Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 3, 299 - 303, 15.12.2018

Abstract

References

  • 1. Garg, R., Microstrip antenna design handbook 2001: Artech House.
  • 2. Yarman, B.S., Design of ultra wideband power transfer networks2010: John Wiley & Sons.
  • 3. Pozar, D.M., Microwave Engineering 3e. 3rd ed2005, USA: John Wiley & Sons,Inc.
  • 4. Balanis, C.A., Antenna theory: analysis and design. Vol. 1. 2005: John Wiley & Sons.
  • 5. Kumar, G. and K. Ray, Broadband microstrip antennas2002: Artech House.
  • 6. Caron, W.N., Antenna impedance matching1993: American radio relay league.
  • 7. Yarman, B.S., Design of ultra wideband antenna matching networks: via simplified real frequency technique2008: Springer Science & Business Media.
  • 8. Khan, A.S., Microwave engineering: Concepts and fundamentals2014: CRC Press.
  • 9. Guha, D. and Y.M. Antar, Microstrip and printed antennas: new trends, techniques and applications2011: John Wiley & Sons.
  • 10. Antoniades, M.A. and G.V. Eleftheriades, A broadband series power divider using zero-degree metamaterial phase-shifting lines. Ieee Microwave and Wireless Components Letters, 2005. 15(11): p. 808-810.
  • 11. Gai, C., et al., Dual band gysel power divider with high power dividing ratio. Microwave and Optical Technology Letters, 2017. 59(10): p. 2428-2431.
  • 12. Cheng, K.K.M. and C. Law, A novel approach to the design and implementation of dual-band power divider. Ieee Transactions on Microwave Theory and Techniques, 2008. 56(2): p. 487-492.
  • 13. Cheng, K.-K.M. and C. Law, A novel approach to the design and implementation of dual-band power divider. IEEE Transactions on Microwave Theory and Techniques, 2008. 56(2): p. 487-492.
  • 14. Uchendu, I.E. and J.R. Kelly, Ultrawide isolation bandwidth compensated power divider for UWB applications. Microwave and Optical Technology Letters, 2017. 59(12): p. 3177-3180.
  • 15. Kim, J. and Y. Lee, A ${Z} $-Transform Method for Synthesis of Unequal-Length Multisection Transmission Lines for Multiband Applications. IEEE Transactions on Microwave Theory and Techniques, 2017. 65(9): p. 3200-3210.
  • 16. Hawatmeh, D., N. Dib, and K. Alshamaileh, Microstrip Non-uniform Transmission Lines Triple Band 3-way Unequal Split Wilkinson Power Divider. Revue Roumaine Des Sciences Techniques-Serie Electrotechnique Et Energetique, 2017. 62(3): p. 288-293.
  • 17. Gharehaghaji, H.S. and H. Shamsi, Design of unequal dual band Gysel power divider with isolation bandwidth improvement. IEEE Microw. Wireless Compon. Lett, 2017. 27: p. 138-140.
  • 18. Scardelletti, M.C., G.E. Ponchak, and T.M. Weller, Miniaturized Wilkinson power dividers utilizing capacitive loading. Ieee Microwave and Wireless Components Letters, 2002. 12(1): p. 6-8.
  • 19. Minin, I.V., Microwave and Millimeter Wave Technologies Modern UWB antennas and equipment2010: Sciyo. com.
  • 20. Chen, W.-K. and T. Chaisrakeo, Explicit formulas for the synthesis of optimum bandpass Butterworth and Chebyshev impedance-matching networks. IEEE Transactions on Circuits and Systems, 1980. 27(10): p. 928-942.
  • 21. Lim, J.S., et al., A 4 : 1 unequal Wilkinson power divider. Ieee Microwave and Wireless Components Letters, 2001. 11(3): p. 124-126.
  • 22. Wu, L., et al., A dual-frequency Wilkinson power divider. Ieee Transactions on Microwave Theory and Techniques, 2006. 54(1): p. 278-284.

Broadband Wilkinson power divider based on chebyshev impedance transform method

Year 2018, Volume: 2 Issue: 3, 299 - 303, 15.12.2018

Abstract

Broadband
impedance matching techniques widely used in microwave circuits. In this study,
we proposed a 2-way multi-layer micro strip Wilkinson Power Divider (WPD)
circuit matched by Chebyshev İmpedance matching technique. The design was
chosen at 1 GHz center frequency and as four layers. The design was carried out
as 3 dimensions on Advanced Design tool (ADS 2009) which is 3D microwave circuits’
simulation tool.  For -20 dB return loss
reference level, while the reflection bandwidth was 25% in the basic quarter
wave matched WPD, it could be increased up to 132% in the Chebyshev matching. Additionally,
for the reference power transmission of -4.3 dB, the transmission bandwidth raised
up to %160. In the range, the proposed design could transfer 75% of the input
power to both output ports.

References

  • 1. Garg, R., Microstrip antenna design handbook 2001: Artech House.
  • 2. Yarman, B.S., Design of ultra wideband power transfer networks2010: John Wiley & Sons.
  • 3. Pozar, D.M., Microwave Engineering 3e. 3rd ed2005, USA: John Wiley & Sons,Inc.
  • 4. Balanis, C.A., Antenna theory: analysis and design. Vol. 1. 2005: John Wiley & Sons.
  • 5. Kumar, G. and K. Ray, Broadband microstrip antennas2002: Artech House.
  • 6. Caron, W.N., Antenna impedance matching1993: American radio relay league.
  • 7. Yarman, B.S., Design of ultra wideband antenna matching networks: via simplified real frequency technique2008: Springer Science & Business Media.
  • 8. Khan, A.S., Microwave engineering: Concepts and fundamentals2014: CRC Press.
  • 9. Guha, D. and Y.M. Antar, Microstrip and printed antennas: new trends, techniques and applications2011: John Wiley & Sons.
  • 10. Antoniades, M.A. and G.V. Eleftheriades, A broadband series power divider using zero-degree metamaterial phase-shifting lines. Ieee Microwave and Wireless Components Letters, 2005. 15(11): p. 808-810.
  • 11. Gai, C., et al., Dual band gysel power divider with high power dividing ratio. Microwave and Optical Technology Letters, 2017. 59(10): p. 2428-2431.
  • 12. Cheng, K.K.M. and C. Law, A novel approach to the design and implementation of dual-band power divider. Ieee Transactions on Microwave Theory and Techniques, 2008. 56(2): p. 487-492.
  • 13. Cheng, K.-K.M. and C. Law, A novel approach to the design and implementation of dual-band power divider. IEEE Transactions on Microwave Theory and Techniques, 2008. 56(2): p. 487-492.
  • 14. Uchendu, I.E. and J.R. Kelly, Ultrawide isolation bandwidth compensated power divider for UWB applications. Microwave and Optical Technology Letters, 2017. 59(12): p. 3177-3180.
  • 15. Kim, J. and Y. Lee, A ${Z} $-Transform Method for Synthesis of Unequal-Length Multisection Transmission Lines for Multiband Applications. IEEE Transactions on Microwave Theory and Techniques, 2017. 65(9): p. 3200-3210.
  • 16. Hawatmeh, D., N. Dib, and K. Alshamaileh, Microstrip Non-uniform Transmission Lines Triple Band 3-way Unequal Split Wilkinson Power Divider. Revue Roumaine Des Sciences Techniques-Serie Electrotechnique Et Energetique, 2017. 62(3): p. 288-293.
  • 17. Gharehaghaji, H.S. and H. Shamsi, Design of unequal dual band Gysel power divider with isolation bandwidth improvement. IEEE Microw. Wireless Compon. Lett, 2017. 27: p. 138-140.
  • 18. Scardelletti, M.C., G.E. Ponchak, and T.M. Weller, Miniaturized Wilkinson power dividers utilizing capacitive loading. Ieee Microwave and Wireless Components Letters, 2002. 12(1): p. 6-8.
  • 19. Minin, I.V., Microwave and Millimeter Wave Technologies Modern UWB antennas and equipment2010: Sciyo. com.
  • 20. Chen, W.-K. and T. Chaisrakeo, Explicit formulas for the synthesis of optimum bandpass Butterworth and Chebyshev impedance-matching networks. IEEE Transactions on Circuits and Systems, 1980. 27(10): p. 928-942.
  • 21. Lim, J.S., et al., A 4 : 1 unequal Wilkinson power divider. Ieee Microwave and Wireless Components Letters, 2001. 11(3): p. 124-126.
  • 22. Wu, L., et al., A dual-frequency Wilkinson power divider. Ieee Transactions on Microwave Theory and Techniques, 2006. 54(1): p. 278-284.
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ömer Kasar This is me 0000-0003-1859-5236

Mahmut Ahmet Gözel

Mesud Kahriman 0000-0003-0731-0936

Publication Date December 15, 2018
Submission Date March 12, 2018
Acceptance Date August 3, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

APA Kasar, Ö., Gözel, M. A., & Kahriman, M. (2018). Broadband Wilkinson power divider based on chebyshev impedance transform method. International Advanced Researches and Engineering Journal, 2(3), 299-303.
AMA Kasar Ö, Gözel MA, Kahriman M. Broadband Wilkinson power divider based on chebyshev impedance transform method. Int. Adv. Res. Eng. J. December 2018;2(3):299-303.
Chicago Kasar, Ömer, Mahmut Ahmet Gözel, and Mesud Kahriman. “Broadband Wilkinson Power Divider Based on Chebyshev Impedance Transform Method”. International Advanced Researches and Engineering Journal 2, no. 3 (December 2018): 299-303.
EndNote Kasar Ö, Gözel MA, Kahriman M (December 1, 2018) Broadband Wilkinson power divider based on chebyshev impedance transform method. International Advanced Researches and Engineering Journal 2 3 299–303.
IEEE Ö. Kasar, M. A. Gözel, and M. Kahriman, “Broadband Wilkinson power divider based on chebyshev impedance transform method”, Int. Adv. Res. Eng. J., vol. 2, no. 3, pp. 299–303, 2018.
ISNAD Kasar, Ömer et al. “Broadband Wilkinson Power Divider Based on Chebyshev Impedance Transform Method”. International Advanced Researches and Engineering Journal 2/3 (December 2018), 299-303.
JAMA Kasar Ö, Gözel MA, Kahriman M. Broadband Wilkinson power divider based on chebyshev impedance transform method. Int. Adv. Res. Eng. J. 2018;2:299–303.
MLA Kasar, Ömer et al. “Broadband Wilkinson Power Divider Based on Chebyshev Impedance Transform Method”. International Advanced Researches and Engineering Journal, vol. 2, no. 3, 2018, pp. 299-03.
Vancouver Kasar Ö, Gözel MA, Kahriman M. Broadband Wilkinson power divider based on chebyshev impedance transform method. Int. Adv. Res. Eng. J. 2018;2(3):299-303.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.