Research Article
BibTex RIS Cite

Termodinamik ve Yapısal Şekil Hafıza Etkisinin Dörtlü CuAlNiCr YSŞHA Karakteristikleri

Year 2024, Volume: 36 Issue: 1, 25 - 34, 28.03.2024

Abstract

CuAlNi şekil hafızalı alaşımlar (ŞHA'lar), esas olarak yüksek sıcaklıklardaki şekil hafızalı özelliklerinden dolayı en öne çıkan Cu-bazlı ŞHA'lardandır. Bu ŞHA'lara bu nedenle yüksek sıcaklık ŞHA uygulamalarında ilgi duyulmaktadır. İyi termal kararlılıkları ancak iri tane boyutlarından kaynaklanan kırılganlıkları diğer artıları ve eksileridir. Bu çalışmada, eser miktarda krom elementi içeren benzersiz bir kimyasal bileşime sahip dörtlü CuAlNiCr yüksek sıcaklık ŞHA (YSŞHA), ark eritme tekniği ile üretildi. Ark eritme işleminden sonra, küçük alaşım numunelerinin yüksek β fazı sıcaklık bölgesinde geleneksel homojenleştirilip tuzlu buzlu suda hızlıca soğutuldu. Alaşımın şekil hafıza etkisi özelliğini karakterize etmek için diferansiyel kalorimetri ve mikroyapısal X-ışını kırınımı (XRD) testleri gerçekleştirildi. Farklı ısıtma/soğutma hızlarında gerçekleştirilen diferansiyel taramalı kalorimetri (DSC) testleri, yaklaşık 150-220 °C arasındaki sıcaklık aralığında tersinir martensitik faz dönüşümlerinin olağanüstü ekzotermik ve endotermik piklerini gösterdi; bundan dolayı üretilen alaşım bir yüksek sıcaklık ŞHA olarak sınıflandırıldı. DSC pik analizi verileri kullanılarak her bir martensitik faz dönüşümünün başlangıç ve bitiş sıcaklıkları, histeresiz aralığı ve diğer bazı önemli termodinamik parametreleri belirlendi. Bunlar arasında, dönüşümler sırasında meydana gelen yüksek entalpi değişim miktarları, alaşımın iyi şekil hafıza etkisi özelliğine sahip olduğuna işaret etmiştir. Tek bir ısıtma/soğutma hızında daha yüksek sıcaklıklara kadar çıkılarak yapılan diferansiyel termal kalorimetri (DTA) testi, hem tersinir martensitik dönüşüm piklerini yine ve hem de diğer faz geçiş piklerinin oluştuğunu gösterdi. Alaşımın DTA eğrisinin ısınma kısmında β'1→B1(L21)→B2→A2 ardışık faz geçiş adımı pikleri diğer Cu bazlı şekil hafızalı alaşımlarda görülenlere benzer şekilde gözlendi. Ayrıca oda sıcaklığında alaşımda oluşan martensit fazların varlığı, alaşımın CuKα radyasyonu kullanılarak elde edilen XRD deseni ile ortaya çıkarılmıştır. Sonuçlar, yeni CuAlNiCr yüksek sıcaklık ŞHA'sının yüksek sıcaklık ŞHA uygulamalarında faydalı olabileceğini gösterdi.

References

  • Otsuka K, Wayman CM. Shape memory materials. Cambridge University Press; 1999.
  • Fernandes DJ, Peres R V., Mendes AM, Elias CN. Understanding the Shape-Memory Alloys Used in Orthodontics. ISRN Dent 2011;2011:1–6. https://doi.org/10.5402/2011/132408.
  • Muthukumarana S, Messerschmidt MA. Clothtiles: A prototyping platform to fabricate customized actuators on clothing using 3d printing and shape-memory alloys. Conference on Human Factors in Computing Systems - Proceedings 2021. https://doi.org/10.1145/3411764.3445613.
  • Concilio A, Antonucci V, Auricchio F, Lecce L, Sacco E (Eds. ). Shape Memory Alloy Engineering. 2nd ed. Elsevier; 2021. https://doi.org/10.1016/C2018-0-02430-5.
  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. International Materials Reviews 2010;55:257–315. https://doi.org/10.1179/095066010X12646898728363.
  • Rao A, Srinivasa AR, Reddy JN. Introduction to shape memory alloys. SpringerBriefs in Applied Sciences and Technology 2015:1–31. https://doi.org/10.1007/978-3-319-03188-0_1.
  • Hartl DJ, Lagoudas DC. Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2007;221:535–52. https://doi.org/10.1243/09544100JAERO211.
  • Fu YQ, Luo JK, Flewitt AJ, Huang WM, Zhang S, Du HJ, et al. Thin film shape memory alloys and microactuators. Int J Computational Materials Science and Surface Engineering 2009;2:208–26. https://doi.org/10.1504/IJCMSSE.2009.027483.
  • Mwangi JW, Nguyen LT, Bui VD, Berger T, Zeidler H, Schubert A. Nitinol manufacturing and micromachining: A review of processes and their suitability in processing medical-grade nitinol. J Manuf Process 2019;38:355–69. https://doi.org/https://doi.org/10.1016/j.jmapro.2019.01.003.
  • Kauffman GB. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. The Chemical Educator 1997;2:1–21. https://doi.org/10.1007/s00897970111a.
  • Kim WC, Lim KR, Kim WT, Park ES, Kim DH. Recent advances in multicomponent NiTi-based shape memory alloy using metallic glass as a precursor. Prog Mater Sci 2021;118. https://doi.org/10.1016/j.pmatsci.2020.100756.
  • Hite N, Sharar DJ, Trehern W, Umale T, Atli KC, Wilson AA, et al. NiTiHf shape memory alloys as phase change thermal storage materials. Acta Mater 2021;218. https://doi.org/10.1016/j.actamat.2021.117175.
  • Riccio A, Sellitto A, Ameduri S, Concilio A, Arena M. Shape memory alloys (SMA) for automotive applications and challenges. Shape Memory Alloy Engineering: For Aerospace, Structural, and Biomedical Applications 2021:785–808. https://doi.org/10.1016/B978-0-12-819264-1.00024-8.
  • Costanza G, Tata ME. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020;13. https://doi.org/10.3390/ma13081856.
  • Altas E, Gokkaya H, Karatas MA, Ozkan D. Analysis of surface roughness and flank wear using the taguchi method in milling of niti shape memory alloy with uncoated tools. Coatings 2020;10:1–17. https://doi.org/10.3390/coatings10121259.
  • Altas E, Altin Karatas M, Gokkaya H, Akinay Y. Surface Integrity of NiTi Shape Memory Alloy in Milling with Cryogenic Heat Treated Cutting Tools under Different Cutting Conditions. J Mater Eng Perform 2021;30:9426–39. https://doi.org/10.1007/s11665-021-06095-3.
  • Canbay CA, Karaduman O, Özkul İ. Lagging temperature problem in DTA/DSC measurement on investigation of NiTi SMA. Journal of Materials Science: Materials in Electronics 2020;31:13284–91. https://doi.org/10.1007/s10854-020-03881-y.
  • Babacan N, Pauly S, Gustmann T. Laser powder bed fusion of a superelastic Cu-Al-Mn shape memory alloy. Mater Des 2021;203. https://doi.org/10.1016/j.matdes.2021.109625.
  • Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014;56:1078–113. https://doi.org/10.1016/j.matdes.2013.11.084.
  • Mazzer EM, Da Silva MR, Gargarella P. Revisiting Cu-based shape memory alloys: Recent developments and new perspectives. J Mater Res 2022;37:162–82. https://doi.org/10.1557/s43578-021-00444-7.
  • Sugimoto K, Kamei K, Matsumoto H, Komatsu S, Akamatsu K, Sugimoto T. Grain-refinement and the related phenomena in quaternary Cu-Al-Ni-Ti shape memory alloys. Le Journal de Physique Colloques 1982;43:C4-761-C4-766. https://doi.org/10.1051/jphyscol:19824124.
  • Yang J, Wang QZ, Yin FX, Cui CX, Ji PG, Li B. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Materials Science and Engineering A 2016;664:215–20. https://doi.org/10.1016/j.msea.2016.04.009.
  • Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K. Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Mater 2005;53:4121–33. https://doi.org/10.1016/j.actamat.2005.05.013.
  • Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects. J Mater Res 2014;29:1681–98. https://doi.org/10.1557/jmr.2014.189.
  • Najib ASM, Saud SN, Hamzah E. Corrosion Behavior of Cu–Al–Ni–xCo Shape Memory Alloys Coupled with Low-Carbon Steel for Civil Engineering Applications. J Bio Tribocorros 2019;5. https://doi.org/10.1007/s40735-019-0242-8.
  • Canbay CA, Karaduman O, Özkul İ. Investigation of varied quenching media effects on the thermodynamical and structural features of a thermally aged CuAlFeMn HTSMA. Physica B Condens Matter 2019;557:117–25. https://doi.org/10.1016/j.physb.2019.01.011.
  • Canbay CA, Karaduman O, Ünlü N, Baiz SA, Özkul İ. Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy. Compos B Eng 2019;174:106940. https://doi.org/10.1016/j.compositesb.2019.106940.
  • Saud SN, Hamzah E, Abubakar T, Zamri M, Tanemura M. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu-Al-Ni shape memory alloys. J Therm Anal Calorim 2014;118:111–22. https://doi.org/10.1007/s10973-014-3953-6.
  • Svirid AE, Kuranova NN, Lukyanov A V., Makarov V V., Nikolayeva N V., Pushin VG, et al. Influence of Thermomechanical Treatment on Structural-Phase Transformations and Mechanical Properties of the Cu–Al–Ni Shape-Memory Alloys. Russian Physics Journal 2019;61:1681–6. https://doi.org/10.1007/s11182-018-1587-z.
  • Canbay CA, Karaduman O, Ünlü N, Özkul I. Study on Basic Characteristics of CuAlBe Shape Memory Alloy. Brazilian Journal of Physics 2021;51:13–8. https://doi.org/10.1007/s13538-020-00823-1.
  • Firstov GS, Van Humbeeck J, Koval YN. High-temperature shape memory alloys. Materials Science and Engineering: A 2004;378:2–10. https://doi.org/10.1016/j.msea.2003.10.324.
  • Motemani Y, Buenconsejo PJS, Ludwig A. Recent Developments in High-Temperature Shape Memory Thin Films. Shape Memory and Superelasticity 2015;1. https://doi.org/10.1007/s40830-015-0041-0.
  • Zhang X, Liu Q. Cu-Al-Ni-V high-temperature shape memory alloys. Intermetallics (Barking) 2018;92:108–12. https://doi.org/10.1016/j.intermet.2017.10.001.
  • Zhang X, Liu Q. Cu-Al-Ni-V high-temperature shape memory alloys. Intermetallics (Barking) 2018;92. https://doi.org/10.1016/j.intermet.2017.10.001.
  • Yang S, Su Y, Wang C, Liu X. Microstructure and properties of Cu-Al-Fe high-temperature shape memory alloys. Mater Sci Eng B Solid State Mater Adv Technol 2014;185:67–73. https://doi.org/10.1016/j.mseb.2014.02.001.
  • López-Ferreño I, Gómez-Cortés JF, Breczewski T, Ruiz-Larrea I, Nó ML, San Juan JM. High-temperature shape memory alloys based on the Cu-Al-Ni system: Design and thermomechanical characterization. Journal of Materials Research and Technology 2020;9:9972–84. https://doi.org/10.1016/j.jmrt.2020.07.002.
  • Van Humbeeck J. Shape memory alloys with high transformation temperatures. Mater Res Bull 2012;47:2966–8. https://doi.org/10.1016/j.materresbull.2012.04.118.
  • Zhang X, Liu QS. Influence of alloying element addition on Cu-Al-Ni high-temperature shape memory alloy without second phase formation. Acta Metallurgica Sinica (English Letters) 2016;29:884–8. https://doi.org/10.1007/s40195-016-0467-1.
  • Guilemany JM, Fernández J, Franch R, Benedetti A V., Adorno AT. A New Cu-Based SMA with Extremely High Martensitic Transformation Temperatures. Le Journal de Physique IV 1995;05:C2-361-C2-365. https://doi.org/10.1051/jp4:1995255.
  • Cheniti H, Bouabdallah M, Patoor E. High temperature decomposition of the β1 phase in a Cu–Al–Ni shape memory alloy. J Alloys Compd 2009;476:420–4. https://doi.org/10.1016/J.JALLCOM.2008.09.003.
  • Karaduman O, Özkul I, Altın S, Altın E, Baǧlayan, Canbay CA. New Cu-Al based quaternary and quinary high temperature shape memory alloy composition systems. AIP Conf Proc, vol. 2042, American Institute of Physics Inc.; 2018. https://doi.org/10.1063/1.5078902.
  • Wang CP, Su Y, Yang SY, Shi Z, Liu XJ. A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature. Smart Mater Struct 2014;23. https://doi.org/10.1088/0964-1726/23/2/025018.
  • Karaduman O, Özkul İ, Canbay CA. Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method. Advanced Engineering Science 2021;1:26–33.
  • Canbay CA, Karaduman O, Ünlü N, Özkul İ, Çiçek MA. Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys. Transactions of the Indian Institute of Metals 2021. https://doi.org/10.1007/s12666-021-02241-6.
  • Zare M, Ketabchi M. Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys. J Therm Anal Calorim 2017;127:2113–23. https://doi.org/10.1007/s10973-016-5839-2.
  • Teixeira CA, Coelho RE, Lima PC, Nascimento CS, Mendonça ES, Murilo S, et al. THE EFFECT OF CHROMIUM ON MICROSTRUCTURE OF CUALNI SHAPE MEMORY ALLOY. 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, EU , 2015.
  • Koo H-S, Chen H, Chen F-H. Microstructural Characteristics and Shape Memory Effect of Rapidly Quenched Cu-Al-Ni-Cr Alloy. MRS Proceedings 1991;246:201. https://doi.org/10.1557/PROC-246-201.
  • IIJIMA M, ENDO K, OHNO H, MIZOGUCHI I. Effect of Cr and Cu Addition on Corrosion Behavior of Ni-Ti Alloys. Dent Mater J 1998;17:31–40. https://doi.org/10.4012/dmj.17.31.
  • Amer SM, Glavatskikh M V., Barkov RYu, Loginova IS, Pozdniakov A V. Effect of Cr on the Microstructure and Mechanical Properties of the Al-Cu-Y-Zr Alloy. Metals (Basel) 2023;13:349. https://doi.org/10.3390/met13020349.
  • da M. Candido GV, de A. Melo TA, De Albuquerque VHC, Gomes RM, de Lima SJG, Tavares JMRS. Characterization of a CuAlBe Alloy with Different Cr Contents. J Mater Eng Perform 2012;21:2398–406. https://doi.org/10.1007/s11665-012-0159-6.
  • Canbay CA, Karaduman O. The photo response properties of shape memory alloy thin film based photodiode. J Mol Struct 2021;1235:130263. https://doi.org/10.1016/J.MOLSTRUC.2021.130263.
  • Pinto RDA, Silva RAG. Mirrored symbols, opposite effects: Impact of Ga and Ag additions on the martensite decomposition of the Cu81Al19 alloy. Mater Today Commun 2023;37:107280. https://doi.org/10.1016/j.mtcomm.2023.107280.
  • Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem 1957;29:1702–6. https://doi.org/10.1021/ac60131a045.
  • Prado MO, Decorte PM, Lovey F. Martensitic transformation in Cu-Mn-Al alloys. Scripta Metallurgica et Materialia 1995;33. https://doi.org/10.1016/0956-716X(95)00292-4.
  • Chentouf SM, Bouabdallah M, Gachon JC, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectoidal Cu-Al-Ni shape memory alloys. J Alloys Compd 2009;470:507–14. https://doi.org/10.1016/j.jallcom.2008.03.009.
  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR. Microstructure and corrosion behaviour of Cu-Al-Ni shape memory alloys with Ag nanoparticles. Materials and Corrosion 2015;66:527–34. https://doi.org/10.1002/maco.201407658.
  • Chentouf SM, Bouabdallah M, Gachon J-C, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectoidal Cu–Al–Ni shape memory alloys. J Alloys Compd 2009;470. https://doi.org/10.1016/j.jallcom.2008.03.009.
  • Karaduman O, Canbay CA. Investigation of CuAlNi Shape Memory Alloy Doped with Graphene. Journal of Materials and Electronic Devices 2021;3:8–14.
  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Zamri M, Tanemura M. Effects of Mn Additions on the Structure, Mechanical Properties, and Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys. J Mater Eng Perform 2014;23:3620–9. https://doi.org/10.1007/s11665-014-1134-1.

Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA

Year 2024, Volume: 36 Issue: 1, 25 - 34, 28.03.2024

Abstract

CuAlNi shape memory alloys (SMAs) are one of the most prominent Cu-based SMAs mainly due to their shape memory properties at high temperatures. Therefore, they are interested in high temperature SMA applications. Their good thermal stability but brittleness originated from their coarse grain size are their other pros and cons. In this study, the low-cost quaternary CuAlNiCr high-temperature SMA (HTSMA) with a new unprecedented chemical composition including trace amount of chromium element was fabricated by arc melting technique. After arc melting process, traditional homogenization of small alloy samples in the high β-phase temperature region and quenching them in iced-brine water were proceeded. To characterize the shape memory effect property of the alloy, differential calorimetry and microstructural X-ray diffraction (XRD) tests were carried out. The cyclic DSC (differential scanning calorimetry) tests carried out at various heating/cooling rates showed the splendid endothermic and exothermic peaks of reversible martensitic phase transformations in the temperature range between around 150-220 °C, thence the produced alloy is qualified as a high-temperature SMA. Using DSC peak analysis data, the finish and start temperatures of every martensitic phase transition, hysteresis gap, plus some other important thermodynamic parameters' values were also determined. Among them, the high enthalpy change amounts occurred during the transformations implied the good shape memory effect feature of the alloy. A DTA (differential thermal calorimetry) test taken at only one heating/cooling rate revealed both the reversible martensitic transformation peaks and the other phase transition peaks at higher temperatures. The consecutive phase transition step peaks of β'1→ B1(L21)→B2→A2 on the heating-part of the DTA thermogram curve of the alloy were observed as similar to those seen in the other Cu-based shape memory alloys. Furthermore, at room temperature, the presence and types of the martensite phases formed in the alloy were revealed by the XRD pattern of the alloy obtained by using CuKα radiation. The results showed that the novel CuAlNiCr high-temperature SMA can be useful in the high-temperature SMA applications.

References

  • Otsuka K, Wayman CM. Shape memory materials. Cambridge University Press; 1999.
  • Fernandes DJ, Peres R V., Mendes AM, Elias CN. Understanding the Shape-Memory Alloys Used in Orthodontics. ISRN Dent 2011;2011:1–6. https://doi.org/10.5402/2011/132408.
  • Muthukumarana S, Messerschmidt MA. Clothtiles: A prototyping platform to fabricate customized actuators on clothing using 3d printing and shape-memory alloys. Conference on Human Factors in Computing Systems - Proceedings 2021. https://doi.org/10.1145/3411764.3445613.
  • Concilio A, Antonucci V, Auricchio F, Lecce L, Sacco E (Eds. ). Shape Memory Alloy Engineering. 2nd ed. Elsevier; 2021. https://doi.org/10.1016/C2018-0-02430-5.
  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. International Materials Reviews 2010;55:257–315. https://doi.org/10.1179/095066010X12646898728363.
  • Rao A, Srinivasa AR, Reddy JN. Introduction to shape memory alloys. SpringerBriefs in Applied Sciences and Technology 2015:1–31. https://doi.org/10.1007/978-3-319-03188-0_1.
  • Hartl DJ, Lagoudas DC. Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2007;221:535–52. https://doi.org/10.1243/09544100JAERO211.
  • Fu YQ, Luo JK, Flewitt AJ, Huang WM, Zhang S, Du HJ, et al. Thin film shape memory alloys and microactuators. Int J Computational Materials Science and Surface Engineering 2009;2:208–26. https://doi.org/10.1504/IJCMSSE.2009.027483.
  • Mwangi JW, Nguyen LT, Bui VD, Berger T, Zeidler H, Schubert A. Nitinol manufacturing and micromachining: A review of processes and their suitability in processing medical-grade nitinol. J Manuf Process 2019;38:355–69. https://doi.org/https://doi.org/10.1016/j.jmapro.2019.01.003.
  • Kauffman GB. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. The Chemical Educator 1997;2:1–21. https://doi.org/10.1007/s00897970111a.
  • Kim WC, Lim KR, Kim WT, Park ES, Kim DH. Recent advances in multicomponent NiTi-based shape memory alloy using metallic glass as a precursor. Prog Mater Sci 2021;118. https://doi.org/10.1016/j.pmatsci.2020.100756.
  • Hite N, Sharar DJ, Trehern W, Umale T, Atli KC, Wilson AA, et al. NiTiHf shape memory alloys as phase change thermal storage materials. Acta Mater 2021;218. https://doi.org/10.1016/j.actamat.2021.117175.
  • Riccio A, Sellitto A, Ameduri S, Concilio A, Arena M. Shape memory alloys (SMA) for automotive applications and challenges. Shape Memory Alloy Engineering: For Aerospace, Structural, and Biomedical Applications 2021:785–808. https://doi.org/10.1016/B978-0-12-819264-1.00024-8.
  • Costanza G, Tata ME. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020;13. https://doi.org/10.3390/ma13081856.
  • Altas E, Gokkaya H, Karatas MA, Ozkan D. Analysis of surface roughness and flank wear using the taguchi method in milling of niti shape memory alloy with uncoated tools. Coatings 2020;10:1–17. https://doi.org/10.3390/coatings10121259.
  • Altas E, Altin Karatas M, Gokkaya H, Akinay Y. Surface Integrity of NiTi Shape Memory Alloy in Milling with Cryogenic Heat Treated Cutting Tools under Different Cutting Conditions. J Mater Eng Perform 2021;30:9426–39. https://doi.org/10.1007/s11665-021-06095-3.
  • Canbay CA, Karaduman O, Özkul İ. Lagging temperature problem in DTA/DSC measurement on investigation of NiTi SMA. Journal of Materials Science: Materials in Electronics 2020;31:13284–91. https://doi.org/10.1007/s10854-020-03881-y.
  • Babacan N, Pauly S, Gustmann T. Laser powder bed fusion of a superelastic Cu-Al-Mn shape memory alloy. Mater Des 2021;203. https://doi.org/10.1016/j.matdes.2021.109625.
  • Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014;56:1078–113. https://doi.org/10.1016/j.matdes.2013.11.084.
  • Mazzer EM, Da Silva MR, Gargarella P. Revisiting Cu-based shape memory alloys: Recent developments and new perspectives. J Mater Res 2022;37:162–82. https://doi.org/10.1557/s43578-021-00444-7.
  • Sugimoto K, Kamei K, Matsumoto H, Komatsu S, Akamatsu K, Sugimoto T. Grain-refinement and the related phenomena in quaternary Cu-Al-Ni-Ti shape memory alloys. Le Journal de Physique Colloques 1982;43:C4-761-C4-766. https://doi.org/10.1051/jphyscol:19824124.
  • Yang J, Wang QZ, Yin FX, Cui CX, Ji PG, Li B. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Materials Science and Engineering A 2016;664:215–20. https://doi.org/10.1016/j.msea.2016.04.009.
  • Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K. Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Mater 2005;53:4121–33. https://doi.org/10.1016/j.actamat.2005.05.013.
  • Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects. J Mater Res 2014;29:1681–98. https://doi.org/10.1557/jmr.2014.189.
  • Najib ASM, Saud SN, Hamzah E. Corrosion Behavior of Cu–Al–Ni–xCo Shape Memory Alloys Coupled with Low-Carbon Steel for Civil Engineering Applications. J Bio Tribocorros 2019;5. https://doi.org/10.1007/s40735-019-0242-8.
  • Canbay CA, Karaduman O, Özkul İ. Investigation of varied quenching media effects on the thermodynamical and structural features of a thermally aged CuAlFeMn HTSMA. Physica B Condens Matter 2019;557:117–25. https://doi.org/10.1016/j.physb.2019.01.011.
  • Canbay CA, Karaduman O, Ünlü N, Baiz SA, Özkul İ. Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy. Compos B Eng 2019;174:106940. https://doi.org/10.1016/j.compositesb.2019.106940.
  • Saud SN, Hamzah E, Abubakar T, Zamri M, Tanemura M. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu-Al-Ni shape memory alloys. J Therm Anal Calorim 2014;118:111–22. https://doi.org/10.1007/s10973-014-3953-6.
  • Svirid AE, Kuranova NN, Lukyanov A V., Makarov V V., Nikolayeva N V., Pushin VG, et al. Influence of Thermomechanical Treatment on Structural-Phase Transformations and Mechanical Properties of the Cu–Al–Ni Shape-Memory Alloys. Russian Physics Journal 2019;61:1681–6. https://doi.org/10.1007/s11182-018-1587-z.
  • Canbay CA, Karaduman O, Ünlü N, Özkul I. Study on Basic Characteristics of CuAlBe Shape Memory Alloy. Brazilian Journal of Physics 2021;51:13–8. https://doi.org/10.1007/s13538-020-00823-1.
  • Firstov GS, Van Humbeeck J, Koval YN. High-temperature shape memory alloys. Materials Science and Engineering: A 2004;378:2–10. https://doi.org/10.1016/j.msea.2003.10.324.
  • Motemani Y, Buenconsejo PJS, Ludwig A. Recent Developments in High-Temperature Shape Memory Thin Films. Shape Memory and Superelasticity 2015;1. https://doi.org/10.1007/s40830-015-0041-0.
  • Zhang X, Liu Q. Cu-Al-Ni-V high-temperature shape memory alloys. Intermetallics (Barking) 2018;92:108–12. https://doi.org/10.1016/j.intermet.2017.10.001.
  • Zhang X, Liu Q. Cu-Al-Ni-V high-temperature shape memory alloys. Intermetallics (Barking) 2018;92. https://doi.org/10.1016/j.intermet.2017.10.001.
  • Yang S, Su Y, Wang C, Liu X. Microstructure and properties of Cu-Al-Fe high-temperature shape memory alloys. Mater Sci Eng B Solid State Mater Adv Technol 2014;185:67–73. https://doi.org/10.1016/j.mseb.2014.02.001.
  • López-Ferreño I, Gómez-Cortés JF, Breczewski T, Ruiz-Larrea I, Nó ML, San Juan JM. High-temperature shape memory alloys based on the Cu-Al-Ni system: Design and thermomechanical characterization. Journal of Materials Research and Technology 2020;9:9972–84. https://doi.org/10.1016/j.jmrt.2020.07.002.
  • Van Humbeeck J. Shape memory alloys with high transformation temperatures. Mater Res Bull 2012;47:2966–8. https://doi.org/10.1016/j.materresbull.2012.04.118.
  • Zhang X, Liu QS. Influence of alloying element addition on Cu-Al-Ni high-temperature shape memory alloy without second phase formation. Acta Metallurgica Sinica (English Letters) 2016;29:884–8. https://doi.org/10.1007/s40195-016-0467-1.
  • Guilemany JM, Fernández J, Franch R, Benedetti A V., Adorno AT. A New Cu-Based SMA with Extremely High Martensitic Transformation Temperatures. Le Journal de Physique IV 1995;05:C2-361-C2-365. https://doi.org/10.1051/jp4:1995255.
  • Cheniti H, Bouabdallah M, Patoor E. High temperature decomposition of the β1 phase in a Cu–Al–Ni shape memory alloy. J Alloys Compd 2009;476:420–4. https://doi.org/10.1016/J.JALLCOM.2008.09.003.
  • Karaduman O, Özkul I, Altın S, Altın E, Baǧlayan, Canbay CA. New Cu-Al based quaternary and quinary high temperature shape memory alloy composition systems. AIP Conf Proc, vol. 2042, American Institute of Physics Inc.; 2018. https://doi.org/10.1063/1.5078902.
  • Wang CP, Su Y, Yang SY, Shi Z, Liu XJ. A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature. Smart Mater Struct 2014;23. https://doi.org/10.1088/0964-1726/23/2/025018.
  • Karaduman O, Özkul İ, Canbay CA. Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method. Advanced Engineering Science 2021;1:26–33.
  • Canbay CA, Karaduman O, Ünlü N, Özkul İ, Çiçek MA. Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys. Transactions of the Indian Institute of Metals 2021. https://doi.org/10.1007/s12666-021-02241-6.
  • Zare M, Ketabchi M. Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys. J Therm Anal Calorim 2017;127:2113–23. https://doi.org/10.1007/s10973-016-5839-2.
  • Teixeira CA, Coelho RE, Lima PC, Nascimento CS, Mendonça ES, Murilo S, et al. THE EFFECT OF CHROMIUM ON MICROSTRUCTURE OF CUALNI SHAPE MEMORY ALLOY. 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, EU , 2015.
  • Koo H-S, Chen H, Chen F-H. Microstructural Characteristics and Shape Memory Effect of Rapidly Quenched Cu-Al-Ni-Cr Alloy. MRS Proceedings 1991;246:201. https://doi.org/10.1557/PROC-246-201.
  • IIJIMA M, ENDO K, OHNO H, MIZOGUCHI I. Effect of Cr and Cu Addition on Corrosion Behavior of Ni-Ti Alloys. Dent Mater J 1998;17:31–40. https://doi.org/10.4012/dmj.17.31.
  • Amer SM, Glavatskikh M V., Barkov RYu, Loginova IS, Pozdniakov A V. Effect of Cr on the Microstructure and Mechanical Properties of the Al-Cu-Y-Zr Alloy. Metals (Basel) 2023;13:349. https://doi.org/10.3390/met13020349.
  • da M. Candido GV, de A. Melo TA, De Albuquerque VHC, Gomes RM, de Lima SJG, Tavares JMRS. Characterization of a CuAlBe Alloy with Different Cr Contents. J Mater Eng Perform 2012;21:2398–406. https://doi.org/10.1007/s11665-012-0159-6.
  • Canbay CA, Karaduman O. The photo response properties of shape memory alloy thin film based photodiode. J Mol Struct 2021;1235:130263. https://doi.org/10.1016/J.MOLSTRUC.2021.130263.
  • Pinto RDA, Silva RAG. Mirrored symbols, opposite effects: Impact of Ga and Ag additions on the martensite decomposition of the Cu81Al19 alloy. Mater Today Commun 2023;37:107280. https://doi.org/10.1016/j.mtcomm.2023.107280.
  • Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem 1957;29:1702–6. https://doi.org/10.1021/ac60131a045.
  • Prado MO, Decorte PM, Lovey F. Martensitic transformation in Cu-Mn-Al alloys. Scripta Metallurgica et Materialia 1995;33. https://doi.org/10.1016/0956-716X(95)00292-4.
  • Chentouf SM, Bouabdallah M, Gachon JC, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectoidal Cu-Al-Ni shape memory alloys. J Alloys Compd 2009;470:507–14. https://doi.org/10.1016/j.jallcom.2008.03.009.
  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR. Microstructure and corrosion behaviour of Cu-Al-Ni shape memory alloys with Ag nanoparticles. Materials and Corrosion 2015;66:527–34. https://doi.org/10.1002/maco.201407658.
  • Chentouf SM, Bouabdallah M, Gachon J-C, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectoidal Cu–Al–Ni shape memory alloys. J Alloys Compd 2009;470. https://doi.org/10.1016/j.jallcom.2008.03.009.
  • Karaduman O, Canbay CA. Investigation of CuAlNi Shape Memory Alloy Doped with Graphene. Journal of Materials and Electronic Devices 2021;3:8–14.
  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Zamri M, Tanemura M. Effects of Mn Additions on the Structure, Mechanical Properties, and Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys. J Mater Eng Perform 2014;23:3620–9. https://doi.org/10.1007/s11665-014-1134-1.
There are 59 citations in total.

Details

Primary Language English
Subjects Material Physics, Thermodynamics and Statistical Physics
Journal Section FBD
Authors

Oktay Karaduman 0000-0002-6947-7590

İskender Özkul 0000-0003-4255-0564

Gökhan İstek 0009-0001-7382-4516

Canan Aksu Canbay 0000-0002-5151-4576

Publication Date March 28, 2024
Submission Date February 12, 2024
Acceptance Date March 27, 2024
Published in Issue Year 2024 Volume: 36 Issue: 1

Cite

APA Karaduman, O., Özkul, İ., İstek, G., Aksu Canbay, C. (2024). Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA. Fırat Üniversitesi Fen Bilimleri Dergisi, 36(1), 25-34.
AMA Karaduman O, Özkul İ, İstek G, Aksu Canbay C. Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA. Fırat Üniversitesi Fen Bilimleri Dergisi. March 2024;36(1):25-34.
Chicago Karaduman, Oktay, İskender Özkul, Gökhan İstek, and Canan Aksu Canbay. “Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA”. Fırat Üniversitesi Fen Bilimleri Dergisi 36, no. 1 (March 2024): 25-34.
EndNote Karaduman O, Özkul İ, İstek G, Aksu Canbay C (March 1, 2024) Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA. Fırat Üniversitesi Fen Bilimleri Dergisi 36 1 25–34.
IEEE O. Karaduman, İ. Özkul, G. İstek, and C. Aksu Canbay, “Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA”, Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 36, no. 1, pp. 25–34, 2024.
ISNAD Karaduman, Oktay et al. “Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA”. Fırat Üniversitesi Fen Bilimleri Dergisi 36/1 (March 2024), 25-34.
JAMA Karaduman O, Özkul İ, İstek G, Aksu Canbay C. Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA. Fırat Üniversitesi Fen Bilimleri Dergisi. 2024;36:25–34.
MLA Karaduman, Oktay et al. “Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA”. Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 36, no. 1, 2024, pp. 25-34.
Vancouver Karaduman O, Özkul İ, İstek G, Aksu Canbay C. Thermokinetic and Structural Shape Memory Effect Characteristics of Novel Quaternary CuAlNiCr HTSMA. Fırat Üniversitesi Fen Bilimleri Dergisi. 2024;36(1):25-34.