Research Article
BibTex RIS Cite

Çok amaçlı bir üniversal yüksek gerilim inkubatörü tasarımı ve uygulaması

Year 2024, Volume: 39 Issue: 3, 1375 - 1386
https://doi.org/10.17341/gazimmfd.1105036

Abstract

İnkübatör şartları altında elektrik alanların hücre kültürlerine uygulandığı bilimsel çalışmaların neredeyse tamamına yakınında, ticari bir inkübatörün kullanıldığı söylenebilir. Bu durum ticari bir inkübatör içine sığabilen deney sistemlerinin ve elektrotların kullanımını zorunlu kılmaktadır. Bu nedenle literatürdeki çalışmalar incelendiğinde, çalışmalarda kullanılan ticari inkübatör boyutlarının, test sisteminin ve elektrotlarının özel olarak tasarlanmasını zorunlu kıldığı görülmektedir. Söz konusu bu kısıtlamalar bilimsel çalışmanın sınırlarını da daraltabilmektedir. Öyle ki bilimsel çalışmada kullanılan ticari inkübatörün iç hacminin kısıtlılığından dolayı, numuneye uygulanabilen gerilim değerleri belirli bir seviyenin üzerine çıkamamaktadır. Bu çalışmada, sıcaklık nem ve CO2 kontrollü inkübatör şartları altında hücre kültürlerine ya da gıda numunelerine 100 kVpp seviyesine kadar yüksek gerilimlerin uygulanabileceği çok amaçlı üniversal bir sistem tanıtılmıştır. Sistem ayrıca 11,2 kV’a kadar darbeli elektrik alanların oluşturulmasına ve uygulanmasına imkân vermektedir. Geliştirilen ve önerilen sistem “Yüksek Gerilim İnkübatörü” olarak isimlendirilmiştir.

Supporting Institution

Bolu Abant İzzet Baysal Üniversitesi (BAİBÜ) Bilimsel Araştırma Projeleri (BAP) Birimi

Project Number

Proje No: 2016.09.03.1003

Thanks

Yazarlar BAİBÜ, BAP birimine teşekkürlerini sunar.

References

  • 1. Lasekan O, Ng S, Azeez S, Shittu R, Teoh L, Gholivand S., Effect of Pulsed Electric Field Processing on Flavor and Color of Liquid Foods, J. Food Process. Preserv., 41 (3), 1–14, 2017.
  • 2. Alaaddin C., Elektroporasyon Yöntemiyle Melanoma Tedavisinde Kullanılan Dakarbazinin Sitotoksisitesinin Arttırılması Üzerine Çalışmalar, Doktora Tezi, Gazi Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara, 23, 2017.
  • 3. Qin B-L, Zhang Q, Barbosa-Canovas G V., Swanson BG, Pedrow PD., Inactivation of Microorganisms by Pulsed Electric Fields of Different Voltage Waveforms, IEEE Trans. Dielectr. Electr. Insul., 1 (6), 1047–1056, 1994.
  • 4. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., Gene transfer into mouse lyoma cells by electroporation in high electric fields, Embo J., 1 (7), 841–845, 1982.
  • 5. André FM, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J et al., Efficiency of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin., Hum. Gene Ther., 19 (11), 1261–1271, 2008.
  • 6. Mok JH, Pyatkovskyy T, Yousef A, Sastry SK., Synergistic effects of shear stress, moderate electric field, and nisin for the inactivation of Escherichia coli K12 and Listeria innocua in clear apple juice, Food Control, 113 (2020), 1–9, 2020.
  • 7. Freire V, Lattanzio G, Orera I, Mañas P, Cebrián G., Component release after exposure of Staphylococcus aureus cells to pulsed electric fields, Innov. Food Sci. Emerg. Technol., 74 (2021), 1–13, 2021.
  • 8. Grahl T, Märkl H., Killing of Microorganisms by Electric Field, Appl. Microbiol. Biotechnol., 45 (1–2), 148–157, 1996.
  • 9. Min S, Evrendilek GA, Zhang HQ., Pulsed electric fields: Processing system, microbial and enzyme inhibition, and shelf life extension of foods, IEEE Trans. Plasma Sci., 35 (1), 59–73, 2007.
  • 10. Olmedilla-Alonso B, Granado-Lorencio F, de Ancos B, Sánchez-Moreno C, Martín-Belloso O, Blanco I et al., Greater bioavailability of xanthophylls compared to carotenes from orange juice (high-pressure processed, pulsed electric field treated, low-temperature pasteurised, and freshly squeezed) in a crossover study in healthy individuals, Food Chem., 371 (2022), 1–8, 2022.
  • 11. Andreou V, Dimopoulos G, Dermesonlouoglou E, Taoukis P., Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing, J. Food Eng., 270 (2020), 1–13, 2020.
  • 12. Wibowo S, Essel EA, De Man S, Bernaert N, Van Droogenbroeck B, Grauwet T et al., Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses, Innov. Food Sci. Emerg. Technol., 54 (2019), 64–77, 2019.
  • 13. Wu Y, Mittal GS, Griffiths MW., Effect of pulsed electric field on the inactivation of microorganisms in grape juices with and without antimicrobials, Biosyst. Eng., 90 (1), 1–7, 2005.
  • 14. Yildiz S, Pokhrel PR, Unluturk S, Barbosa-Cánovas G V., Shelf life extension of strawberry juice by equivalent ultrasound, high pressure, and pulsed electric fields processes, Food Res. Int., 140 (2021), 1–11, 2021.
  • 15. Gupta B Sen, Masterson F, Magee TRA., Inactivation of E. coli in cranberry juice by a high voltage pulsed electric field, Eng. Life Sci., 5 (2), 148–151, 2005.
  • 16. Yang S, Suwal S, Andersen U, Otte J, Ahrné L., Effects of pulsed electric field on fat globule structure, lipase activity, and fatty acid composition in raw milk and milk with different fat globule sizes, Innov. Food Sci. Emerg. Technol., 67 (2021), 1–11, 2021.
  • 17. Evrendilek GA, Yeom HW., Safety and quality evaluation of a yogurt-based drink processed by a pilot plant pef system, J. Food Process Eng., 27 (3), 197–212, 2004.
  • 18. Agregán R, Munekata PES, Putnik P, Pateiro M, Bursać Kovačević D, Zavadlav S et al., The Use of Novel Technologies in Egg Processing, Food Rev. Int., 00 (00), 1–21, 2021.
  • 19. Moens LG, Van Wambeke J, De Laet E, Van Ceunebroeck JC, Goos P, Van Loey AM et al., Effect of postharvest storage on potato (Solanum tuberosum L.) texture after pulsed electric field and thermal treatments, Innov. Food Sci. Emerg. Technol., 74 (2021), 1–13, 2021.
  • 20. Keith WD, Harris LJ, Hudson L, Griffiths MW., Pulsed electric fields as a processing alternative for microbial reduction in spice, Food Res. Int., 30 (3–4), 185–191, 1997.
  • 21. Neumann E, Rosenheck K., Permeability changes induced by electric impulses in vesicular membranes, J. Membr. Biol., 10 (1), 279–290, 1972.
  • 22. Zimmermann U, Pilwat G, Riemann F., Dielectric breakdown of cell membranes, Biophys. J., 14 (11), 881–899, 1974.
  • 23. Riemann F, Zimmermann U, Pilwat G., Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown, BBA - Biomembr., 394 (3), 449–462, 1975.
  • 24. Griese T, Kakorin S, Neumann E., Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields, Phys. Chem. Chem. Phys., 4 (7), 1217–1227, 2002.
  • 25. Kang DK, Nakamitsu S, Hosseini SHR, Iwasaki S, Kono S, Tominaga N et al., Effects of nanosecond pulsed electric field on the embryonic development of medaka fish egg (Oryzias latipes), International Conference on Pulsed Power, 1099–1103, 2009.
  • 26. Neumann E, Gerisch G, Opatz K., Cell Fusion Induced by High Electric Impulses Applied to Dictyostelium, Naturwissenschaften, 67 (8), 414–415, 1980.
  • 27. Zimmermann U, Pilwat G, Beckers F, Riemann F., Effects of external electrical fields on cell membranes, Bioelectrochemistry Bioenerg., 3 (1), 58–83, 1976.
  • 28. Zimmermann U, Vienken J, Pilwat G., Development of Drug Carrier Systems: Electrical Field Induced Effects in Cell Membranes, Bioelectrochemistry Bioenerg., 7 (3), 553–574, 1980.
  • 29. Benz R, Beckers F, Zimmermann U., Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study, J. Membr. Biol., 48 (2), 181–204, 1979.
  • 30. Yin S, Liu Z, Mashayekh AS, Guo D, Qian J, Wang Y et al., Ultrastructural Changes in Hepatocellular Carcinoma Cells Induced by Exponential Pulses of Nanosecond Duration Delivered Via a Transmission Line, Bioelectrochemistry, 135 (2020), 1–13, 2020.
  • 31. Schoenbach KH, Xiao S, Joshi RP, Camp JT, Heeren T, Kolb JF et al., The effect of intense subnanosecond electrical pulses on biological cells, IEEE Trans. Plasma Sci., 36 (2), 414–422, 2008.
  • 32. Su C, Fang T, Fang H., Effects of Electrostatic Field on Osteoblast Cells for Bone Regeneration Applications, Hindawi, BioMed Res. Int., Vol 2017, 1–10, 2017.
  • 33. Fidan M, Camsari C, Coban M, Cetinkaya A, Kilinc E., In vitro effects of direct and alternate electric fields on SAOS-2 cell line, World Cancer Res. J., 6: e1287 1–5, 2019.
  • 34. Fisher PD, Brambila CJ, McCoy JR, Kiosses WB, Mendoza JM, Oh J et al., Adipose Tissue: A New Target For Electroporation-Enhanced DNA Vaccines, Gene Ther., 24 (12), 757–767, 2017.
  • 35. Gupta B Sen, Masterson F, Magee TRA., Inactivation of E. coli K12 in apple juice by high voltage pulsed electric field, Eur. Food Res. Technol., 217 (5), 434–437, 2003.
  • 36. Martin O, Qin BL, Chang FJ, Barbosa-Canovas G V., Swanson BG., Inactivation of Escherichia Coli in skim milk by high intensity pulsed electric fields, J. Food Process Eng., 20 (4), 317–336, 1997.
  • 37. Min S, Jin ZT, Zhang QH., Commercial scale pulsed electric field processing of tomato juice, J. Agric. Food Chem., 51 (11), 3338–3344, 2003.
  • 38. Zhang Q, Barbosa-Cánovas G, Swanson BG., Engineering aspects of pulsed electric field pasteurization, J. Food Eng., 25 (2), 261–281, 1995.
  • 39. Bellebna Y, Bermmaki H, Semmak A, ChakerR A, Tilmatine A., Study and analysis of new pulsed electric field treatment chamber configurations for food extraction, Turkish J. Electr. Eng. Comput. Sci., 25 4149–4159, 2017.
  • 40. Fang HW, Sung YT, Su CY, Chen CC., Electrostatic field may regulate proliferation and immune responses of macrophages induced by polyethylene wear particles, J. Taiwan Inst. Chem. Eng., 77 (1), 21–29, 2017.
  • 41. Obarski GE, Beckel CL., High‐intensity electrostatic‐field exposure system for cultured biological cells, Bioelectromagnetics, 13 (2), 79–89, 1992.
  • 42. Okumura T, Yaegashi T, Yamada K, Ito T, Takahashi K, Aisawa S et al., Long period preservation of marine products using electrostatic field, Jpn. J. Appl. Phys., 55 (07LG07), 1–5, 2016.
  • 43. Michalczuk U, Przekop R, Moskal A., The effect of selected nanoparticles on rheological properties of human blood, Bull. Polish Acad. Sci. Tech. Sci., 70 (1), 1–7, 2022.
  • 44. Cerna CZ, Elam DP, Echchgadda I, Sloan MA, Wilmink GJ., State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies, Optical Interactions with Tissue and Cells XXV; and Terahertz for Biomedical Applications, 89411H, 2014.
  • 45. Janositz A, Noack AK, Knorr D., Pulsed electric fields and their impact on the diffusion characteristics of potato slices, LWT - Food Sci. Technol., 44 (9), 1939–1945, 2011.
  • 46. Fidan M., Harmoniklerden Kaynaklanan Gerilim Bozulmalarının Elektriksel Kısmi Boşalmalar Üzerindeki Etkilerinin İncelenmesi, Doktora Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli, 98–102, 2011.
  • 47. Sun W, Li L, Stefanescu EA, Kessler MR, Bowler N., Dynamics of poly(methyl methacrylate)-montmorillonite nanocomposites: A dielectric study, J. Non. Cryst. Solids, 410 (2015), 43–50, 2015.
  • 48. Farah RI., Effect of simulated pulpal blood flow rate on the rise in pulp chamber temperature during direct fabrication of exothermic provisional restorations, Int. Endod. J., 50 (11), 1097–1103, 2017.
  • 49. Barrett RJ, Sandquist L, Richards BF, Soo TM., Antibiotic-impregnated polymethylmethacrylate as an anterior biomechanical device for the treatment of cervical discitis and vertebral osteomyelitis: Technical report of two cases, Turk. Neurosurg., 24 (4), 613–617, 2014.
  • 50. Chaney A, Sundararajan R., Simple MOSFET-Based High-Voltage Nanosecond Pulse Circuit, IEEE Trans. Plasma Sci., 32 (5), 1919–1924, 2004.
  • 51. Sundararajan R, Shao J, Soundarajan E, Gonzales J, Chaney A., Performance of Solid-State High-Voltage Pulsers for Biological Applications—A Preliminary Study, IEEE Trans. Plasma Sci., 32 (5), 2017–2025, 2004.
  • 52. Kuffel E, Zaengl WS, Kuffel E., High Voltage Engineering: Fundamentals, 2, Madras, India, Butterworth-Heinemann, 2000.
  • 53. Alisoy GT, Alisoy HZ., A boundary-value problem for dielectric spherical void in a homogeneous insulator by considering surface conductivity, J. Electrostat., 65 (10–11), 639–645, 2007.
  • 54. Yıldız BM, Kalenderli Ö, Altay Ö., Multi-Physical analysis of the effect of cable layout, distance between cables and ambient temperature on cable current carrying capacity in air vehicle wiring with finite element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2147–2154, 2023.
  • 55. Yıldız H, Durak B, Uzal E., Analytical solution of multi-winding coil problem in magnetic core in spherical coordinates and comparison with FEA results, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (1), 65–75, 2024.
  • 56. Dalvi-Isfahan M, Hamdami N, Le-Bail A., Effect of freezing under electrostatic field on selected properties of an agar gel, Innov. Food Sci. Emerg. Technol., 42 (March), 151–156, 2017.
  • 57. Kakorin S, Redeker E, Neumann E., Electroporative deformation of salt filled lipid vesicles, Eur. Biophys. J., 27 (1), 43–53, 1998.
  • 58. Mousakhani-Ganjeh A, Hamdami N, Soltanizadeh N., Thawing of frozen tuna fish (Thunnus albacares) using still air method combined with a high voltage electrostatic field, J. Food Eng., 169 149–154, 2016.
  • 59. Kinosita K, Tsong TY., Hemolysis of human erythrocytes by transient electric field., Proc. Natl. Acad. Sci. U. S. A., 74 (5), 1923–1927, 1977.
  • 60. Kinosita K, Tsong TY., Voltage-induced conductance in human erythrocyte membranes, BBA - Biomembr., 554 (2), 479–497, 1979.
  • 61. Heermeier K, Spanner M, Träger J, Gradinger R, Strauss PG, Kraus W et al., Effects of Extremely Low Frequency Electromagnetic Field (EMF) on Collagen Type I mRNA Expression and Extracellular Matrix Synthesis of Human Osteoblastic Cells, Bioelectromagnetics, 19 (4), 222–231, 1998.
Year 2024, Volume: 39 Issue: 3, 1375 - 1386
https://doi.org/10.17341/gazimmfd.1105036

Abstract

Project Number

Proje No: 2016.09.03.1003

References

  • 1. Lasekan O, Ng S, Azeez S, Shittu R, Teoh L, Gholivand S., Effect of Pulsed Electric Field Processing on Flavor and Color of Liquid Foods, J. Food Process. Preserv., 41 (3), 1–14, 2017.
  • 2. Alaaddin C., Elektroporasyon Yöntemiyle Melanoma Tedavisinde Kullanılan Dakarbazinin Sitotoksisitesinin Arttırılması Üzerine Çalışmalar, Doktora Tezi, Gazi Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara, 23, 2017.
  • 3. Qin B-L, Zhang Q, Barbosa-Canovas G V., Swanson BG, Pedrow PD., Inactivation of Microorganisms by Pulsed Electric Fields of Different Voltage Waveforms, IEEE Trans. Dielectr. Electr. Insul., 1 (6), 1047–1056, 1994.
  • 4. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., Gene transfer into mouse lyoma cells by electroporation in high electric fields, Embo J., 1 (7), 841–845, 1982.
  • 5. André FM, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J et al., Efficiency of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin., Hum. Gene Ther., 19 (11), 1261–1271, 2008.
  • 6. Mok JH, Pyatkovskyy T, Yousef A, Sastry SK., Synergistic effects of shear stress, moderate electric field, and nisin for the inactivation of Escherichia coli K12 and Listeria innocua in clear apple juice, Food Control, 113 (2020), 1–9, 2020.
  • 7. Freire V, Lattanzio G, Orera I, Mañas P, Cebrián G., Component release after exposure of Staphylococcus aureus cells to pulsed electric fields, Innov. Food Sci. Emerg. Technol., 74 (2021), 1–13, 2021.
  • 8. Grahl T, Märkl H., Killing of Microorganisms by Electric Field, Appl. Microbiol. Biotechnol., 45 (1–2), 148–157, 1996.
  • 9. Min S, Evrendilek GA, Zhang HQ., Pulsed electric fields: Processing system, microbial and enzyme inhibition, and shelf life extension of foods, IEEE Trans. Plasma Sci., 35 (1), 59–73, 2007.
  • 10. Olmedilla-Alonso B, Granado-Lorencio F, de Ancos B, Sánchez-Moreno C, Martín-Belloso O, Blanco I et al., Greater bioavailability of xanthophylls compared to carotenes from orange juice (high-pressure processed, pulsed electric field treated, low-temperature pasteurised, and freshly squeezed) in a crossover study in healthy individuals, Food Chem., 371 (2022), 1–8, 2022.
  • 11. Andreou V, Dimopoulos G, Dermesonlouoglou E, Taoukis P., Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing, J. Food Eng., 270 (2020), 1–13, 2020.
  • 12. Wibowo S, Essel EA, De Man S, Bernaert N, Van Droogenbroeck B, Grauwet T et al., Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses, Innov. Food Sci. Emerg. Technol., 54 (2019), 64–77, 2019.
  • 13. Wu Y, Mittal GS, Griffiths MW., Effect of pulsed electric field on the inactivation of microorganisms in grape juices with and without antimicrobials, Biosyst. Eng., 90 (1), 1–7, 2005.
  • 14. Yildiz S, Pokhrel PR, Unluturk S, Barbosa-Cánovas G V., Shelf life extension of strawberry juice by equivalent ultrasound, high pressure, and pulsed electric fields processes, Food Res. Int., 140 (2021), 1–11, 2021.
  • 15. Gupta B Sen, Masterson F, Magee TRA., Inactivation of E. coli in cranberry juice by a high voltage pulsed electric field, Eng. Life Sci., 5 (2), 148–151, 2005.
  • 16. Yang S, Suwal S, Andersen U, Otte J, Ahrné L., Effects of pulsed electric field on fat globule structure, lipase activity, and fatty acid composition in raw milk and milk with different fat globule sizes, Innov. Food Sci. Emerg. Technol., 67 (2021), 1–11, 2021.
  • 17. Evrendilek GA, Yeom HW., Safety and quality evaluation of a yogurt-based drink processed by a pilot plant pef system, J. Food Process Eng., 27 (3), 197–212, 2004.
  • 18. Agregán R, Munekata PES, Putnik P, Pateiro M, Bursać Kovačević D, Zavadlav S et al., The Use of Novel Technologies in Egg Processing, Food Rev. Int., 00 (00), 1–21, 2021.
  • 19. Moens LG, Van Wambeke J, De Laet E, Van Ceunebroeck JC, Goos P, Van Loey AM et al., Effect of postharvest storage on potato (Solanum tuberosum L.) texture after pulsed electric field and thermal treatments, Innov. Food Sci. Emerg. Technol., 74 (2021), 1–13, 2021.
  • 20. Keith WD, Harris LJ, Hudson L, Griffiths MW., Pulsed electric fields as a processing alternative for microbial reduction in spice, Food Res. Int., 30 (3–4), 185–191, 1997.
  • 21. Neumann E, Rosenheck K., Permeability changes induced by electric impulses in vesicular membranes, J. Membr. Biol., 10 (1), 279–290, 1972.
  • 22. Zimmermann U, Pilwat G, Riemann F., Dielectric breakdown of cell membranes, Biophys. J., 14 (11), 881–899, 1974.
  • 23. Riemann F, Zimmermann U, Pilwat G., Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown, BBA - Biomembr., 394 (3), 449–462, 1975.
  • 24. Griese T, Kakorin S, Neumann E., Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields, Phys. Chem. Chem. Phys., 4 (7), 1217–1227, 2002.
  • 25. Kang DK, Nakamitsu S, Hosseini SHR, Iwasaki S, Kono S, Tominaga N et al., Effects of nanosecond pulsed electric field on the embryonic development of medaka fish egg (Oryzias latipes), International Conference on Pulsed Power, 1099–1103, 2009.
  • 26. Neumann E, Gerisch G, Opatz K., Cell Fusion Induced by High Electric Impulses Applied to Dictyostelium, Naturwissenschaften, 67 (8), 414–415, 1980.
  • 27. Zimmermann U, Pilwat G, Beckers F, Riemann F., Effects of external electrical fields on cell membranes, Bioelectrochemistry Bioenerg., 3 (1), 58–83, 1976.
  • 28. Zimmermann U, Vienken J, Pilwat G., Development of Drug Carrier Systems: Electrical Field Induced Effects in Cell Membranes, Bioelectrochemistry Bioenerg., 7 (3), 553–574, 1980.
  • 29. Benz R, Beckers F, Zimmermann U., Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study, J. Membr. Biol., 48 (2), 181–204, 1979.
  • 30. Yin S, Liu Z, Mashayekh AS, Guo D, Qian J, Wang Y et al., Ultrastructural Changes in Hepatocellular Carcinoma Cells Induced by Exponential Pulses of Nanosecond Duration Delivered Via a Transmission Line, Bioelectrochemistry, 135 (2020), 1–13, 2020.
  • 31. Schoenbach KH, Xiao S, Joshi RP, Camp JT, Heeren T, Kolb JF et al., The effect of intense subnanosecond electrical pulses on biological cells, IEEE Trans. Plasma Sci., 36 (2), 414–422, 2008.
  • 32. Su C, Fang T, Fang H., Effects of Electrostatic Field on Osteoblast Cells for Bone Regeneration Applications, Hindawi, BioMed Res. Int., Vol 2017, 1–10, 2017.
  • 33. Fidan M, Camsari C, Coban M, Cetinkaya A, Kilinc E., In vitro effects of direct and alternate electric fields on SAOS-2 cell line, World Cancer Res. J., 6: e1287 1–5, 2019.
  • 34. Fisher PD, Brambila CJ, McCoy JR, Kiosses WB, Mendoza JM, Oh J et al., Adipose Tissue: A New Target For Electroporation-Enhanced DNA Vaccines, Gene Ther., 24 (12), 757–767, 2017.
  • 35. Gupta B Sen, Masterson F, Magee TRA., Inactivation of E. coli K12 in apple juice by high voltage pulsed electric field, Eur. Food Res. Technol., 217 (5), 434–437, 2003.
  • 36. Martin O, Qin BL, Chang FJ, Barbosa-Canovas G V., Swanson BG., Inactivation of Escherichia Coli in skim milk by high intensity pulsed electric fields, J. Food Process Eng., 20 (4), 317–336, 1997.
  • 37. Min S, Jin ZT, Zhang QH., Commercial scale pulsed electric field processing of tomato juice, J. Agric. Food Chem., 51 (11), 3338–3344, 2003.
  • 38. Zhang Q, Barbosa-Cánovas G, Swanson BG., Engineering aspects of pulsed electric field pasteurization, J. Food Eng., 25 (2), 261–281, 1995.
  • 39. Bellebna Y, Bermmaki H, Semmak A, ChakerR A, Tilmatine A., Study and analysis of new pulsed electric field treatment chamber configurations for food extraction, Turkish J. Electr. Eng. Comput. Sci., 25 4149–4159, 2017.
  • 40. Fang HW, Sung YT, Su CY, Chen CC., Electrostatic field may regulate proliferation and immune responses of macrophages induced by polyethylene wear particles, J. Taiwan Inst. Chem. Eng., 77 (1), 21–29, 2017.
  • 41. Obarski GE, Beckel CL., High‐intensity electrostatic‐field exposure system for cultured biological cells, Bioelectromagnetics, 13 (2), 79–89, 1992.
  • 42. Okumura T, Yaegashi T, Yamada K, Ito T, Takahashi K, Aisawa S et al., Long period preservation of marine products using electrostatic field, Jpn. J. Appl. Phys., 55 (07LG07), 1–5, 2016.
  • 43. Michalczuk U, Przekop R, Moskal A., The effect of selected nanoparticles on rheological properties of human blood, Bull. Polish Acad. Sci. Tech. Sci., 70 (1), 1–7, 2022.
  • 44. Cerna CZ, Elam DP, Echchgadda I, Sloan MA, Wilmink GJ., State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies, Optical Interactions with Tissue and Cells XXV; and Terahertz for Biomedical Applications, 89411H, 2014.
  • 45. Janositz A, Noack AK, Knorr D., Pulsed electric fields and their impact on the diffusion characteristics of potato slices, LWT - Food Sci. Technol., 44 (9), 1939–1945, 2011.
  • 46. Fidan M., Harmoniklerden Kaynaklanan Gerilim Bozulmalarının Elektriksel Kısmi Boşalmalar Üzerindeki Etkilerinin İncelenmesi, Doktora Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli, 98–102, 2011.
  • 47. Sun W, Li L, Stefanescu EA, Kessler MR, Bowler N., Dynamics of poly(methyl methacrylate)-montmorillonite nanocomposites: A dielectric study, J. Non. Cryst. Solids, 410 (2015), 43–50, 2015.
  • 48. Farah RI., Effect of simulated pulpal blood flow rate on the rise in pulp chamber temperature during direct fabrication of exothermic provisional restorations, Int. Endod. J., 50 (11), 1097–1103, 2017.
  • 49. Barrett RJ, Sandquist L, Richards BF, Soo TM., Antibiotic-impregnated polymethylmethacrylate as an anterior biomechanical device for the treatment of cervical discitis and vertebral osteomyelitis: Technical report of two cases, Turk. Neurosurg., 24 (4), 613–617, 2014.
  • 50. Chaney A, Sundararajan R., Simple MOSFET-Based High-Voltage Nanosecond Pulse Circuit, IEEE Trans. Plasma Sci., 32 (5), 1919–1924, 2004.
  • 51. Sundararajan R, Shao J, Soundarajan E, Gonzales J, Chaney A., Performance of Solid-State High-Voltage Pulsers for Biological Applications—A Preliminary Study, IEEE Trans. Plasma Sci., 32 (5), 2017–2025, 2004.
  • 52. Kuffel E, Zaengl WS, Kuffel E., High Voltage Engineering: Fundamentals, 2, Madras, India, Butterworth-Heinemann, 2000.
  • 53. Alisoy GT, Alisoy HZ., A boundary-value problem for dielectric spherical void in a homogeneous insulator by considering surface conductivity, J. Electrostat., 65 (10–11), 639–645, 2007.
  • 54. Yıldız BM, Kalenderli Ö, Altay Ö., Multi-Physical analysis of the effect of cable layout, distance between cables and ambient temperature on cable current carrying capacity in air vehicle wiring with finite element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2147–2154, 2023.
  • 55. Yıldız H, Durak B, Uzal E., Analytical solution of multi-winding coil problem in magnetic core in spherical coordinates and comparison with FEA results, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (1), 65–75, 2024.
  • 56. Dalvi-Isfahan M, Hamdami N, Le-Bail A., Effect of freezing under electrostatic field on selected properties of an agar gel, Innov. Food Sci. Emerg. Technol., 42 (March), 151–156, 2017.
  • 57. Kakorin S, Redeker E, Neumann E., Electroporative deformation of salt filled lipid vesicles, Eur. Biophys. J., 27 (1), 43–53, 1998.
  • 58. Mousakhani-Ganjeh A, Hamdami N, Soltanizadeh N., Thawing of frozen tuna fish (Thunnus albacares) using still air method combined with a high voltage electrostatic field, J. Food Eng., 169 149–154, 2016.
  • 59. Kinosita K, Tsong TY., Hemolysis of human erythrocytes by transient electric field., Proc. Natl. Acad. Sci. U. S. A., 74 (5), 1923–1927, 1977.
  • 60. Kinosita K, Tsong TY., Voltage-induced conductance in human erythrocyte membranes, BBA - Biomembr., 554 (2), 479–497, 1979.
  • 61. Heermeier K, Spanner M, Träger J, Gradinger R, Strauss PG, Kraus W et al., Effects of Extremely Low Frequency Electromagnetic Field (EMF) on Collagen Type I mRNA Expression and Extracellular Matrix Synthesis of Human Osteoblastic Cells, Bioelectromagnetics, 19 (4), 222–231, 1998.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Murat Fidan 0000-0003-2181-070X

Melih Çoban 0000-0001-9528-7187

Project Number Proje No: 2016.09.03.1003
Early Pub Date January 19, 2024
Publication Date
Submission Date April 18, 2022
Acceptance Date July 31, 2023
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Fidan, M., & Çoban, M. (2024). Çok amaçlı bir üniversal yüksek gerilim inkubatörü tasarımı ve uygulaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1375-1386. https://doi.org/10.17341/gazimmfd.1105036
AMA Fidan M, Çoban M. Çok amaçlı bir üniversal yüksek gerilim inkubatörü tasarımı ve uygulaması. GUMMFD. January 2024;39(3):1375-1386. doi:10.17341/gazimmfd.1105036
Chicago Fidan, Murat, and Melih Çoban. “Çok amaçlı Bir üniversal yüksek Gerilim inkubatörü tasarımı Ve Uygulaması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 3 (January 2024): 1375-86. https://doi.org/10.17341/gazimmfd.1105036.
EndNote Fidan M, Çoban M (January 1, 2024) Çok amaçlı bir üniversal yüksek gerilim inkubatörü tasarımı ve uygulaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1375–1386.
IEEE M. Fidan and M. Çoban, “Çok amaçlı bir üniversal yüksek gerilim inkubatörü tasarımı ve uygulaması”, GUMMFD, vol. 39, no. 3, pp. 1375–1386, 2024, doi: 10.17341/gazimmfd.1105036.
ISNAD Fidan, Murat - Çoban, Melih. “Çok amaçlı Bir üniversal yüksek Gerilim inkubatörü tasarımı Ve Uygulaması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (January 2024), 1375-1386. https://doi.org/10.17341/gazimmfd.1105036.
JAMA Fidan M, Çoban M. Çok amaçlı bir üniversal yüksek gerilim inkubatörü tasarımı ve uygulaması. GUMMFD. 2024;39:1375–1386.
MLA Fidan, Murat and Melih Çoban. “Çok amaçlı Bir üniversal yüksek Gerilim inkubatörü tasarımı Ve Uygulaması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 3, 2024, pp. 1375-86, doi:10.17341/gazimmfd.1105036.
Vancouver Fidan M, Çoban M. Çok amaçlı bir üniversal yüksek gerilim inkubatörü tasarımı ve uygulaması. GUMMFD. 2024;39(3):1375-86.