Research Article
BibTex RIS Cite

Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu

Year 2022, Volume: 34 Issue: 2, 161 - 170, 30.09.2022

Abstract

Fonksiyonel malzemeler arasında şekil hafızalı alaşımların (ŞHA) kullanım şekline göre endüstride değişen talepler ortaya çıkmıştır. Bu talepler bu çok yönlü akıllı alaşımların maliyetini düşürmek veya performanslarını arttırmak ve özelliklerini değiştirmek şeklinde olabilir. Bu çalışmada, bakır bakımından zengin ve yeni ve benzersiz 73.33Cu-21.85Al-4.26Cr-0.56Mg (at.%) kimyasal kompozisyonuna sahip CuAlCrMg yüksek sıcaklık şekil hafızalı alaşımı (YSŞHA) ark eritme yöntemi kullanılarak külçe halinde dökümü yapılarak üretilmiştir. Elde edilen külçe alaşımından küçük numuneler kesilerek yüksek sıcaklıkta homojenize edilmiş ve tuzlu-buzlu suda söndürme işlemi yapılarak alaşıma şekil hafıza etkisi özelliği kazandırılmıştır. Alaşımın; termal şekil hafıza etkisi karakterizasyonu diferansiyel kalorimetri (DSC ve DTA) ölçümleri ile, kimyasal kompozisyon analizi enerji dağılım x-ışını (EDX) ölçümü ile, yapısal martensit fazları x-ışını difraksiyonu (XRD) testi ile ve manyetik özellikleri de titreşimli numune manyetometresi (VSM) ölçümü ile yapılarak incelenmiştir. DSC ve DTA ölçüm sonuçlarında (termogramlarda) alaşımdaki şekil hafıza etkisi özelliğinin varlığına işaret eden direkt ve ters martensitik faz dönüşümlerinin oluştuğunu gösteren pikler gözlenmiştir. XRD difraksiyon deseninde martensit fazlarına ait piklerin oluştuğu görülmüştür. VSM ölçümü alaşımın paramanyetik olduğunu göstermiştir. Bu çalışmada üretilen yeni bakır bazlı CuAlCrMg yüksek sıcaklık şekil hafızalı alaşımı literatüre dahil edilerek yüksek sıcaklık şekil hafızalı alaşımlarla ilgili uygulamalarda fayda sağlayabilir.

References

  • Referans1 Naresh C, Bose PSC, Rao CSP. Shape memory alloys: a state of art review. IOP Conference Series: Materials Science and Engineering 2016;149:012054. https://doi.org/10.1088/1757-899X/149/1/012054.
  • Referans2 Canbay CA, Karaduman O, Ünlü N, Baiz SA, Özkul İ. Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy. Composites Part B: Engineering 2019;174:106940. https://doi.org/10.1016/j.compositesb.2019.106940.
  • Referans3 Kauffman GB. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. The Chemical Educator 1997;2:1–21. https://doi.org/10.1007/s00897970111a.
  • Referans4 Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects. Journal of Materials Research 2014;29:1681–98. https://doi.org/10.1557/jmr.2014.189.
  • Referans5 Copaci D-S, Blanco D, Martin-Clemente A, Moreno L. Flexible shape memory alloy actuators for soft robotics: Modelling and control. International Journal of Advanced Robotic Systems 2020;17:1–15. https://doi.org/10.1177/1729881419886747.
  • Referans6 Eschen K, Granberry R, Abel J. Guidelines on the design, characterization, and operation of shape memory alloy knitted actuators. Smart Materials and Structures 2020;29:035036. https://doi.org/10.1088/1361-665X/ab6ba7.
  • Referans6 Özkul İ, Karaduman O, Şimşek T, Şimşek T, Canbay CA, Ibrahim PA, et al. Experimental investigation of the effects of different quaternary elements (Ti, V, Nb, Ga, and Hf) on the thermal and magnetic properties of CuAlNi shape memory alloy. Journal of Materials Research 2022;37:2271–81. https://doi.org/10.1557/s43578-022-00625-y.
  • Referans8 Karthick S, Shalini S, Mani Prabu SS, Suhel K, Vandan A, Puneet C, et al. Influence of quaternary alloying addition on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy coated optical fiber. Measurement: Journal of the International Measurement Confederation 2020;153. https://doi.org/10.1016/j.measurement.2019.107379.
  • Referans9 Aksu Canbay C, Karagoz Z, Yakuphanoglu F. Controlling of transformation temperatures of Cu-Al-Mn shape memory alloys by chemical composition. Acta Physica Polonica A 2014;125:1163–6. https://doi.org/10.12693/APhysPolA.125.1163.
  • Referans10 Yang J, Wang QZ, Yin FX, Cui CX, Ji PG, Li B. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Materials Science and Engineering A 2016;664:215–20. https://doi.org/10.1016/j.msea.2016.04.009.
  • Referans11 Canbay CA, Karaduman O, Özkul İ, Ünlü N. Modifying Thermal and Structural Characteristics of CuAlFeMn Shape Memory Alloy and a Hypothetical Analysis to Optimize Surface-Diffusion Annealing Temperature. Journal of Materials Engineering and Performance 2020;29:7993–8005. https://doi.org/10.1007/s11665-020-05241-7.
  • Referans12 Alaneme KK, Anaele JU, Okotete EA. Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review. Sci Afr 2021;12:e00760. https://doi.org/10.1016/j.sciaf.2021.e00760.
  • Referans13 Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu-Al-Mn shape memory alloy. Journal of Alloys and Compounds 2009;469:156–63. https://doi.org/10.1016/j.jallcom.2008.01.128.
  • Referans14 Canbay CA, Karaduman O, Ünlü N, Özkul İ, Çiçek MA. Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys. Transactions of the Indian Institute of Metals 2021. https://doi.org/10.1007/s12666-021-02241-6.
  • Referans15 Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. Journal of Alloys and Compounds 2009;469:156–63. https://doi.org/10.1016/j.jallcom.2008.01.128.
  • Referans16 Chentouf SM, Bouabdallah M, Cheniti H, Eberhardt A, Patoor E, Sari A. Ageing study of Cu–Al–Be hypoeutectoid shape memory alloy. Materials Characterization 2010;61. https://doi.org/10.1016/j.matchar.2010.07.009.
  • Referans17 Canbay CA, Karaduman O, Özkul İ, Ünlü N. Modifying Thermal and Structural Characteristics of CuAlFeMn Shape Memory Alloy and a Hypothetical Analysis to Optimize Surface-Diffusion Annealing Temperature. Journal of Materials Engineering and Performance 2020;29:7993–8005. https://doi.org/10.1007/S11665-020-05241-7.
  • Referans18 Canbay C, Cicek M, … OK-J of M, 2019 undefined. Investigation of Thermoelastical Martensitic Transformations and Structure in New Composition of CuAlMnTi Shape Memory Alloy. Dergi-FytronixCom 2019;1:60–4.
  • Referans19 Yang J, Wang QZ, Yin FX, Cui CX, Ji PG, Li B. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Materials Science and Engineering: A 2016;664. https://doi.org/10.1016/j.msea.2016.04.009.
  • Referans20 Najah Saud Al-Humairi S. Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen; 2020, p. 25. https://doi.org/10.5772/intechopen.86193.
  • Referans21 Yang S, Zhang F, Wu J, Lu Y, Shi Z, Wang C, et al. Superelasticity and shape memory effect in Cu–Al–Mn–V shape memory alloys. Materials & Design 2017;115. https://doi.org/10.1016/j.matdes.2016.11.035.
  • Referans22 Aksu Canbay C, Keskin A. Effects of vanadium and cadmium on transformation temperatures of Cu–Al–Mn shape memory alloy. Journal of Thermal Analysis and Calorimetry 2014;118. https://doi.org/10.1007/s10973-014-4034-6.
  • Referans23 Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Zamri M, Tanemura M. Effects of Mn Additions on the Structure, Mechanical Properties, and Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys. Journal of Materials Engineering and Performance 2014;23:3620–9. https://doi.org/10.1007/s11665-014-1134-1.
  • Referans24 Canbay CA, Karaduman O, Özkul İ. Lagging temperature problem in DTA/DSC measurement on investigation of NiTi SMA. Journal of Materials Science: Materials in Electronics 2020;31:13284–91. https://doi.org/10.1007/s10854-020-03881-y.
  • Referans25 Ferreira RO, Silva LS, Silva RAG. Thermal behavior of as-annealed CuAlMnAgZr alloys. Journal of Thermal Analysis and Calorimetry 2021;146:595–600. https://doi.org/10.1007/s10973-020-10002-8.
  • Referans26 Otsuka K, Wayman CM. Shape memory materials. Cambridge University Press; 1999.
  • Referans27 Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. Journal of Alloys and Compounds 1998;266:191–200. https://doi.org/10.1016/S0925-8388(97)00425-8.
  • Referans28 Ahlers M. Phase Stability of Martensitic Structures. Le Journal de Physique IV 1995;05. https://doi.org/10.1051/jp4:1995808.
  • Referans29 Pelegrina JL, Ahlers M. The martensitic phases and their stability in CuZn and CuZnAl alloys—I. The transformation between the high temperature β phase and the 18R martensite. Acta Metallurgica et Materialia 1992;40. https://doi.org/10.1016/0956-7151(92)90033-B.
  • Referans30 Prado MO, Decorte PM, Lovey F. Martensitic transformation in Cu-Mn-Al alloys. Scripta Metallurgica et Materialia 1995;33. https://doi.org/10.1016/0956-716X(95)00292-4.
  • Referans31 Karaduman O, Özkul İ, Canbay CA. Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method. Advanced Engineering Science 2021;1:26–33.
  • Referans32 Yang S, Zhang F, Wu J, Zhang J, Wang C, Liu X. Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys. Journal of Materials Science 2017;52:5917–27. https://doi.org/10.1007/s10853-017-0827-x.
  • Referans33 Aksu Canbay C, Dere A, Mensah-Darkwa K, Al-Ghamdi A, Karagoz Genç Z, Gupta RK, et al. New type of Schottky diode-based Cu–Al–Mn–Cr shape memory material films. Applied Physics A: Materials Science and Processing 2016;122. https://doi.org/10.1007/s00339-016-0208-3.
  • Referans34 Patterson AL. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review 1939;56. https://doi.org/10.1103/PhysRev.56.978.
  • Referans35 Gutiérrez Castañeda EJ, Barreras Castro RE, Contreras Briseño A, Fernández Arguijo B, Torres Castillo AA, Salinas Rodríguez A, et al. Effect of quenching and normalizing on the microstructure and magnetocaloric effect of a cu–11al–9zn alloy with 6.5 wt % ni–2.5 wt % fe. Magnetochemistry 2019;5. https://doi.org/10.3390/magnetochemistry5030048.
Year 2022, Volume: 34 Issue: 2, 161 - 170, 30.09.2022

Abstract

References

  • Referans1 Naresh C, Bose PSC, Rao CSP. Shape memory alloys: a state of art review. IOP Conference Series: Materials Science and Engineering 2016;149:012054. https://doi.org/10.1088/1757-899X/149/1/012054.
  • Referans2 Canbay CA, Karaduman O, Ünlü N, Baiz SA, Özkul İ. Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy. Composites Part B: Engineering 2019;174:106940. https://doi.org/10.1016/j.compositesb.2019.106940.
  • Referans3 Kauffman GB. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. The Chemical Educator 1997;2:1–21. https://doi.org/10.1007/s00897970111a.
  • Referans4 Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects. Journal of Materials Research 2014;29:1681–98. https://doi.org/10.1557/jmr.2014.189.
  • Referans5 Copaci D-S, Blanco D, Martin-Clemente A, Moreno L. Flexible shape memory alloy actuators for soft robotics: Modelling and control. International Journal of Advanced Robotic Systems 2020;17:1–15. https://doi.org/10.1177/1729881419886747.
  • Referans6 Eschen K, Granberry R, Abel J. Guidelines on the design, characterization, and operation of shape memory alloy knitted actuators. Smart Materials and Structures 2020;29:035036. https://doi.org/10.1088/1361-665X/ab6ba7.
  • Referans6 Özkul İ, Karaduman O, Şimşek T, Şimşek T, Canbay CA, Ibrahim PA, et al. Experimental investigation of the effects of different quaternary elements (Ti, V, Nb, Ga, and Hf) on the thermal and magnetic properties of CuAlNi shape memory alloy. Journal of Materials Research 2022;37:2271–81. https://doi.org/10.1557/s43578-022-00625-y.
  • Referans8 Karthick S, Shalini S, Mani Prabu SS, Suhel K, Vandan A, Puneet C, et al. Influence of quaternary alloying addition on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy coated optical fiber. Measurement: Journal of the International Measurement Confederation 2020;153. https://doi.org/10.1016/j.measurement.2019.107379.
  • Referans9 Aksu Canbay C, Karagoz Z, Yakuphanoglu F. Controlling of transformation temperatures of Cu-Al-Mn shape memory alloys by chemical composition. Acta Physica Polonica A 2014;125:1163–6. https://doi.org/10.12693/APhysPolA.125.1163.
  • Referans10 Yang J, Wang QZ, Yin FX, Cui CX, Ji PG, Li B. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Materials Science and Engineering A 2016;664:215–20. https://doi.org/10.1016/j.msea.2016.04.009.
  • Referans11 Canbay CA, Karaduman O, Özkul İ, Ünlü N. Modifying Thermal and Structural Characteristics of CuAlFeMn Shape Memory Alloy and a Hypothetical Analysis to Optimize Surface-Diffusion Annealing Temperature. Journal of Materials Engineering and Performance 2020;29:7993–8005. https://doi.org/10.1007/s11665-020-05241-7.
  • Referans12 Alaneme KK, Anaele JU, Okotete EA. Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review. Sci Afr 2021;12:e00760. https://doi.org/10.1016/j.sciaf.2021.e00760.
  • Referans13 Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu-Al-Mn shape memory alloy. Journal of Alloys and Compounds 2009;469:156–63. https://doi.org/10.1016/j.jallcom.2008.01.128.
  • Referans14 Canbay CA, Karaduman O, Ünlü N, Özkul İ, Çiçek MA. Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys. Transactions of the Indian Institute of Metals 2021. https://doi.org/10.1007/s12666-021-02241-6.
  • Referans15 Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. Journal of Alloys and Compounds 2009;469:156–63. https://doi.org/10.1016/j.jallcom.2008.01.128.
  • Referans16 Chentouf SM, Bouabdallah M, Cheniti H, Eberhardt A, Patoor E, Sari A. Ageing study of Cu–Al–Be hypoeutectoid shape memory alloy. Materials Characterization 2010;61. https://doi.org/10.1016/j.matchar.2010.07.009.
  • Referans17 Canbay CA, Karaduman O, Özkul İ, Ünlü N. Modifying Thermal and Structural Characteristics of CuAlFeMn Shape Memory Alloy and a Hypothetical Analysis to Optimize Surface-Diffusion Annealing Temperature. Journal of Materials Engineering and Performance 2020;29:7993–8005. https://doi.org/10.1007/S11665-020-05241-7.
  • Referans18 Canbay C, Cicek M, … OK-J of M, 2019 undefined. Investigation of Thermoelastical Martensitic Transformations and Structure in New Composition of CuAlMnTi Shape Memory Alloy. Dergi-FytronixCom 2019;1:60–4.
  • Referans19 Yang J, Wang QZ, Yin FX, Cui CX, Ji PG, Li B. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Materials Science and Engineering: A 2016;664. https://doi.org/10.1016/j.msea.2016.04.009.
  • Referans20 Najah Saud Al-Humairi S. Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen; 2020, p. 25. https://doi.org/10.5772/intechopen.86193.
  • Referans21 Yang S, Zhang F, Wu J, Lu Y, Shi Z, Wang C, et al. Superelasticity and shape memory effect in Cu–Al–Mn–V shape memory alloys. Materials & Design 2017;115. https://doi.org/10.1016/j.matdes.2016.11.035.
  • Referans22 Aksu Canbay C, Keskin A. Effects of vanadium and cadmium on transformation temperatures of Cu–Al–Mn shape memory alloy. Journal of Thermal Analysis and Calorimetry 2014;118. https://doi.org/10.1007/s10973-014-4034-6.
  • Referans23 Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Zamri M, Tanemura M. Effects of Mn Additions on the Structure, Mechanical Properties, and Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys. Journal of Materials Engineering and Performance 2014;23:3620–9. https://doi.org/10.1007/s11665-014-1134-1.
  • Referans24 Canbay CA, Karaduman O, Özkul İ. Lagging temperature problem in DTA/DSC measurement on investigation of NiTi SMA. Journal of Materials Science: Materials in Electronics 2020;31:13284–91. https://doi.org/10.1007/s10854-020-03881-y.
  • Referans25 Ferreira RO, Silva LS, Silva RAG. Thermal behavior of as-annealed CuAlMnAgZr alloys. Journal of Thermal Analysis and Calorimetry 2021;146:595–600. https://doi.org/10.1007/s10973-020-10002-8.
  • Referans26 Otsuka K, Wayman CM. Shape memory materials. Cambridge University Press; 1999.
  • Referans27 Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. Journal of Alloys and Compounds 1998;266:191–200. https://doi.org/10.1016/S0925-8388(97)00425-8.
  • Referans28 Ahlers M. Phase Stability of Martensitic Structures. Le Journal de Physique IV 1995;05. https://doi.org/10.1051/jp4:1995808.
  • Referans29 Pelegrina JL, Ahlers M. The martensitic phases and their stability in CuZn and CuZnAl alloys—I. The transformation between the high temperature β phase and the 18R martensite. Acta Metallurgica et Materialia 1992;40. https://doi.org/10.1016/0956-7151(92)90033-B.
  • Referans30 Prado MO, Decorte PM, Lovey F. Martensitic transformation in Cu-Mn-Al alloys. Scripta Metallurgica et Materialia 1995;33. https://doi.org/10.1016/0956-716X(95)00292-4.
  • Referans31 Karaduman O, Özkul İ, Canbay CA. Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method. Advanced Engineering Science 2021;1:26–33.
  • Referans32 Yang S, Zhang F, Wu J, Zhang J, Wang C, Liu X. Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys. Journal of Materials Science 2017;52:5917–27. https://doi.org/10.1007/s10853-017-0827-x.
  • Referans33 Aksu Canbay C, Dere A, Mensah-Darkwa K, Al-Ghamdi A, Karagoz Genç Z, Gupta RK, et al. New type of Schottky diode-based Cu–Al–Mn–Cr shape memory material films. Applied Physics A: Materials Science and Processing 2016;122. https://doi.org/10.1007/s00339-016-0208-3.
  • Referans34 Patterson AL. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review 1939;56. https://doi.org/10.1103/PhysRev.56.978.
  • Referans35 Gutiérrez Castañeda EJ, Barreras Castro RE, Contreras Briseño A, Fernández Arguijo B, Torres Castillo AA, Salinas Rodríguez A, et al. Effect of quenching and normalizing on the microstructure and magnetocaloric effect of a cu–11al–9zn alloy with 6.5 wt % ni–2.5 wt % fe. Magnetochemistry 2019;5. https://doi.org/10.3390/magnetochemistry5030048.
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section FBD
Authors

Güneş Başbağ 0000-0001-6766-1741

Oktay Karaduman 0000-0002-6947-7590

Mustafa Boyrazlı 0000-0002-2340-6703

İskender Özkul 0000-0003-4255-0564

Canan Aksu Canbay 0000-0002-5151-4576

Publication Date September 30, 2022
Submission Date August 16, 2022
Published in Issue Year 2022 Volume: 34 Issue: 2

Cite

APA Başbağ, G., Karaduman, O., Boyrazlı, M., Özkul, İ., et al. (2022). Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi, 34(2), 161-170.
AMA Başbağ G, Karaduman O, Boyrazlı M, Özkul İ, Aksu Canbay C. Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi. September 2022;34(2):161-170.
Chicago Başbağ, Güneş, Oktay Karaduman, Mustafa Boyrazlı, İskender Özkul, and Canan Aksu Canbay. “Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal Ve Manyetik Karakterizasyonu”. Fırat Üniversitesi Fen Bilimleri Dergisi 34, no. 2 (September 2022): 161-70.
EndNote Başbağ G, Karaduman O, Boyrazlı M, Özkul İ, Aksu Canbay C (September 1, 2022) Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi 34 2 161–170.
IEEE G. Başbağ, O. Karaduman, M. Boyrazlı, İ. Özkul, and C. Aksu Canbay, “Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu”, Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 34, no. 2, pp. 161–170, 2022.
ISNAD Başbağ, Güneş et al. “Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal Ve Manyetik Karakterizasyonu”. Fırat Üniversitesi Fen Bilimleri Dergisi 34/2 (September 2022), 161-170.
JAMA Başbağ G, Karaduman O, Boyrazlı M, Özkul İ, Aksu Canbay C. Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi. 2022;34:161–170.
MLA Başbağ, Güneş et al. “Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal Ve Manyetik Karakterizasyonu”. Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 34, no. 2, 2022, pp. 161-70.
Vancouver Başbağ G, Karaduman O, Boyrazlı M, Özkul İ, Aksu Canbay C. Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi. 2022;34(2):161-70.