 351 - 359, 31.12.2022
https://doi.org/10.29132/ijpas.1073578

Abstract

Bu araştırmanın amacı, lokal ve global kimyasal aktivite faktörlerini inceleyerek yapının elektrofilik ve nükleofilik karakterini belirlemektir. Poli (ɛ-kaprolakton)’ un elektronik davranışı, bu amaçla teorik kuantum kimyasal hesaplama ile araştırıldı. Natural Bonding Orbital (NBO) analizi, kuantum kimyası moleküler sistemlerinde yük transferi, konjuge etkileşimler ve stabilizasyon enerjisini E(2), incelemek için güçlü bir tekniktir. Ayrıca yapının doğrusal olmayan optik (Doğrusal Olmayan Optik, NLO) özelliklerini belirlemek için dipol moment, polarize edilebilirlik ve hiperpolarize edilebilirlik özellikleri kullanılmıştır. Moleküler yapının tüm teorik hesaplamaları, B3LYP seviyesinde ve STO-3G baz setinde Yoğunluk Fonksiyonel Teorisi (DFT) yöntemi ile hesaplanmıştır.

References

  • Adiguzel, R., Aktan, E., Evren, E. and Çetin, A., 2020. A Computational Study on Some Pyridine-Substituted-Bis-1, 2, 4-Triazole Derivatives and Investigation of Their Catalytic Activities. International Journal of Pure and Applied Sciences, 6 (2): 200-207.
  • Al-khaykanee, M.K. and Aboud, H.I., 2013. Study of the electronic properties for di-amino naphthalene: B3LYP density functional theory calculations. International Journal of Pure and Applied Sciences and Technology, 15 (1): 1.
  • Babu, N.S. and Kumar, P.P., Computational Studies and Multivariate Analysis of Global and Local Reactivity Descriptors of Five Membered Heterocycles Molecules by Density Functional Theory (DFT).
  • Becke, A.D., 1992. Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. The Journal of chemical physics, 97 (12): 9173-9177.
  • Daraam, B., Hassan, F. and Shwya, A., 2015. Density Functional Theory Investigation for H^ sub 2^-Silver Interactions. International Journal of Pure and Applied Sciences and Technology, 29 (2): 73.
  • Demircioğlu, Z. and Kaştaş, Ç.A., Büyükgüngör, O., 2015. The spectroscopic (FT-IR, UV–vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene) amino] benzonitrile. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139 539-548.
  • Evecen, M. and Tanak, H., 2017. DFT quantum chemical studies of (E)-4-Bromo-N-(2-chlorobenzylidene)-aniline. Applied Physics A, 123 (1): 1-6.
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J. and Petersson, G., 2009. Farkas, JB Foresman, JV Ortiz, J. Cioslowski and DJ Fox. Gaussian 09 Revision A, 1.
  • Hohenberg, P., Kohn, W., 1964. Density functional theory (DFT). Phys. Rev, 136 B864.
  • Huang, W., Yang, B., An, L., Li, C., Chan, Y., 2005. Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Applied Physics Letters, 86 (11): 114105.
  • Jenkins, A., Kratochvíl, P., Stepto, R. and Suter, U., 1996. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure and applied chemistry, 68 (12): 2287-2311.
  • Jia, W.J., Gu, Y.C., Gou, M.L., Dai, M., Li, X.Y., Kan, B. and Qian, Z.Y., 2008. Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug delivery, 15 (7): 409-416.
  • Kaur, M., Mary, Y.S., Varghese, H.T., Panicker, C.Y., Yathirajan, H., Siddegowda, M. and Van Alsenoy, C., 2012. Vibrational spectroscopic, molecular structure, first hyperpolarizability and NBO studies of 4′-methylbiphenyl-2-carbonitrile. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 98 91-99.
  • Koerner, H., Price, G., Pearce and N.A., Alexander, M., Vaia, R.A., 2004. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature materials, 3 (2): 115-120.
  • Kohn, W., 1996. Density functional and density matrix method scaling linearly with the number of atoms. Physical Review Letters, 76 (17): 3168.
  • Koopmans, T., 1934. About the assignment of wave functions and Eigen energies to the individual electrons of an atom. Physica, 1 (1-6): 104-133.
  • Lendlein, A. and Kelch, S., 2002. Shape‐memory polymers. Angewandte Chemie International Edition, 41 (12): 2034-2057.
  • Martínez, J., 2009. Local reactivity descriptors from degenerate frontier molecular orbitals. Chemical Physics Letters, 478 (4-6): 310-322.
  • Novir, S.B., 2017. A theoretical study of the structural and electronic properties of trans and cis structures of chlorprothixene as a nano-drug. Current Applied Physics, 17 (12): 1754-1764.
  • Orbitals, F. (1976). Organic Chemical Reactions: Fleming.
  • Parr, R.G. and Pearson, R.G., 1983. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105 (26): 7512-7516.
  • Pearson, R.G., 1986. Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences, 83 (22): 8440-8441.
  • Peeters, J.W., van Leeuwen, O., Palmans and A.R., Meijer, E., 2005. Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: mechanistic considerations. Macromolecules, 38 (13): 5587-5592.
  • Pekdemir, M.E., 2021. Thermal properties and shape memory behavior of titanium carbide reinforced poly (vinyl chloride)/poly (ԑ-caprolactone) blend nanocomposites. Polymer-Plastics Technology and Materials1-9.
  • Pekdemir, M.E., Öner, E., Kök, M. and Qader, I.N., 2021. Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers. Iranian Polymer Journal, 30 (6): 633-641.
  • Reed, J.L., 1997. Electronegativity: chemical hardness I. The Journal of Physical Chemistry A, 101 (40): 7396-7400.
  • Tanış, E., Sas, E.B., Kurban, M. and Kurt, M., 2018. The structural, electronic and spectroscopic properties of 4FPBAPE molecule: Experimental and theoretical study. Journal of Molecular Structure, 1154 301-318.
  • Weinhold, F. and Landis, C.R., 2001. Natural bond orbitals and extensions of localized bonding concepts. Chemistry Education Research and Practice, 2 (2): 91-104.

A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study

Year 2022, Volume: 8 Issue: 2, 351 - 359, 31.12.2022
https://doi.org/10.29132/ijpas.1073578

Abstract

The purpose of this research is to determine the structure's electrophilic and nucleophilic character by examining at local and global chemical activity factors. The electronic behavior of Poly (ɛ-caprolactone) was investigated by theoretical quantum chemical computation for this purpose. Natural Bonding Orbital (NBO) analysis is a powerful technique for studying stabilization energy E(2), conjugated interactions, and charge transfer in quantum chemistry molecular systems. Furthermore, dipole moment, polarizability, and hyper polarizability characteristics were used to determine the structure's nonlinear optics (Nonlinear Optical, NLO) features. All the theoretical calculations of molecular structure were calculated via the Density Functional Theory (DFT) method in the B3LYP level and STO-3G basis set.

References

  • Adiguzel, R., Aktan, E., Evren, E. and Çetin, A., 2020. A Computational Study on Some Pyridine-Substituted-Bis-1, 2, 4-Triazole Derivatives and Investigation of Their Catalytic Activities. International Journal of Pure and Applied Sciences, 6 (2): 200-207.
  • Al-khaykanee, M.K. and Aboud, H.I., 2013. Study of the electronic properties for di-amino naphthalene: B3LYP density functional theory calculations. International Journal of Pure and Applied Sciences and Technology, 15 (1): 1.
  • Babu, N.S. and Kumar, P.P., Computational Studies and Multivariate Analysis of Global and Local Reactivity Descriptors of Five Membered Heterocycles Molecules by Density Functional Theory (DFT).
  • Becke, A.D., 1992. Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. The Journal of chemical physics, 97 (12): 9173-9177.
  • Daraam, B., Hassan, F. and Shwya, A., 2015. Density Functional Theory Investigation for H^ sub 2^-Silver Interactions. International Journal of Pure and Applied Sciences and Technology, 29 (2): 73.
  • Demircioğlu, Z. and Kaştaş, Ç.A., Büyükgüngör, O., 2015. The spectroscopic (FT-IR, UV–vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene) amino] benzonitrile. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139 539-548.
  • Evecen, M. and Tanak, H., 2017. DFT quantum chemical studies of (E)-4-Bromo-N-(2-chlorobenzylidene)-aniline. Applied Physics A, 123 (1): 1-6.
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J. and Petersson, G., 2009. Farkas, JB Foresman, JV Ortiz, J. Cioslowski and DJ Fox. Gaussian 09 Revision A, 1.
  • Hohenberg, P., Kohn, W., 1964. Density functional theory (DFT). Phys. Rev, 136 B864.
  • Huang, W., Yang, B., An, L., Li, C., Chan, Y., 2005. Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Applied Physics Letters, 86 (11): 114105.
  • Jenkins, A., Kratochvíl, P., Stepto, R. and Suter, U., 1996. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure and applied chemistry, 68 (12): 2287-2311.
  • Jia, W.J., Gu, Y.C., Gou, M.L., Dai, M., Li, X.Y., Kan, B. and Qian, Z.Y., 2008. Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug delivery, 15 (7): 409-416.
  • Kaur, M., Mary, Y.S., Varghese, H.T., Panicker, C.Y., Yathirajan, H., Siddegowda, M. and Van Alsenoy, C., 2012. Vibrational spectroscopic, molecular structure, first hyperpolarizability and NBO studies of 4′-methylbiphenyl-2-carbonitrile. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 98 91-99.
  • Koerner, H., Price, G., Pearce and N.A., Alexander, M., Vaia, R.A., 2004. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature materials, 3 (2): 115-120.
  • Kohn, W., 1996. Density functional and density matrix method scaling linearly with the number of atoms. Physical Review Letters, 76 (17): 3168.
  • Koopmans, T., 1934. About the assignment of wave functions and Eigen energies to the individual electrons of an atom. Physica, 1 (1-6): 104-133.
  • Lendlein, A. and Kelch, S., 2002. Shape‐memory polymers. Angewandte Chemie International Edition, 41 (12): 2034-2057.
  • Martínez, J., 2009. Local reactivity descriptors from degenerate frontier molecular orbitals. Chemical Physics Letters, 478 (4-6): 310-322.
  • Novir, S.B., 2017. A theoretical study of the structural and electronic properties of trans and cis structures of chlorprothixene as a nano-drug. Current Applied Physics, 17 (12): 1754-1764.
  • Orbitals, F. (1976). Organic Chemical Reactions: Fleming.
  • Parr, R.G. and Pearson, R.G., 1983. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105 (26): 7512-7516.
  • Pearson, R.G., 1986. Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences, 83 (22): 8440-8441.
  • Peeters, J.W., van Leeuwen, O., Palmans and A.R., Meijer, E., 2005. Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: mechanistic considerations. Macromolecules, 38 (13): 5587-5592.
  • Pekdemir, M.E., 2021. Thermal properties and shape memory behavior of titanium carbide reinforced poly (vinyl chloride)/poly (ԑ-caprolactone) blend nanocomposites. Polymer-Plastics Technology and Materials1-9.
  • Pekdemir, M.E., Öner, E., Kök, M. and Qader, I.N., 2021. Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers. Iranian Polymer Journal, 30 (6): 633-641.
  • Reed, J.L., 1997. Electronegativity: chemical hardness I. The Journal of Physical Chemistry A, 101 (40): 7396-7400.
  • Tanış, E., Sas, E.B., Kurban, M. and Kurt, M., 2018. The structural, electronic and spectroscopic properties of 4FPBAPE molecule: Experimental and theoretical study. Journal of Molecular Structure, 1154 301-318.
  • Weinhold, F. and Landis, C.R., 2001. Natural bond orbitals and extensions of localized bonding concepts. Chemistry Education Research and Practice, 2 (2): 91-104.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seda Hekim 0000-0003-1932-6978

Mustafa Ersin Pekdemir 0000-0002-4979-1777

Early Pub Date December 29, 2022
Publication Date December 31, 2022
Submission Date February 15, 2022
Acceptance Date July 4, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

APA Hekim, S., & Pekdemir, M. E. (2022). A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study. International Journal of Pure and Applied Sciences, 8(2), 351-359. https://doi.org/10.29132/ijpas.1073578
AMA Hekim S, Pekdemir ME. A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study. International Journal of Pure and Applied Sciences. December 2022;8(2):351-359. doi:10.29132/ijpas.1073578
Chicago Hekim, Seda, and Mustafa Ersin Pekdemir. “A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study”. International Journal of Pure and Applied Sciences 8, no. 2 (December 2022): 351-59. https://doi.org/10.29132/ijpas.1073578.
EndNote Hekim S, Pekdemir ME (December 1, 2022) A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study. International Journal of Pure and Applied Sciences 8 2 351–359.
IEEE S. Hekim and M. E. Pekdemir, “A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study”, International Journal of Pure and Applied Sciences, vol. 8, no. 2, pp. 351–359, 2022, doi: 10.29132/ijpas.1073578.
ISNAD Hekim, Seda - Pekdemir, Mustafa Ersin. “A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study”. International Journal of Pure and Applied Sciences 8/2 (December 2022), 351-359. https://doi.org/10.29132/ijpas.1073578.
JAMA Hekim S, Pekdemir ME. A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study. International Journal of Pure and Applied Sciences. 2022;8:351–359.
MLA Hekim, Seda and Mustafa Ersin Pekdemir. “A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study”. International Journal of Pure and Applied Sciences, vol. 8, no. 2, 2022, pp. 351-9, doi:10.29132/ijpas.1073578.
Vancouver Hekim S, Pekdemir ME. A Theoretical Study of Structure and Electronic Properties of Poly (ɛ-Caprolactone) By Density Functional Study. International Journal of Pure and Applied Sciences. 2022;8(2):351-9.

154501544915448154471544615445