Research Article
BibTex RIS Cite

Zemin-hücresel dolgu elemanlarının sürtünme davranışlarının laboratuvarda yapılan çekme deneyleri ile belirlenmesi

Year 2020, Volume: 35 Issue: 1, 27 - 38, 25.10.2019
https://doi.org/10.17341/gazimmfd.639893

Abstract

Bu çalışma kapsamında, zemin-hücresel dolgu elemanı
arasındaki sürtünme davranışı laboratuvarda yapılan büyük ölçekli çekme deney
düzeneği ile belirlenmiştir. Büyük ölçekli çekme deney kutusu (1500 mm uzunluk,
1000 mm genişlik ve 700 mm yükseklik) zemin-hücresel dolgu elemanı arasındaki
davranışı belirlemek için Gazi Üniversitesi laboratuvarında tasarlanmış ve inşa
edilmiştir. Toplam olarak 18 adet çekme deneyi 10, 25 ve 50 kPa üniform düşey
yükler altında yapılmıştır. Kullanılan zemin malzemesi kötü derecelendirilmiş
kum olup özgül ağırlığı (Gs)
2,67, ortalama dane çapı (D50)
1,6 mm, maksimum ve minimum boşluk oranları sırasıyla 0,79 ve 0,43, maksimum ve
minimum kuru birim hacim ağırlıkları ise sırasıyla 18,10 ve 14,52 kN/m3
olarak belirlenmiştir. Model deney düzeneğinde sıkıştırılmış olarak
yerleştirilen kum malzemesinin %50 rölatif sıkılıkta kayma mukavemeti açısı 39˚
olarak kesme kutusu deneyi ile belirlenmiştir. Hücresel dolgu elemanı boyunca
oluşan deplasmanlar ve deformasyonlar kutu ön yüzünde daha yüksek seviyelere
ulaşmıştır. Bu çalışmada, artan düşey basınç ile çekme kuvvetleri artmıştır. Bu
çalışma kapsamında, geocell elemanların boyutlarının çekme kuvveti üzerine
etkisini belirlemek amacıyla ifade edilen SxL (hücre sayısı x uzunluk)
parametresinin çekme kuvvetleri ile değişimi belirlenmiştir. Artan SxL değeri
ile çekme kuvvetinin de arttığı sonucuna varılmıştır. Ayrıca artan düşey basınçla
hücresel dolgu elemanı-zemin arasındaki ara yüzey sürtünme katsayılarının
düştüğü belirlenmiştir.

References

  • 1. Zhou, H., Wen, X., 2008. Model studies on geogrid- or geocell-reinforced sand cushion on soft soil. Geotextiles and Geomembranes 26, 231-238.
  • 2. Dash, S.K., Rajagopal, K., Krishnaswamy, N.R., 2007. Behaviour of geocell reinforced sand beds under strip loading. Canadian Geotechnical Journal 44, 905-916.
  • 3. Pokharel, S.K., Han, J., Leshchinsky, D., Parsons, R.L., Halahm, I., 2010. Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes 28 (6), 570e578.
  • 4. Ingold, T.S. 1983. Laboratory pullout testing of grid reinforcements in sand, Geotechnical Testing Journal, 6(3):101–111
  • 5. Jewell, R. A., Milligan, G. W. E., Sarsby, R. W. & Dubois, D. 1985. Interaction between soil and geogrids, Symposium on Polymer Grid Reinforcement, London, UK, Thomas Telford, London, UK, pp. 18–30.
  • 6. Tanyu, B.F., Aydilek, A.H., Lau, A.W., Edil, T.B., Benson, C.H., 2013. Laboratory evaluation of Geocell-reinforced gravel subbase over poor subgrades. Geosynth. Int. 20 (2), 47–61.
  • 7. Gurbuz, A. and Mertol, H.C. (2012). Interaction between assembled 3-D honeycomb cells (geocell =geonet) produced from high density polyethylene and a cohesionless soil. Journal of Reinforced Plastics and Composites, 31(828-836).
  • 8. Biabani, M.M., Indraratna, B., Ngo, N.T., 2016. Modelling of geocell-reinforced sub ballast subjected to cyclic loading. Geotext. Geomembranes 44, 489–503.
  • 9. Hegde, A., Sitharam, T.G., 2017. Experiment and 3D-numerical studies on soft clay bed reinforced with different types of cellular confinement systems. Transp. Geotech 10, 73–84.
  • 10. Madhavi Latha G, Rajagopal K. Parametric finite element analyses of geocell-supported embankments. Can Geotech J 2007;44(8):917–27
  • 11. Mehdipour I, Ghazavi M, Moayed RZ. Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect. Geotextile and Geomembrane 2013;37:23–34.
  • 12. Ling HI, Liu H, Kaliakin VN, Leshchinsky D. Analyzing dynamic behavior of geosynthetic-reinforced soil retaining walls. J Eng Mech 2004;130(8):911–20.
  • 13. Chen, R.H., Chiu, Y.M., 2008. Model tests of geocell retaining structures. Geotextiles and Geomembranes 26 (1), 56–57
  • 14. Song, F., Liu, H.B., Ma, L.Q., Hu, H.B., 2018. Numerical analysis of geocell-reinforced retaining wall failure modes. Geotext. Geomembranes 46, 284–296.
  • 15. Bathurst, R.J., Karpurapu, R., 1993. Large-scale triaxial compression testing of geocellreinforced granular soils. Geotech. Test J. 16 (3), 296–303.
  • 16. Koerner R.M. 1986. Direct shear/pull-out tests on geogrids, Report No. 1, Department of Civil Engineering, Drexel University, Philadelphia.
  • 17. Farrag, K., Acar, Y.B., Juran, I. 1993. Pull-out resistance of geogrid reinforcements. Geotextiles and Geomembranes 12 (2), 133–159.
  • 18. Bergado, D.T., Chai, J.C. 1994. Pullout force–displacement relationship of extensible grid reinforcement. Geotextiles and Geomembranes, 13 (5), 295–316.
  • 19. Raju, D.M. 1995. Monotonic and Cyclic Pullout Resistance of Geosynthetic. Ph.D. thesis, University of British Columbia, Canada.
  • 20. Perkins, S.W., Cuelho, E.V. 1999. Soil–geosynthetic interface strength and stiffness relationships from pullout tests, Geosynthetics International, 6 (5), 321–346.
  • 21. Palmeira, E.M. 2004. Bearing force mobilization in pull-out tests on geogrids, Geotextiles and Geomembranes, 22 (6), 481–509.
  • 22. Moraci, N., Recalcati, P.G. 2005. Factors affecting the pullout behavior of extruded geogrids embedded in a compacted granular soil, Geotextiles and Geomembranes 24 (4), 220–242.
  • 23. Palmeira, E.M. 2009. Soil-geosynthetic interaction: modelling and analysis. Geotextile and Geomembrane, 27 (5), 368-390.
  • 24. Ezzein, Fawzy M., Bathurst, Richard J. 2014. A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil. Geotextiles and Geomembranes, 42(3), 246–255
  • 25. Wang, Z., Jacobs, F., Ziegler, M. 2016. Experimental and DEM investigation of geogrid-soil interaction under pullout loads. Geotextiles and Geomembranes, 44(3), 230–246.
  • 26. Vangla, P., Latha Gali, M. 2016. Effect of particle size of sand and surface asperities of reinforcement on their interface shear behavior. Geotextiles and Geomembranes, 44(3), 254–268
  • 27. Kiyota, T., Soma, R., Munoz, H., Kuroda, T., Ohta, J., Harata, M., and Tatsuoka, F. 2009. Pullout behaviour of geo-cell placed as reinforcement in backfill, Geosynthetics Engineering Journal, 24(0), 75-82. (In Japanese).
  • 28. Mohidin, N. & Alfaro, M., C. 2011. Soil-geocell reinforcement interaction by pullout and direct shear tests, 2011 Pan-Am CGS Geotechnical Conference, Toronto, Ontario, Canada.
  • 29. Han, X., Kiyota, T. and Tatsuoka, F. 2013. Interaction mechanism between geocell reinforcement and gravelly soil by pullout tests, Bulleting of Earth Resistance Structures, 46, 53-62.
  • 30. Manju, GS & Latha, Gali. 2013. Internal friction properties of geocell reinforced sand. Proceedings of International Conference on Energy and Environment, Kerala, India, p. 25-31.
  • 31. Han, Xinye. 2014. Development of a New Type of Geocell as Tensile Reinforcement for GRS RWs, Doctor of Philosophy, Department of Civil Engineering University of Tokyo, Tokyo, Japan
  • 32. Haussner, C., Kiyota, T., Xu, Z. 2016. Effect of spacing of transverse members on pullout resistance of a square-shaped geocell embedded in sandy and gravelly backfill materials. The 6th Japan-Korea Geotechnical Workshop, 109-114.
  • 33. Işık, A., Gürbüz, A., 2018. Assessment of behavior of soil-geocell pullout capacity, 11th International Conference on Geosynthetics, Seoul, Kore
  • 34. Cancelli, A., Rimoldi, .A., Montanelli., F., 1993. Index and performance tests for geocells in different applications. Geosynthetic Soil Testing Procedures, ASTM STP 1190, 64–75.
  • 35. Bergado, D.T., Bukkanasuta, A. and Balasubramaniam, A. S. (1987). “Laboratory pull-out tests using bamboo and polymer geogrids including a case study.” Geotextiles and Geomembranes, 5(3), 153–189.
  • 36. Moraci, N., Gioffre` , D., 2006. A simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes 24 (2), 116–128.
  • 37. M. Khedkar & J. Mandal (2009) Pullout response of cellular reinforcement under low normal pressures, International Journal of Geotechnical Engineering, 3:1, 75-87, V.A. Sakleshpur, M. Prezzi, R. Salgado, N.Z. Siddiki, Y.S. Choi, Large-scale direct shear testing of geogrid-reinforced aggregate base over weak subgrade, Int. J. Pavement Eng. 1–10 (2017)
Year 2020, Volume: 35 Issue: 1, 27 - 38, 25.10.2019
https://doi.org/10.17341/gazimmfd.639893

Abstract

References

  • 1. Zhou, H., Wen, X., 2008. Model studies on geogrid- or geocell-reinforced sand cushion on soft soil. Geotextiles and Geomembranes 26, 231-238.
  • 2. Dash, S.K., Rajagopal, K., Krishnaswamy, N.R., 2007. Behaviour of geocell reinforced sand beds under strip loading. Canadian Geotechnical Journal 44, 905-916.
  • 3. Pokharel, S.K., Han, J., Leshchinsky, D., Parsons, R.L., Halahm, I., 2010. Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes 28 (6), 570e578.
  • 4. Ingold, T.S. 1983. Laboratory pullout testing of grid reinforcements in sand, Geotechnical Testing Journal, 6(3):101–111
  • 5. Jewell, R. A., Milligan, G. W. E., Sarsby, R. W. & Dubois, D. 1985. Interaction between soil and geogrids, Symposium on Polymer Grid Reinforcement, London, UK, Thomas Telford, London, UK, pp. 18–30.
  • 6. Tanyu, B.F., Aydilek, A.H., Lau, A.W., Edil, T.B., Benson, C.H., 2013. Laboratory evaluation of Geocell-reinforced gravel subbase over poor subgrades. Geosynth. Int. 20 (2), 47–61.
  • 7. Gurbuz, A. and Mertol, H.C. (2012). Interaction between assembled 3-D honeycomb cells (geocell =geonet) produced from high density polyethylene and a cohesionless soil. Journal of Reinforced Plastics and Composites, 31(828-836).
  • 8. Biabani, M.M., Indraratna, B., Ngo, N.T., 2016. Modelling of geocell-reinforced sub ballast subjected to cyclic loading. Geotext. Geomembranes 44, 489–503.
  • 9. Hegde, A., Sitharam, T.G., 2017. Experiment and 3D-numerical studies on soft clay bed reinforced with different types of cellular confinement systems. Transp. Geotech 10, 73–84.
  • 10. Madhavi Latha G, Rajagopal K. Parametric finite element analyses of geocell-supported embankments. Can Geotech J 2007;44(8):917–27
  • 11. Mehdipour I, Ghazavi M, Moayed RZ. Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect. Geotextile and Geomembrane 2013;37:23–34.
  • 12. Ling HI, Liu H, Kaliakin VN, Leshchinsky D. Analyzing dynamic behavior of geosynthetic-reinforced soil retaining walls. J Eng Mech 2004;130(8):911–20.
  • 13. Chen, R.H., Chiu, Y.M., 2008. Model tests of geocell retaining structures. Geotextiles and Geomembranes 26 (1), 56–57
  • 14. Song, F., Liu, H.B., Ma, L.Q., Hu, H.B., 2018. Numerical analysis of geocell-reinforced retaining wall failure modes. Geotext. Geomembranes 46, 284–296.
  • 15. Bathurst, R.J., Karpurapu, R., 1993. Large-scale triaxial compression testing of geocellreinforced granular soils. Geotech. Test J. 16 (3), 296–303.
  • 16. Koerner R.M. 1986. Direct shear/pull-out tests on geogrids, Report No. 1, Department of Civil Engineering, Drexel University, Philadelphia.
  • 17. Farrag, K., Acar, Y.B., Juran, I. 1993. Pull-out resistance of geogrid reinforcements. Geotextiles and Geomembranes 12 (2), 133–159.
  • 18. Bergado, D.T., Chai, J.C. 1994. Pullout force–displacement relationship of extensible grid reinforcement. Geotextiles and Geomembranes, 13 (5), 295–316.
  • 19. Raju, D.M. 1995. Monotonic and Cyclic Pullout Resistance of Geosynthetic. Ph.D. thesis, University of British Columbia, Canada.
  • 20. Perkins, S.W., Cuelho, E.V. 1999. Soil–geosynthetic interface strength and stiffness relationships from pullout tests, Geosynthetics International, 6 (5), 321–346.
  • 21. Palmeira, E.M. 2004. Bearing force mobilization in pull-out tests on geogrids, Geotextiles and Geomembranes, 22 (6), 481–509.
  • 22. Moraci, N., Recalcati, P.G. 2005. Factors affecting the pullout behavior of extruded geogrids embedded in a compacted granular soil, Geotextiles and Geomembranes 24 (4), 220–242.
  • 23. Palmeira, E.M. 2009. Soil-geosynthetic interaction: modelling and analysis. Geotextile and Geomembrane, 27 (5), 368-390.
  • 24. Ezzein, Fawzy M., Bathurst, Richard J. 2014. A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil. Geotextiles and Geomembranes, 42(3), 246–255
  • 25. Wang, Z., Jacobs, F., Ziegler, M. 2016. Experimental and DEM investigation of geogrid-soil interaction under pullout loads. Geotextiles and Geomembranes, 44(3), 230–246.
  • 26. Vangla, P., Latha Gali, M. 2016. Effect of particle size of sand and surface asperities of reinforcement on their interface shear behavior. Geotextiles and Geomembranes, 44(3), 254–268
  • 27. Kiyota, T., Soma, R., Munoz, H., Kuroda, T., Ohta, J., Harata, M., and Tatsuoka, F. 2009. Pullout behaviour of geo-cell placed as reinforcement in backfill, Geosynthetics Engineering Journal, 24(0), 75-82. (In Japanese).
  • 28. Mohidin, N. & Alfaro, M., C. 2011. Soil-geocell reinforcement interaction by pullout and direct shear tests, 2011 Pan-Am CGS Geotechnical Conference, Toronto, Ontario, Canada.
  • 29. Han, X., Kiyota, T. and Tatsuoka, F. 2013. Interaction mechanism between geocell reinforcement and gravelly soil by pullout tests, Bulleting of Earth Resistance Structures, 46, 53-62.
  • 30. Manju, GS & Latha, Gali. 2013. Internal friction properties of geocell reinforced sand. Proceedings of International Conference on Energy and Environment, Kerala, India, p. 25-31.
  • 31. Han, Xinye. 2014. Development of a New Type of Geocell as Tensile Reinforcement for GRS RWs, Doctor of Philosophy, Department of Civil Engineering University of Tokyo, Tokyo, Japan
  • 32. Haussner, C., Kiyota, T., Xu, Z. 2016. Effect of spacing of transverse members on pullout resistance of a square-shaped geocell embedded in sandy and gravelly backfill materials. The 6th Japan-Korea Geotechnical Workshop, 109-114.
  • 33. Işık, A., Gürbüz, A., 2018. Assessment of behavior of soil-geocell pullout capacity, 11th International Conference on Geosynthetics, Seoul, Kore
  • 34. Cancelli, A., Rimoldi, .A., Montanelli., F., 1993. Index and performance tests for geocells in different applications. Geosynthetic Soil Testing Procedures, ASTM STP 1190, 64–75.
  • 35. Bergado, D.T., Bukkanasuta, A. and Balasubramaniam, A. S. (1987). “Laboratory pull-out tests using bamboo and polymer geogrids including a case study.” Geotextiles and Geomembranes, 5(3), 153–189.
  • 36. Moraci, N., Gioffre` , D., 2006. A simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes 24 (2), 116–128.
  • 37. M. Khedkar & J. Mandal (2009) Pullout response of cellular reinforcement under low normal pressures, International Journal of Geotechnical Engineering, 3:1, 75-87, V.A. Sakleshpur, M. Prezzi, R. Salgado, N.Z. Siddiki, Y.S. Choi, Large-scale direct shear testing of geogrid-reinforced aggregate base over weak subgrade, Int. J. Pavement Eng. 1–10 (2017)
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Adem Işık 0000-0002-9426-1177

Ayhan Gürbüz 0000-0002-0459-7129

Özgür Anıl 0000-0002-1939-0366

Publication Date October 25, 2019
Submission Date February 19, 2018
Acceptance Date August 8, 2019
Published in Issue Year 2020 Volume: 35 Issue: 1

Cite

APA Işık, A., Gürbüz, A., & Anıl, Ö. (2019). Zemin-hücresel dolgu elemanlarının sürtünme davranışlarının laboratuvarda yapılan çekme deneyleri ile belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 27-38. https://doi.org/10.17341/gazimmfd.639893
AMA Işık A, Gürbüz A, Anıl Ö. Zemin-hücresel dolgu elemanlarının sürtünme davranışlarının laboratuvarda yapılan çekme deneyleri ile belirlenmesi. GUMMFD. October 2019;35(1):27-38. doi:10.17341/gazimmfd.639893
Chicago Işık, Adem, Ayhan Gürbüz, and Özgür Anıl. “Zemin-hücresel Dolgu elemanlarının sürtünme davranışlarının Laboratuvarda yapılan çekme Deneyleri Ile Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 1 (October 2019): 27-38. https://doi.org/10.17341/gazimmfd.639893.
EndNote Işık A, Gürbüz A, Anıl Ö (October 1, 2019) Zemin-hücresel dolgu elemanlarının sürtünme davranışlarının laboratuvarda yapılan çekme deneyleri ile belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 1 27–38.
IEEE A. Işık, A. Gürbüz, and Ö. Anıl, “Zemin-hücresel dolgu elemanlarının sürtünme davranışlarının laboratuvarda yapılan çekme deneyleri ile belirlenmesi”, GUMMFD, vol. 35, no. 1, pp. 27–38, 2019, doi: 10.17341/gazimmfd.639893.
ISNAD Işık, Adem et al. “Zemin-hücresel Dolgu elemanlarının sürtünme davranışlarının Laboratuvarda yapılan çekme Deneyleri Ile Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (October 2019), 27-38. https://doi.org/10.17341/gazimmfd.639893.
JAMA Işık A, Gürbüz A, Anıl Ö. Zemin-hücresel dolgu elemanlarının sürtünme davranışlarının laboratuvarda yapılan çekme deneyleri ile belirlenmesi. GUMMFD. 2019;35:27–38.
MLA Işık, Adem et al. “Zemin-hücresel Dolgu elemanlarının sürtünme davranışlarının Laboratuvarda yapılan çekme Deneyleri Ile Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 1, 2019, pp. 27-38, doi:10.17341/gazimmfd.639893.
Vancouver Işık A, Gürbüz A, Anıl Ö. Zemin-hücresel dolgu elemanlarının sürtünme davranışlarının laboratuvarda yapılan çekme deneyleri ile belirlenmesi. GUMMFD. 2019;35(1):27-38.