Research Article
BibTex RIS Cite

Boşluk ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması

Year 2023, Volume: 35 Issue: 2, 615 - 624, 01.09.2023
https://doi.org/10.35234/fumbd.1269801

Abstract

Bu çalışmada farklı yüzdelerde boşluk ve arayer kusuru içeren Cu nano tellerine uygulanan tek eksenli çekme zorlanması sonucu mekanik özelliklerde meydana gelen değişimler Moleküler Dinamik (MD) benzetim yöntemiyle incelendi. Cu atomlarına etki eden kuvvetlerin belirlenmesinde çok cisim etkileşmelerini içeren Gömülmüş Atom Metodu (GAM) potansiyel fonksiyonundan yararlanıldı. Noktasal kusurların yoğunluğuna bağlı olarak, Cu model nano teline uygulanan tek eksenli çekme zorlanması sonucu zor-zorlanma eğrileri, Young modülü, akma zorlanması değerleri belirlendi. Uygulanan deformasyon sonucu oluşan yapısal değişimler, dislokasyon oluşumları ve yayılımları sırasıyla genel komşu analiz yönetmi (CNA) ve dislokasyon analizi (DXA) ile incelendi. Çekme zorlanması sonucu oluşan hcp birim hücreli yığılım kusurları ve Shockley dislokasyonlarının model nano telin mekanik özellikleri üzerinde etkili olduğu belirlendi.

Supporting Institution

YOK

References

  • Sainath G, Choudhary B. Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Phys Lett A 2015; 379(34): pp.1902–1905.
  • Zhan H, Gu Y, Yan C, Yarlagadda PK. Bending properties of Ag nanowires with pre-existing surface defects. Comput Mater Sci 2014; 81: pp.45–51.
  • Park HS, Cai W, Espinosa HD, Huang H. Mechanics of crystalline nanowires. MRS Bull 2009; 34(3): pp.178-183.
  • Wu H, Kong D, Ruan Z, Hsu PC, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y. A transparent electrode based on a metal nanotrough network. Nat Nanotechnol 2009; 8(6): pp.421-425.
  • Diao J, Gall K, Dunn ML.Yield strength asymmetry in metal nanowires, Nano Lett 2004; 4: pp.1863-1867.
  • Tosatti E, Prestipino S, Kostlmeier S, Dal Corso A, Di Tolla FD. String tension and stability of magic tip-suspended nanowires. Science 2001; 291: pp.288-290.
  • Park HS, Gall K, Zimmerman JA. Shape memory and pseudoelasticity in metal nanowires. Phys Rev Lett 2005; 95(25): pp.255504.
  • Diao J, Gall K, Dunn M. Surface-stress-induced phase transformation in metal nanowires. Nat Mater 2003; 2: pp.656–660.
  • Diao J, Gall K, Dunn ML. Yield strength asymmetry in metal nanowires. Nano Lett 2004; 4(10): pp.1863-1867.
  • Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP. Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 2006; 73(23): pp.235409.
  • Yvonnet J, Mitrushchenkov A, Chambaud G, He QC. Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Meth Appl Mech Eng 2011; 200(5-8): pp. 614-625.
  • Cao G, Wang Y. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. 2nd ed. World Scientific Series in Nanoscience and Nanotechnology, 2011.
  • Kazanc S, Aksu C.C. The Effect of Uniaxial Tensile Strain on the Mechanical Properties of Cu Element: Molecular Dynamics Method. Firat University Journal of Engineering Science 2021; 33(2): pp. 481-490.
  • Liu HJ, Owen JHG, Miki K. Degenerate electronic structure of reconstructed MnSi1.7 nanowires on Si(001). J. Phys Condens Matter 2012; 24(9): pp.095005.
  • Wilson NS, Kraemer S, Pennachio DJ, Callahan P, Pendharkar M, Palmstrom CJ. Mechanism for embedded in-plane self-assembled nanowire formation. Phys Rev Mater 2020; 4 (6): pp. 066003.
  • Kim J. Nanoscale amorphization of GeTe nanowire with conductive atomic force microscope. J Nanosci Nanotechnol 2014; 14(10): pp.7688-7692.
  • Alducin D, Borja R, Ortega E, Velazquez-Salazar JJ, Covarrubias M, Santoyo FM, Bazan-Diaz L, Sanchez JE, Torres N, Ponce A, Jose-Yacaman M. In situ transmission electron microscopy mechanical deformation and fracture of a silver nanowire. Scr Mater 2016; 113: pp.63–67.
  • Wang L, Xu Z, Yang S, Tian X, Wei J, Wang W, Bai X. Real-time in situ TEM studying the fading mechanism of tin dioxide nanowire electrodes in lithium ion batteries. Sci China Technol Sci 2013; 56: pp.2630-2635.
  • Meng Y, Wang LH, Zhang Z, Han XD. In situ TEM studies of the large plastic deformation of nanocrystalline gold nanowire. J Chinese Electron Microscopy Soc 2014; 4: pp.295–299.
  • Chen Y, An X, Liao X. Mechanical behaviors of nanowires. Appl Phys Rev 2017; 4(3): pp. 031104.
  • Wu B, Heidelberg A, Boland JJ, Sader JE, Sun X, Li Y. Microstructure-hardened silver nanowires. Nano Lett 2006; 6(3): pp.468-472.
  • Cao AJ, Wei YG, Mao SX. Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl Phys Lett 2007; 90(15): pp.151909.
  • Zhang Y, Huang H. Do twin boundaries always strengthen metal nanowires?. Nanoscale Res Lett 2009; 4(1): pp.34-38.
  • Zhan HF, Gu YT, Yarlagadda PKDV. Advanced Numerical Characterization of Mono-Crystalline Copper with Defects. Adv Sci Lett 2011; 4: pp.1293-1301.
  • Kelly A, Knowles KM. Crystallography and Crystal Defects. 2nd ed. West Sussex, UK: John Wiley and Sons Ltd, 2012.
  • Yu Y, Cui J. Elastic–plastic deformation decomposition algorithm for metal clusters at the atomic scale. Comput Mech 2021; 67(2): pp.567–581.
  • Samiri A, Khmich A, Haouas H, Hassani A, Hasnaoui A. Structural and mechanical behaviors of Mg-Al metallic glasses investigated by molecular dynamics simulations. Comput Mater Sci 2020; 184: pp.109895.
  • Hu CK, Luther B, Kaufman FB, Hummel J, Uzoh C, Pearson DJ. Copper interconnection integration and reliability. Thin Solid Films 1995; 262(1-2): pp. 84-92.
  • Nath SKD. Elastic, elastic–plastic properties of Ag, Cu and Ni nanowires by the bending test using molecular dynamics simulations. Comput Mater Sci 2014; 87: pp.138-144.
  • Sun J, Fang L, Ma A, Jiang J, Han Y, Chen H, Han J. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation. Mater Sci Eng A 2015; 634: pp.86-90.
  • Cao H, Rui Z, Yang F. Mechanical properties of Cu nanowires: Effects of cross-sectional area and temperature. Mater Sci Eng A 2020; 791: pp.139644.
  • Marque´s LA, Pelaz L, Aboy M, Lopez P, Barbolla J. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput Mater Sci 2005; 33: pp.92-105.
  • Daw MS, Hatcher RD. Application of the embedded atom method to phonons in transition metals. Solid State Commun 1985; 56(8): pp.697-699.
  • http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (online date:02.04.2021).
  • Parrinello M, Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys Rev Lett 1980; 45(14): pp.1196-1201.
  • Guellil AM, Adams JB. The application of the analytic embedded atom method to bcc metals and alloys. J Mater Res 1992; 7: pp.639–652.
  • Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 1986; 33: pp.7983.
  • Malins A, Williams SR, Eggers J, Royall CP. Identification of structure in condensed matter with the topological cluster classification. J Chem Phys 2013; 139: pp.234506.
  • Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modell Simul Mater Sci Eng 2012; 20: pp.045021.
  • Bonny G, Castin N, Terentyev D. Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model Simul Mater Sci Eng 2013; 21: pp.085004.
  • Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 2012; 20: pp.045021.
  • Setoodeh AR, Attariani H, Khosrownejad M. Nickel nanowires under uniaxial loads: A molecular dynamics simulation study. Comput Mater Sci 2008; 44: pp.378-384.
  • Wu HA. Molecular dynamics study of the mechanism of metal nanowires at finite temperature. Eur J Mech A Solids 2006; 25: pp.370-377.
  • Li W, Sun L, Xue J, Wang J, Duan H. Influence of ion irradiation induced defects on mechanical properties of copper nanowires. Nucl Instrum Methods Phys Res, Sect B 2013; 307: pp.158–164.
  • Chang WJ. Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectron Eng 2003; 65: pp.239–246.
  • Li Y, Chen H, Chen Y, Wang Y, Shao L, Xiao W. Point defect effects on tensile strength of zirconium studied by molecular dynamics simulations. Nucl Mater Energy 2019; 20: pp.100683.
  • Zhu X, Gao X, Song H, Han G, Lin DY. Effects of vacancies on the mechanical properties of zirconium: an ab initio investigation. Mater Des 2017; 119: pp.30–37.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell Simul Mater Sci Eng 2010; 18(1): pp.015012.
  • Bañuelos EU, Aburto CC, Arce AM. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. J Chem Phys 2016; 144: pp.094504.
  • Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X, Lib H. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. J Cryst Growth 2020; 532: pp.125382.
  • Paul SK. Effect of twist boundary angle on deformation behavior of 〈100〉 FCC copper nanowires. Comput Mater Sci 2018; 150: pp.24–32.
  • Kardani A, Montazeri A. Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation. Sci Rep 2020; 10(1): pp.9745.
  • Bejaud R, Durinck J, Brochard S. Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study. Acta Mater 2018; 144: pp.314–324.
  • Puksic N, Jenko M, Godec M, Mcguiness PJ. A comparison of the uniaxial deformation of copper and nickel (1119) surfaces: a molecular dynamics study. Sci Rep 2017; 7: pp.42234.
  • Carey B. Simulation and Analysis of Vacancies in Carbon Nanostructures. BınfTech, Metropolia University of Applied Sciences, Helsinki, Finland, 2018.
  • Wu HA. Molecular dynamics study of the mechanism of metal nanowires at finite temperature. Eur J Mech A Solids 2006; 25: pp.370-377.
  • Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ. Orientation-dependent mechanical properties of Au nanowires. Comput Mater Sci 2010; 48: pp.513-519.
  • Sainath G, Choudhary BK. Orientation dependent deformation behaviour of bcc iron nanowires. Comput Mater Sci 2016; 111: pp.406-415.
  • Brochard S, Beauchamp P, Grilhé J. Combination of Continuum and Atomistic Approaches for the Study of Dislocation Nucleation from Atomic Size Surface Defects. MRS Online Proc Lib 2001; 677: pp.55.
  • Feng R, Cao H, Li H, Rui Z, Yan C. Effects of Vacancy Concentration and Temperature on Mechanical Properties of Single-Crystal γ-TiAl Based on Molecular Dynamics Simulation. High Temp Mater Proc 2018; 37(2): pp.113–120.

The Effect of Vacancy and Intersititial Defects on Mechanical Properties of Cu Nanowire: Study of Molecular Dynamics

Year 2023, Volume: 35 Issue: 2, 615 - 624, 01.09.2023
https://doi.org/10.35234/fumbd.1269801

Abstract

In this study, changes in mechanical properties as a result of uniaxial tensile strain applied to Cu nanowires containing different percentages of vacancy and interstitial defects were investigated by Molecular Dynamics (MD) simulation method. The Embedded Atom Method (EAM) potential function, which includes many-body interactions, was used to determine the forces acting on Cu atoms. Depending on the density of the point defects, the stress-strain curves, Young's modulus, yield stress values were determined as a result of the uniaxial tensile stress applied to the Cu model nanowire. Structural changes, dislocation formations and their spread resulting from the applied deformation were examined by common neighbour analysis method (CNA) and dislocation analysis (DXA), respectively. It was determined that hcp unit cell stacking fault defects and Shockley dislocations caused by tensile strain were effective on the mechanical properties of the model nanowire.

References

  • Sainath G, Choudhary B. Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Phys Lett A 2015; 379(34): pp.1902–1905.
  • Zhan H, Gu Y, Yan C, Yarlagadda PK. Bending properties of Ag nanowires with pre-existing surface defects. Comput Mater Sci 2014; 81: pp.45–51.
  • Park HS, Cai W, Espinosa HD, Huang H. Mechanics of crystalline nanowires. MRS Bull 2009; 34(3): pp.178-183.
  • Wu H, Kong D, Ruan Z, Hsu PC, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y. A transparent electrode based on a metal nanotrough network. Nat Nanotechnol 2009; 8(6): pp.421-425.
  • Diao J, Gall K, Dunn ML.Yield strength asymmetry in metal nanowires, Nano Lett 2004; 4: pp.1863-1867.
  • Tosatti E, Prestipino S, Kostlmeier S, Dal Corso A, Di Tolla FD. String tension and stability of magic tip-suspended nanowires. Science 2001; 291: pp.288-290.
  • Park HS, Gall K, Zimmerman JA. Shape memory and pseudoelasticity in metal nanowires. Phys Rev Lett 2005; 95(25): pp.255504.
  • Diao J, Gall K, Dunn M. Surface-stress-induced phase transformation in metal nanowires. Nat Mater 2003; 2: pp.656–660.
  • Diao J, Gall K, Dunn ML. Yield strength asymmetry in metal nanowires. Nano Lett 2004; 4(10): pp.1863-1867.
  • Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP. Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 2006; 73(23): pp.235409.
  • Yvonnet J, Mitrushchenkov A, Chambaud G, He QC. Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Meth Appl Mech Eng 2011; 200(5-8): pp. 614-625.
  • Cao G, Wang Y. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. 2nd ed. World Scientific Series in Nanoscience and Nanotechnology, 2011.
  • Kazanc S, Aksu C.C. The Effect of Uniaxial Tensile Strain on the Mechanical Properties of Cu Element: Molecular Dynamics Method. Firat University Journal of Engineering Science 2021; 33(2): pp. 481-490.
  • Liu HJ, Owen JHG, Miki K. Degenerate electronic structure of reconstructed MnSi1.7 nanowires on Si(001). J. Phys Condens Matter 2012; 24(9): pp.095005.
  • Wilson NS, Kraemer S, Pennachio DJ, Callahan P, Pendharkar M, Palmstrom CJ. Mechanism for embedded in-plane self-assembled nanowire formation. Phys Rev Mater 2020; 4 (6): pp. 066003.
  • Kim J. Nanoscale amorphization of GeTe nanowire with conductive atomic force microscope. J Nanosci Nanotechnol 2014; 14(10): pp.7688-7692.
  • Alducin D, Borja R, Ortega E, Velazquez-Salazar JJ, Covarrubias M, Santoyo FM, Bazan-Diaz L, Sanchez JE, Torres N, Ponce A, Jose-Yacaman M. In situ transmission electron microscopy mechanical deformation and fracture of a silver nanowire. Scr Mater 2016; 113: pp.63–67.
  • Wang L, Xu Z, Yang S, Tian X, Wei J, Wang W, Bai X. Real-time in situ TEM studying the fading mechanism of tin dioxide nanowire electrodes in lithium ion batteries. Sci China Technol Sci 2013; 56: pp.2630-2635.
  • Meng Y, Wang LH, Zhang Z, Han XD. In situ TEM studies of the large plastic deformation of nanocrystalline gold nanowire. J Chinese Electron Microscopy Soc 2014; 4: pp.295–299.
  • Chen Y, An X, Liao X. Mechanical behaviors of nanowires. Appl Phys Rev 2017; 4(3): pp. 031104.
  • Wu B, Heidelberg A, Boland JJ, Sader JE, Sun X, Li Y. Microstructure-hardened silver nanowires. Nano Lett 2006; 6(3): pp.468-472.
  • Cao AJ, Wei YG, Mao SX. Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl Phys Lett 2007; 90(15): pp.151909.
  • Zhang Y, Huang H. Do twin boundaries always strengthen metal nanowires?. Nanoscale Res Lett 2009; 4(1): pp.34-38.
  • Zhan HF, Gu YT, Yarlagadda PKDV. Advanced Numerical Characterization of Mono-Crystalline Copper with Defects. Adv Sci Lett 2011; 4: pp.1293-1301.
  • Kelly A, Knowles KM. Crystallography and Crystal Defects. 2nd ed. West Sussex, UK: John Wiley and Sons Ltd, 2012.
  • Yu Y, Cui J. Elastic–plastic deformation decomposition algorithm for metal clusters at the atomic scale. Comput Mech 2021; 67(2): pp.567–581.
  • Samiri A, Khmich A, Haouas H, Hassani A, Hasnaoui A. Structural and mechanical behaviors of Mg-Al metallic glasses investigated by molecular dynamics simulations. Comput Mater Sci 2020; 184: pp.109895.
  • Hu CK, Luther B, Kaufman FB, Hummel J, Uzoh C, Pearson DJ. Copper interconnection integration and reliability. Thin Solid Films 1995; 262(1-2): pp. 84-92.
  • Nath SKD. Elastic, elastic–plastic properties of Ag, Cu and Ni nanowires by the bending test using molecular dynamics simulations. Comput Mater Sci 2014; 87: pp.138-144.
  • Sun J, Fang L, Ma A, Jiang J, Han Y, Chen H, Han J. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation. Mater Sci Eng A 2015; 634: pp.86-90.
  • Cao H, Rui Z, Yang F. Mechanical properties of Cu nanowires: Effects of cross-sectional area and temperature. Mater Sci Eng A 2020; 791: pp.139644.
  • Marque´s LA, Pelaz L, Aboy M, Lopez P, Barbolla J. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput Mater Sci 2005; 33: pp.92-105.
  • Daw MS, Hatcher RD. Application of the embedded atom method to phonons in transition metals. Solid State Commun 1985; 56(8): pp.697-699.
  • http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (online date:02.04.2021).
  • Parrinello M, Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys Rev Lett 1980; 45(14): pp.1196-1201.
  • Guellil AM, Adams JB. The application of the analytic embedded atom method to bcc metals and alloys. J Mater Res 1992; 7: pp.639–652.
  • Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 1986; 33: pp.7983.
  • Malins A, Williams SR, Eggers J, Royall CP. Identification of structure in condensed matter with the topological cluster classification. J Chem Phys 2013; 139: pp.234506.
  • Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modell Simul Mater Sci Eng 2012; 20: pp.045021.
  • Bonny G, Castin N, Terentyev D. Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model Simul Mater Sci Eng 2013; 21: pp.085004.
  • Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 2012; 20: pp.045021.
  • Setoodeh AR, Attariani H, Khosrownejad M. Nickel nanowires under uniaxial loads: A molecular dynamics simulation study. Comput Mater Sci 2008; 44: pp.378-384.
  • Wu HA. Molecular dynamics study of the mechanism of metal nanowires at finite temperature. Eur J Mech A Solids 2006; 25: pp.370-377.
  • Li W, Sun L, Xue J, Wang J, Duan H. Influence of ion irradiation induced defects on mechanical properties of copper nanowires. Nucl Instrum Methods Phys Res, Sect B 2013; 307: pp.158–164.
  • Chang WJ. Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectron Eng 2003; 65: pp.239–246.
  • Li Y, Chen H, Chen Y, Wang Y, Shao L, Xiao W. Point defect effects on tensile strength of zirconium studied by molecular dynamics simulations. Nucl Mater Energy 2019; 20: pp.100683.
  • Zhu X, Gao X, Song H, Han G, Lin DY. Effects of vacancies on the mechanical properties of zirconium: an ab initio investigation. Mater Des 2017; 119: pp.30–37.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell Simul Mater Sci Eng 2010; 18(1): pp.015012.
  • Bañuelos EU, Aburto CC, Arce AM. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. J Chem Phys 2016; 144: pp.094504.
  • Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X, Lib H. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. J Cryst Growth 2020; 532: pp.125382.
  • Paul SK. Effect of twist boundary angle on deformation behavior of 〈100〉 FCC copper nanowires. Comput Mater Sci 2018; 150: pp.24–32.
  • Kardani A, Montazeri A. Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation. Sci Rep 2020; 10(1): pp.9745.
  • Bejaud R, Durinck J, Brochard S. Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study. Acta Mater 2018; 144: pp.314–324.
  • Puksic N, Jenko M, Godec M, Mcguiness PJ. A comparison of the uniaxial deformation of copper and nickel (1119) surfaces: a molecular dynamics study. Sci Rep 2017; 7: pp.42234.
  • Carey B. Simulation and Analysis of Vacancies in Carbon Nanostructures. BınfTech, Metropolia University of Applied Sciences, Helsinki, Finland, 2018.
  • Wu HA. Molecular dynamics study of the mechanism of metal nanowires at finite temperature. Eur J Mech A Solids 2006; 25: pp.370-377.
  • Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ. Orientation-dependent mechanical properties of Au nanowires. Comput Mater Sci 2010; 48: pp.513-519.
  • Sainath G, Choudhary BK. Orientation dependent deformation behaviour of bcc iron nanowires. Comput Mater Sci 2016; 111: pp.406-415.
  • Brochard S, Beauchamp P, Grilhé J. Combination of Continuum and Atomistic Approaches for the Study of Dislocation Nucleation from Atomic Size Surface Defects. MRS Online Proc Lib 2001; 677: pp.55.
  • Feng R, Cao H, Li H, Rui Z, Yan C. Effects of Vacancy Concentration and Temperature on Mechanical Properties of Single-Crystal γ-TiAl Based on Molecular Dynamics Simulation. High Temp Mater Proc 2018; 37(2): pp.113–120.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Material Characterization
Journal Section MBD
Authors

Sefa Kazanç 0000-0002-8896-8571

Canan Aksu Canbay 0000-0002-5151-4576

Publication Date September 1, 2023
Submission Date March 23, 2023
Published in Issue Year 2023 Volume: 35 Issue: 2

Cite

APA Kazanç, S., & Aksu Canbay, C. (2023). Boşluk ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 615-624. https://doi.org/10.35234/fumbd.1269801
AMA Kazanç S, Aksu Canbay C. Boşluk ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2023;35(2):615-624. doi:10.35234/fumbd.1269801
Chicago Kazanç, Sefa, and Canan Aksu Canbay. “Boşluk Ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, no. 2 (September 2023): 615-24. https://doi.org/10.35234/fumbd.1269801.
EndNote Kazanç S, Aksu Canbay C (September 1, 2023) Boşluk ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 2 615–624.
IEEE S. Kazanç and C. Aksu Canbay, “Boşluk ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 2, pp. 615–624, 2023, doi: 10.35234/fumbd.1269801.
ISNAD Kazanç, Sefa - Aksu Canbay, Canan. “Boşluk Ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/2 (September 2023), 615-624. https://doi.org/10.35234/fumbd.1269801.
JAMA Kazanç S, Aksu Canbay C. Boşluk ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:615–624.
MLA Kazanç, Sefa and Canan Aksu Canbay. “Boşluk Ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 2, 2023, pp. 615-24, doi:10.35234/fumbd.1269801.
Vancouver Kazanç S, Aksu Canbay C. Boşluk ve Arayer Kusurlarının Cu Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(2):615-24.