Research Article
BibTex RIS Cite

Yüksek doğrulukta kaba inşaat kalemlerinin metrajını hesaplayan YBM tabanlı prototip yazılımın geliştirilmesi

Year 2023, Volume: 13 Issue: 1, 86 - 105, 15.01.2023
https://doi.org/10.17714/gumusfenbil.1117848

Abstract

Yapı Bilgi Modellemesi (YBM) kullanımı inşaat sektöründe önemli ölçüde yaygınlaşmıştır. Bununla birlikte küçük ve orta ölçekli yükleniciler YBM yazılımlarının getireceği maliyet ile YBM kullanımına adapte olabilmek için gerekli olan personel eğitimi ve iş alışkanlığı değişimi gereksiniminden dolayı YBM kullanımına uzak kalmaktadır. Bu çalışmada YBM yazılımlarının temel fonksiyonlarından olan 3 Boyutlu görselleştirme ve kaba inşaatın metraj hesaplama işlemlerini gerçekleştirebilen bir yazılım geliştirilmiştir. Python programlama dili ile uyumlu Tkinter Kütüphanesi, Python tabanlı Ursina 3B oyun motoru ve SQLite3 veri tabanı uygulaması kullanılarak insan müdahalesi olmadan beton, betonarme kalıbı ile kalıp iskelesi metrajlarını hesaplayıp 3B görselleştirebilen yazılım geliştirilmiştir. Geliştirilen yazılım çok fazla işleve sahip olmadığı için kullanımı kolay kullanıcı ara yüzlerine sahiptir. Bu sayede özel bir personel eğitimi gerektirmeden 2 Boyutlu çizimlere sadece kat yüksekliği gibi derinlik verilerinin girilmesi ile yapının 3 Boyutlu görselleştirmesi yapılabilmektedir. Buna ek olarak beton, betonarme kalıbı ve kalıp iskelesi metrajları da otomatik biçimde çıkarılmaktadır. Elle yapılan metraj hesabı ile karşılaştırıldığında kalıpta %0.04 oranında sapma olduğu tespit edilmiştir. Yapılan literatür taramasında Revit ile elde edilen metraj verilerinin daha fazla sapabildiği görülmüştür. Geliştirilen YBM yazılımını kullanacak küçük ölçekli yükleniciler daha hassas ve hızlı metraj hazırlayarak daha doğru biçimde maliyet analizi yapma imkânına sahip olacaklardır.

References

  • Albahbah, M., Kıvrak, S., & Arslan, G. (2021). Application areas of augmented reality and virtual reality in construction project management: A scoping review. Journal of Construction Engineering Management & Innovation, 4(3), 151-172, https://doi.org/10.31462/jcemi.2021.03151172.
  • Barlish, K., & Sullivan, K. (2012). How to measure the benefits of BIM—a case study approach. Automation in construction, 24, 149-159.
  • Bayram, S. (2020). Yapı bilgi modellemesi (YBM) kapsamında geleneksel metraj ile yazılımın karşılaştırılması, Yapı Bilgi modelleme, 2(2), 58-65.
  • Bettemir, Ö. H. (2018). Development of spreadsheet based quantity take-off and cost estimation application. Journal of Construction Engineering Management & Innovation, 1(3), 108-117, https://doi.org/10.31462/jcemi.2018.03108117.
  • Bettemir, Ö.H., Gündüz, E., Akkurt, O., Hilal, E., & Arslan, M.A. (2019). İnşaat işlerinin iş programına bağlı nakit akışı değişkenliğinin saptanması ve düzenlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(1), 211-223, https://doi.org/10.21923/jesd.459948.
  • Bettemir, Ö.H, & Yücel, T. (2021) Zaman maliyet ödünleşim probleminin en az insan müdahalesi ile oluşturulup çözülmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 461-480, https://doi.org/10.17482/uumfd.869234.
  • Bettemir, Ö.H, & Bulak, Ö. (2022). İnşaat sürecinin iş çizelgelemesi, yönetimi ve optimizasyonu. Teknik Dergi, 33(6), 12945-12986, https://doi.org/10.18400/tekderg.981601.
  • Bettemir, Ö. H., Özdemir, E., & Sarıcı, D. E. (2021). Selection of construction machine by considering time-cost trade-off problem. Journal of Construction Engineering Management & Innovation, 4(3), 173-186, https://doi.org/10.31462/jcemi.2021.03173186.
  • Choi J., Kim H. & Kim I. (2015). Open BIM-based quantity take-off system for schematic estimation of building frame in early design stage. Journal of Computational Design and Engineering, 2(1):16-25, https://doi.org/10.1016/j.jcde.2014.11.002.
  • Delgado J.M.D., Oyedele L., Demian P., & Beach T. (2020). A research agenda for augmented and virtual reality in architecture, engineering and construction. Advanced Engineering Informatics, 45, 101-122. https://doi.org/10.1016/j.aei.2020.101122.
  • Dhalmahapatra K., Maiti J., & Krishna O.B. (2021). Assessment of virtual reality-based safety training simulator for electric overhead crane operations. Safety Science, 139, 105241, https://doi.org/10.1016/j.ssci.2021.105241.
  • Ergen, F., & Bettemir Ö.H. (2022). Development of BIM software with quantity take-off and visualization capabilities. Journal of Construction Engineering Management & Innovation, 5(1), 01 – 14, https:// doi.org/10.31462/jcemi.2022.01001014.
  • Kalfa, S. M. (2018). Building information modeling (BIM) systems and their applications in Turkey. Journal of Construction Engineering Management & Innovation, 1(1), 55-66.
  • Khosakitchalert C., Nobuyoshi Yabuki, & Fukuda T. (2019b). Automatic concrete formwork quantity takeoff using building information modeling. Proceedings of the 19th International Conference on Construction Applications of Virtual Reality (CONVR2019) pp. 21-28, 13 – 15, November.
  • Khosakitchalert, C., Yabuki, N., & Fukuda, T. (2018). The accuracy enhancement of architectural walls quantity takeoff for schematic BIM models. In ISARC, Proceedings of the International Symposium on Automation and Robotics in Construction, Berlin, Germany.
  • Khosakitchalert, C., Yabuki, N., & Fukuda, T. (2019a). BIM-based wall framing calculation algorithms for detailed quantity takeoff, Proceedings of the 4th International Conference on Civil and Building Engineering Informatics, 251-258, Sendai, Miyagi, Japan.
  • Khosakitchalert, C., Yabuki, N., & Fukuda, T. (2019). Improving the accuracy of BIM-based quantity takeoff for compound elements. Automation in Construction, 106, 1-20, https://doi.org/10.1016/j.autcon.2019.102891.
  • Kim S., Chin S., & Kwon S. (2019). A discrepancy analysis of BIM-based quantity take-off for building interior components. Journal of Management in Engineering, 35(3):05019001.
  • Lee S.K., Kim K.R., & Yu J.H. (2014). BIM and ontology-based approach for building cost estimation. Automation in Construction, 41, 96-105, https://doi.org/10.1016/j.autcon.2013.10.020.
  • Liu H., Cheng J.C., Gan V.J. & Zhou S. (2022). A knowledge model-based BIM framework for automatic code-compliant quantity take-off. Automation in Construction, 133:104024, https://doi.org/10.1016/j.autcon.2021.104024.
  • Liu H., Lu M., & Al-Hussein M. (2016). Ontology-based semantic approach for construction-oriented quantity take-off from BIM models in the light-frame building industry. Advanced Engineering Informatics, 30(2), 190-207.
  • Millman, K. J., & Aivazis, M., (2011). Python for scientists and engineers. Computing in Science & Engineering, 13(2), 9-12.
  • Nadeem, A., Wong, A. K., & Wong, F. K. (2015). Bill of quantities with 3D views using building information modeling. Arabian Journal for Science and Engineering, 40(9), 2465-2477.
  • Olsen D., & Taylor J. M. (2017). Quantity take-off using building information modeling (BIM), and its limiting factors. Procedia Engineering, 196:1098-1105.
  • Omaran, S. M., Alghamdi, A. A., Alharishawi, S. C., & Hains, D. B. (2019). Integrating BIM and game engine for simulation interactive life cycle analysis visualization. In Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation, 120-128, American Society of Civil Engineers, Reston, VA.
  • Ozcan-Deniz, G. (2019). Expanding applications of virtual reality in construction industry: A multiple case study approach. Journal of Construction Engineering Management & Innovation, 2(2), 48-66.
  • Pratoom, W., & Tangwiboonpanich, S. (2016). A comparison of rebar quantities obtained by traditional vs bim-based methods. Suranaree Journal of Science and Technology, 23(1), 5-10.
  • Quraishi A, & Dhapekar N. K. (2021). Applicability of python in civil engineering, International Research Journal of Engineering and Technology (IRJET), 8(1), 554-556.
  • Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., & Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14, 1-26, https://doi.org/10.1017/dce.2020.16.
  • Sacks, R., Koskela, L., Dave, B. A., & Owen, R. (2010). Interaction of lean and building information modeling in construction. Journal of construction engineering and management, 136(9), 968-980.
  • Sacks R., & Barak R. (2007). Impact of three-dimensional parametric modeling of buildings on productivity in structural engineering practice. Automation in Construction, 17, 439–449, https://doi.org/10.1016/j.autcon.2007.08.003.
  • Sarı, R., & Pekeriçli, M. K. (2020). An investigation of comparison and evaluation of official BIM documents released in the USA, UK and Turkey. Journal of Construction Engineering Management & Innovation, 3(1), 67-84.
  • Sarvade S.M. & Pore S.M. (2019). Use of python programming for interactive design of reinforced concrete structures, National Conference on Exploring New Dimensions in Teaching Learning for Quality Education, Maharashtra, India, 160–163.
  • Sherafat, B., Taghaddos, H., & Shafaghat, E. (2022). Enhanced automated quantity take-off in building information modeling enhanced automated quantity take-off in building information modeling. Scientia Iranica, 29(3), 1024-1037.
  • Temel, B., & Basaga, H. (2020). Investigation of IFC file format for BIM based automated code compliance checking. Journal of Construction Engineering Management & Innovation, 3(2), 113-130, https://doi.org/10.31462/jcemi.2020.02113130.
  • Yoon, J. D., Cho, H. S., Lee, J. H., Shin, J. Y., & Kim, E. S. (2020). A comparison of quantity take-offs of RC structures based on BIM. Journal of the Computational Structural Engineering Institute of Korea, 33(1), 35-44.
  • Zuppa, D., Issa, R. R., & Suermann, P. C. (2009). BIM's impact on the success measures of construction projects. In Computing in Civil Engineering, 503-512.

Development of BIM-based prototype software for the accurate quantity take-off calculation of rough construction items

Year 2023, Volume: 13 Issue: 1, 86 - 105, 15.01.2023
https://doi.org/10.17714/gumusfenbil.1117848

Abstract

Utilization of BIM among the construction sector has become widespread significantly. However, small and medium scale contractors are reluctant to implement BIM as a consequence of the additional cost and the staff adaptation training requirements as well as major changes at work habits. In this study software, capable of executing the 3 Dimensional visualization and preparation of quantity take-off which are basic functions of BIM software, is developed. Quantity take-off computations of concrete, formwork for the reinforced concrete, and scaffolding for the formwork as well as 3D visualization tasks are executed without human intervention by utilizing Tkinter library which is compatible with Python, Ursina game engine, and SQLite3 database applications. The developed software is not versatile since it has very simple graphical user interfaces. For this reason, 3-Dimensional visualization can be achieved by the definition of depth data such as height of the floor without a special training of the staff. Moreover, quantity take off of concrete, formwork of the reinforced concrete and scaffolding for the formwork can be obtained automatically. The obtained formwork quantity take-off amount is compared with the manual quantity take-off and the comparison revealed that the automated quantity take-off deviates only 0.04%. The literature review illustrate that Revit may not achieve the aforementioned accuracy. The small scale contractors would have the opportunity of execution of more precise cost analysis by preparing more accurate and fast quantity take-off.

References

  • Albahbah, M., Kıvrak, S., & Arslan, G. (2021). Application areas of augmented reality and virtual reality in construction project management: A scoping review. Journal of Construction Engineering Management & Innovation, 4(3), 151-172, https://doi.org/10.31462/jcemi.2021.03151172.
  • Barlish, K., & Sullivan, K. (2012). How to measure the benefits of BIM—a case study approach. Automation in construction, 24, 149-159.
  • Bayram, S. (2020). Yapı bilgi modellemesi (YBM) kapsamında geleneksel metraj ile yazılımın karşılaştırılması, Yapı Bilgi modelleme, 2(2), 58-65.
  • Bettemir, Ö. H. (2018). Development of spreadsheet based quantity take-off and cost estimation application. Journal of Construction Engineering Management & Innovation, 1(3), 108-117, https://doi.org/10.31462/jcemi.2018.03108117.
  • Bettemir, Ö.H., Gündüz, E., Akkurt, O., Hilal, E., & Arslan, M.A. (2019). İnşaat işlerinin iş programına bağlı nakit akışı değişkenliğinin saptanması ve düzenlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(1), 211-223, https://doi.org/10.21923/jesd.459948.
  • Bettemir, Ö.H, & Yücel, T. (2021) Zaman maliyet ödünleşim probleminin en az insan müdahalesi ile oluşturulup çözülmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 461-480, https://doi.org/10.17482/uumfd.869234.
  • Bettemir, Ö.H, & Bulak, Ö. (2022). İnşaat sürecinin iş çizelgelemesi, yönetimi ve optimizasyonu. Teknik Dergi, 33(6), 12945-12986, https://doi.org/10.18400/tekderg.981601.
  • Bettemir, Ö. H., Özdemir, E., & Sarıcı, D. E. (2021). Selection of construction machine by considering time-cost trade-off problem. Journal of Construction Engineering Management & Innovation, 4(3), 173-186, https://doi.org/10.31462/jcemi.2021.03173186.
  • Choi J., Kim H. & Kim I. (2015). Open BIM-based quantity take-off system for schematic estimation of building frame in early design stage. Journal of Computational Design and Engineering, 2(1):16-25, https://doi.org/10.1016/j.jcde.2014.11.002.
  • Delgado J.M.D., Oyedele L., Demian P., & Beach T. (2020). A research agenda for augmented and virtual reality in architecture, engineering and construction. Advanced Engineering Informatics, 45, 101-122. https://doi.org/10.1016/j.aei.2020.101122.
  • Dhalmahapatra K., Maiti J., & Krishna O.B. (2021). Assessment of virtual reality-based safety training simulator for electric overhead crane operations. Safety Science, 139, 105241, https://doi.org/10.1016/j.ssci.2021.105241.
  • Ergen, F., & Bettemir Ö.H. (2022). Development of BIM software with quantity take-off and visualization capabilities. Journal of Construction Engineering Management & Innovation, 5(1), 01 – 14, https:// doi.org/10.31462/jcemi.2022.01001014.
  • Kalfa, S. M. (2018). Building information modeling (BIM) systems and their applications in Turkey. Journal of Construction Engineering Management & Innovation, 1(1), 55-66.
  • Khosakitchalert C., Nobuyoshi Yabuki, & Fukuda T. (2019b). Automatic concrete formwork quantity takeoff using building information modeling. Proceedings of the 19th International Conference on Construction Applications of Virtual Reality (CONVR2019) pp. 21-28, 13 – 15, November.
  • Khosakitchalert, C., Yabuki, N., & Fukuda, T. (2018). The accuracy enhancement of architectural walls quantity takeoff for schematic BIM models. In ISARC, Proceedings of the International Symposium on Automation and Robotics in Construction, Berlin, Germany.
  • Khosakitchalert, C., Yabuki, N., & Fukuda, T. (2019a). BIM-based wall framing calculation algorithms for detailed quantity takeoff, Proceedings of the 4th International Conference on Civil and Building Engineering Informatics, 251-258, Sendai, Miyagi, Japan.
  • Khosakitchalert, C., Yabuki, N., & Fukuda, T. (2019). Improving the accuracy of BIM-based quantity takeoff for compound elements. Automation in Construction, 106, 1-20, https://doi.org/10.1016/j.autcon.2019.102891.
  • Kim S., Chin S., & Kwon S. (2019). A discrepancy analysis of BIM-based quantity take-off for building interior components. Journal of Management in Engineering, 35(3):05019001.
  • Lee S.K., Kim K.R., & Yu J.H. (2014). BIM and ontology-based approach for building cost estimation. Automation in Construction, 41, 96-105, https://doi.org/10.1016/j.autcon.2013.10.020.
  • Liu H., Cheng J.C., Gan V.J. & Zhou S. (2022). A knowledge model-based BIM framework for automatic code-compliant quantity take-off. Automation in Construction, 133:104024, https://doi.org/10.1016/j.autcon.2021.104024.
  • Liu H., Lu M., & Al-Hussein M. (2016). Ontology-based semantic approach for construction-oriented quantity take-off from BIM models in the light-frame building industry. Advanced Engineering Informatics, 30(2), 190-207.
  • Millman, K. J., & Aivazis, M., (2011). Python for scientists and engineers. Computing in Science & Engineering, 13(2), 9-12.
  • Nadeem, A., Wong, A. K., & Wong, F. K. (2015). Bill of quantities with 3D views using building information modeling. Arabian Journal for Science and Engineering, 40(9), 2465-2477.
  • Olsen D., & Taylor J. M. (2017). Quantity take-off using building information modeling (BIM), and its limiting factors. Procedia Engineering, 196:1098-1105.
  • Omaran, S. M., Alghamdi, A. A., Alharishawi, S. C., & Hains, D. B. (2019). Integrating BIM and game engine for simulation interactive life cycle analysis visualization. In Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation, 120-128, American Society of Civil Engineers, Reston, VA.
  • Ozcan-Deniz, G. (2019). Expanding applications of virtual reality in construction industry: A multiple case study approach. Journal of Construction Engineering Management & Innovation, 2(2), 48-66.
  • Pratoom, W., & Tangwiboonpanich, S. (2016). A comparison of rebar quantities obtained by traditional vs bim-based methods. Suranaree Journal of Science and Technology, 23(1), 5-10.
  • Quraishi A, & Dhapekar N. K. (2021). Applicability of python in civil engineering, International Research Journal of Engineering and Technology (IRJET), 8(1), 554-556.
  • Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., & Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14, 1-26, https://doi.org/10.1017/dce.2020.16.
  • Sacks, R., Koskela, L., Dave, B. A., & Owen, R. (2010). Interaction of lean and building information modeling in construction. Journal of construction engineering and management, 136(9), 968-980.
  • Sacks R., & Barak R. (2007). Impact of three-dimensional parametric modeling of buildings on productivity in structural engineering practice. Automation in Construction, 17, 439–449, https://doi.org/10.1016/j.autcon.2007.08.003.
  • Sarı, R., & Pekeriçli, M. K. (2020). An investigation of comparison and evaluation of official BIM documents released in the USA, UK and Turkey. Journal of Construction Engineering Management & Innovation, 3(1), 67-84.
  • Sarvade S.M. & Pore S.M. (2019). Use of python programming for interactive design of reinforced concrete structures, National Conference on Exploring New Dimensions in Teaching Learning for Quality Education, Maharashtra, India, 160–163.
  • Sherafat, B., Taghaddos, H., & Shafaghat, E. (2022). Enhanced automated quantity take-off in building information modeling enhanced automated quantity take-off in building information modeling. Scientia Iranica, 29(3), 1024-1037.
  • Temel, B., & Basaga, H. (2020). Investigation of IFC file format for BIM based automated code compliance checking. Journal of Construction Engineering Management & Innovation, 3(2), 113-130, https://doi.org/10.31462/jcemi.2020.02113130.
  • Yoon, J. D., Cho, H. S., Lee, J. H., Shin, J. Y., & Kim, E. S. (2020). A comparison of quantity take-offs of RC structures based on BIM. Journal of the Computational Structural Engineering Institute of Korea, 33(1), 35-44.
  • Zuppa, D., Issa, R. R., & Suermann, P. C. (2009). BIM's impact on the success measures of construction projects. In Computing in Civil Engineering, 503-512.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Faruk Ergen 0000-0002-1509-8720

Önder Halis Bettemir 0000-0002-5692-7708

Publication Date January 15, 2023
Submission Date May 18, 2022
Acceptance Date November 15, 2022
Published in Issue Year 2023 Volume: 13 Issue: 1

Cite

APA Ergen, F., & Bettemir, Ö. H. (2023). Yüksek doğrulukta kaba inşaat kalemlerinin metrajını hesaplayan YBM tabanlı prototip yazılımın geliştirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(1), 86-105. https://doi.org/10.17714/gumusfenbil.1117848