Research Article
BibTex RIS Cite

PVA/GO ve PVA/rGO Polimerik Nanokompozit Malzemelerin Üretimi ve Karakterizasyonu

Year 2020, Volume: 32 Issue: 2, 53 - 60, 24.09.2020

Abstract

Son yıllarda çeşitli yapılardaki kompozit malzemeler içerisinden, özellikle polimerik nanokompozit malzemelerin önemi ve kullanım alanı giderek artmaktadır. Bu çalışmada Hummers metoduyla sentezlenen GO ve GO’nun indirgenmesiyle elde edilen rGO katkı maddeleri aynı oranda kullanılarak, PVA matrisli nanokompozit malzemeler üretilmiştir. Malzemelerin kimyasal analizi XRD ve EDX cihazları, morfolojik özellikleri ise SEM cihazı ile belirlenmiştir. FT-IR analizi malzemelerin yapısal karakterizasyonu, DSC/TGA ise termal karakterizasyonu için kullanılmıştır.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırmaları Destekleme Birimi(FÜBAP)

Project Number

FF.20.11

Thanks

Yapılan çalışma FÜBAP; FF.20.11 numaralı proje ile desteklenmiştir. Fırat Üniversitesi Bilimsel Araştırmaları Destekleme Birimine verdiği maddi destekten dolayı teşekkür ederiz.

References

  • [1] Park, S. ve Ruoff, R. S., 2009, Chemical methods for the production of graphenes, Nature nanotechnology, 4 (4), 217-224.
  • [2] Topçu, A., 2012, A green pathway for the production of chemically exfoliated graphene sheets with the assistance of microwave irradiation, Master of Science, Koç University, Material Science and Engineering, İstanbul, 15.
  • [3] Bağcı, İ. 2006. Epoksi reçinesi ile nanokompozit sentezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • [4] Şen, F., Palancıoğlu, H. Aldaş, K. (2010).Polimerik Nanokompozitler ve Kullanm Alanları, Makine Teknolojileri Elektronik Dergisi, 7(1), 111-118.
  • [5] Ajayan, P.M., Schadler, L.S. Braun, P.V. (2003). Nanocomposite Science and Technology, Wiley, Newyork, USA.
  • [6] Chen, B. (2004). Polymer-Clay Nanocomposites: an Overview with Emphasis on Interaction Mechanisms, British Ceramic Transactions, 103 (6), 241-249.
  • [7] Brody, A.L. (2003). Nano, Food Packaging Technology, Food Technology, 57 (12), 52-54.
  • [8] Erdem, N., Erdoğan U. H. ve Akşit, A. 2008. Nanokompozit polipropilen filamentlerin üretimi ve özellikleri, Tekstil ve Mühendis, 15(96), 14-22.
  • [9] Kim, H.W., Lee, H.H. Knowles,J.C. (2006). Electrospinning biomedical nanocomposite fibers of hydroxylapatite/poly (lactic acid) for bone regeneration, Journal of Biomedical Materials Research Part A, 79A (3), 643-649.
  • [10] Yang, F., Ou, Y., Yu, Z. (1998). Polyamide 6/silica nanocomposites prepared by in situ polymerization Journal of Applied Polymer Science, 69(2), 355-361.
  • [11] N.Unlu, C.A.Canbay, (2019). The production and characterization of graphene oxide. AIP Conference Proceedings 2178, 030031, https://doi.org/10.1063/1.5135429.
  • [12] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., . . . Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi: 10.1016/j.carbon.2007.02.034.
  • [13] N. Ünlü, C. Aksu Canbay, Production of Cross-linked Poly (Vinyl Alcohol) (PVA) and Its Spectroscopic, Thermal and Superficial Characterization, Journal Of Materıals And Electronıc Devıces: Vol 3, No 1, (2020).
  • [14] C. Zhao, L. Xing, J. Xiang, L. Cui, J. Jiao, H. Sai, Z. Li, F. Li, Formation of uniform reduced graphene oxide films on modified PET substrates using drop-casting method, Particuology 17 (2014) 66–73.
  • [15] A.M. Huízar-Félix, R. Cruz-Silva, J.M. Barandiarán, D.I. García-Gutiérrez, I. Orue, D. Merida, S. Sepúlveda-Guzmán, Magnetic properties of thermally reduced graphene oxide decorated with PtNi nanoparticles, J. Alloy. Comp. 678 (2016) 541–548.
  • [16] Tiyek, İ., Dönmez, U., Yıldırım, B., Karataş, Ş., Alma, M. H., Yazıcı, M., ve Ersoy, M. S., (2016), Kimyasal Yöntem ile İndirgenmiş Grafen Oksit Sentezi ve Karakterizasyonu, Sakarya Üniversitesi Fen Bilimleri Dergisi, 20(2), 349-357.
  • [17] Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud'Homme, R. K., Car, R., Saville, D. A., Aksay, I. A., “Functionalized single graphene sheets derived from splitting graphite oxide”, The Journal of Physical Chemistry B, 110 (17): 8535–8539, 2006.
  • [18] Pandey, D., Reifenberger, R., Piner, R., “Scanning probe microscopy study of exfoliated oxidized graphene sheets”, Surface Science, 602 (9): 1607, 2008.
  • [19] Saxena, S.; Tyson, T. A.; Shukla, S.; Negusse, E.; Chen, H.; Bai, J. Appl. Phys. Lett. 2011, 99, 013104. doi:10.1063/1.3607305.
  • [20] M. Aslam, M.A. Kalyar, Z.A. Raza, Mater. Res. Express 3, 105036 (2016).
  • [21] Y. Feng, X. Zhang, Y. Shen, K. Yoshino, W. Feng, Carbohydr. Polym. 87, 644 (2012).
  • [22] Luo, X., Wang, C., Luo, S., Dong, R., Tua, X., Zeng, G., “Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites”, Chemical Engineering Journal, 187, 45–52, (2012).
  • [23] X. Yang, L. Li, S. Shang and X. Tao, Polymer, 2010, 51, 3431.
  • [24] Li, N., Zheng, M., Chang, X., Ji, G., Lu, H., Xue, L., Pan, L., Cao, J., “Preparation of magnetic CoFe2O4-functionalized graphene sheets via afacile hydrothermal method and their adsorption properties”, Journal of Solid State Chemistry, 184, 953–958, (2011). [25] S. Gahlot, P. P. Sharma, V. Kulshrestha and P. K. Jha, ACS Appl. Mater. Interfaces, 2014, 6, 5595–5601.
  • [26] M. Cano, U. Khan, T. Sainsbury, A. O'Neill, Z. Wang, I. T. McGovern, W. K. Maser, A. M. Benito and J. N. Coleman, Carbon, 2013, 52, 363–371.
  • [27] Eko Andrijanto, Shoerya Shoelarta, Gatot Subiyanto, Sadur Rifki. “Facile synthesis of graphene from graphite using ascorbic acid as reducing agent”, AIP Conference Proceedings 1725, 020003 (2016); doi: 10.1063/1.4945457.
  • [28] Tang, G.; Jiang, Z.G.; Li, X.; Zhang, H.B.; Dasari, A.; Yu, Z.Z. Three dimensional graphene aerogels and their electrically conductive composites. Carbon 2014, 77, 592–599.
  • [29] Zhao, Y., Zhan, L., Tian, J., Nie, S., and Ning, Z. (2011) Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline emdium, Electrochim. Acta., 56: 1967–1972.
  • [30] Shen, J., Shi, M., Li N., Yan, B., Ma, H., Hu, Y., and Ye, M. (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano. Res., 3: 339–349.
  • [31] Chhatri A, Bajpai J, Bajpai AK, Sandhu SS, Jain N, Biswas J. Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors. Carbohydr Polym 2011;83: 876–82. https://doi.org/10.1016/j.carbpol.2010.08.077.
  • [32] Minoo Naebe, Jing Wang, Abbas Amini, Hamid Khayyam, Nishar Hameed, Lu Hua Li, Ying Chen, Bronwyn Fox, “Mechanical Property and Structure of Covalent Functionalised Graphene/ Epoxy Nanocomposites”, Scientific Reports, DOI: 10.1038/srep04375, (2014).
  • [33] C. Li, J. Vongsvivut, X. She, Y. Li, F. She, L. Kong, New insight intonon-isothermal crystallization of PVA–graphene composites, Phys. Chem.Chem. Phys. 16 (2014) 22145–22158.
  • [34] Anbarasan, R., Pandiarajaguru, R., Prabhu, R., Dhanalakshmi, V., Jayalakshmi, A., Dhanalakshmi, B., Nisha, S.U., Gandhi, S., Jayalakshmi, T., 2010. Synthesis, characterizations, and mechanical properties of structurally modified poly(vinylalcohol). Journal of Applied Polymer Science, 117, 2059–2068.
  • [35] Shao, C., Kim, H.Y., Gong, J., Ding, B., Lee, D.R., Park, S.J., 2002. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Materials Letters, 57, 1579– 1584.
Year 2020, Volume: 32 Issue: 2, 53 - 60, 24.09.2020

Abstract

Project Number

FF.20.11

References

  • [1] Park, S. ve Ruoff, R. S., 2009, Chemical methods for the production of graphenes, Nature nanotechnology, 4 (4), 217-224.
  • [2] Topçu, A., 2012, A green pathway for the production of chemically exfoliated graphene sheets with the assistance of microwave irradiation, Master of Science, Koç University, Material Science and Engineering, İstanbul, 15.
  • [3] Bağcı, İ. 2006. Epoksi reçinesi ile nanokompozit sentezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • [4] Şen, F., Palancıoğlu, H. Aldaş, K. (2010).Polimerik Nanokompozitler ve Kullanm Alanları, Makine Teknolojileri Elektronik Dergisi, 7(1), 111-118.
  • [5] Ajayan, P.M., Schadler, L.S. Braun, P.V. (2003). Nanocomposite Science and Technology, Wiley, Newyork, USA.
  • [6] Chen, B. (2004). Polymer-Clay Nanocomposites: an Overview with Emphasis on Interaction Mechanisms, British Ceramic Transactions, 103 (6), 241-249.
  • [7] Brody, A.L. (2003). Nano, Food Packaging Technology, Food Technology, 57 (12), 52-54.
  • [8] Erdem, N., Erdoğan U. H. ve Akşit, A. 2008. Nanokompozit polipropilen filamentlerin üretimi ve özellikleri, Tekstil ve Mühendis, 15(96), 14-22.
  • [9] Kim, H.W., Lee, H.H. Knowles,J.C. (2006). Electrospinning biomedical nanocomposite fibers of hydroxylapatite/poly (lactic acid) for bone regeneration, Journal of Biomedical Materials Research Part A, 79A (3), 643-649.
  • [10] Yang, F., Ou, Y., Yu, Z. (1998). Polyamide 6/silica nanocomposites prepared by in situ polymerization Journal of Applied Polymer Science, 69(2), 355-361.
  • [11] N.Unlu, C.A.Canbay, (2019). The production and characterization of graphene oxide. AIP Conference Proceedings 2178, 030031, https://doi.org/10.1063/1.5135429.
  • [12] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., . . . Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi: 10.1016/j.carbon.2007.02.034.
  • [13] N. Ünlü, C. Aksu Canbay, Production of Cross-linked Poly (Vinyl Alcohol) (PVA) and Its Spectroscopic, Thermal and Superficial Characterization, Journal Of Materıals And Electronıc Devıces: Vol 3, No 1, (2020).
  • [14] C. Zhao, L. Xing, J. Xiang, L. Cui, J. Jiao, H. Sai, Z. Li, F. Li, Formation of uniform reduced graphene oxide films on modified PET substrates using drop-casting method, Particuology 17 (2014) 66–73.
  • [15] A.M. Huízar-Félix, R. Cruz-Silva, J.M. Barandiarán, D.I. García-Gutiérrez, I. Orue, D. Merida, S. Sepúlveda-Guzmán, Magnetic properties of thermally reduced graphene oxide decorated with PtNi nanoparticles, J. Alloy. Comp. 678 (2016) 541–548.
  • [16] Tiyek, İ., Dönmez, U., Yıldırım, B., Karataş, Ş., Alma, M. H., Yazıcı, M., ve Ersoy, M. S., (2016), Kimyasal Yöntem ile İndirgenmiş Grafen Oksit Sentezi ve Karakterizasyonu, Sakarya Üniversitesi Fen Bilimleri Dergisi, 20(2), 349-357.
  • [17] Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud'Homme, R. K., Car, R., Saville, D. A., Aksay, I. A., “Functionalized single graphene sheets derived from splitting graphite oxide”, The Journal of Physical Chemistry B, 110 (17): 8535–8539, 2006.
  • [18] Pandey, D., Reifenberger, R., Piner, R., “Scanning probe microscopy study of exfoliated oxidized graphene sheets”, Surface Science, 602 (9): 1607, 2008.
  • [19] Saxena, S.; Tyson, T. A.; Shukla, S.; Negusse, E.; Chen, H.; Bai, J. Appl. Phys. Lett. 2011, 99, 013104. doi:10.1063/1.3607305.
  • [20] M. Aslam, M.A. Kalyar, Z.A. Raza, Mater. Res. Express 3, 105036 (2016).
  • [21] Y. Feng, X. Zhang, Y. Shen, K. Yoshino, W. Feng, Carbohydr. Polym. 87, 644 (2012).
  • [22] Luo, X., Wang, C., Luo, S., Dong, R., Tua, X., Zeng, G., “Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites”, Chemical Engineering Journal, 187, 45–52, (2012).
  • [23] X. Yang, L. Li, S. Shang and X. Tao, Polymer, 2010, 51, 3431.
  • [24] Li, N., Zheng, M., Chang, X., Ji, G., Lu, H., Xue, L., Pan, L., Cao, J., “Preparation of magnetic CoFe2O4-functionalized graphene sheets via afacile hydrothermal method and their adsorption properties”, Journal of Solid State Chemistry, 184, 953–958, (2011). [25] S. Gahlot, P. P. Sharma, V. Kulshrestha and P. K. Jha, ACS Appl. Mater. Interfaces, 2014, 6, 5595–5601.
  • [26] M. Cano, U. Khan, T. Sainsbury, A. O'Neill, Z. Wang, I. T. McGovern, W. K. Maser, A. M. Benito and J. N. Coleman, Carbon, 2013, 52, 363–371.
  • [27] Eko Andrijanto, Shoerya Shoelarta, Gatot Subiyanto, Sadur Rifki. “Facile synthesis of graphene from graphite using ascorbic acid as reducing agent”, AIP Conference Proceedings 1725, 020003 (2016); doi: 10.1063/1.4945457.
  • [28] Tang, G.; Jiang, Z.G.; Li, X.; Zhang, H.B.; Dasari, A.; Yu, Z.Z. Three dimensional graphene aerogels and their electrically conductive composites. Carbon 2014, 77, 592–599.
  • [29] Zhao, Y., Zhan, L., Tian, J., Nie, S., and Ning, Z. (2011) Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline emdium, Electrochim. Acta., 56: 1967–1972.
  • [30] Shen, J., Shi, M., Li N., Yan, B., Ma, H., Hu, Y., and Ye, M. (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano. Res., 3: 339–349.
  • [31] Chhatri A, Bajpai J, Bajpai AK, Sandhu SS, Jain N, Biswas J. Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors. Carbohydr Polym 2011;83: 876–82. https://doi.org/10.1016/j.carbpol.2010.08.077.
  • [32] Minoo Naebe, Jing Wang, Abbas Amini, Hamid Khayyam, Nishar Hameed, Lu Hua Li, Ying Chen, Bronwyn Fox, “Mechanical Property and Structure of Covalent Functionalised Graphene/ Epoxy Nanocomposites”, Scientific Reports, DOI: 10.1038/srep04375, (2014).
  • [33] C. Li, J. Vongsvivut, X. She, Y. Li, F. She, L. Kong, New insight intonon-isothermal crystallization of PVA–graphene composites, Phys. Chem.Chem. Phys. 16 (2014) 22145–22158.
  • [34] Anbarasan, R., Pandiarajaguru, R., Prabhu, R., Dhanalakshmi, V., Jayalakshmi, A., Dhanalakshmi, B., Nisha, S.U., Gandhi, S., Jayalakshmi, T., 2010. Synthesis, characterizations, and mechanical properties of structurally modified poly(vinylalcohol). Journal of Applied Polymer Science, 117, 2059–2068.
  • [35] Shao, C., Kim, H.Y., Gong, J., Ding, B., Lee, D.R., Park, S.J., 2002. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Materials Letters, 57, 1579– 1584.
There are 34 citations in total.

Details

Primary Language Turkish
Journal Section FBD
Authors

Canan Aksu Canbay 0000-0002-5151-4576

Nihan Ünlü This is me 0000-0002-5410-6551

Project Number FF.20.11
Publication Date September 24, 2020
Submission Date July 8, 2020
Published in Issue Year 2020 Volume: 32 Issue: 2

Cite

APA Aksu Canbay, C., & Ünlü, N. (2020). PVA/GO ve PVA/rGO Polimerik Nanokompozit Malzemelerin Üretimi ve Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi, 32(2), 53-60.
AMA Aksu Canbay C, Ünlü N. PVA/GO ve PVA/rGO Polimerik Nanokompozit Malzemelerin Üretimi ve Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi. September 2020;32(2):53-60.
Chicago Aksu Canbay, Canan, and Nihan Ünlü. “PVA/GO Ve PVA/RGO Polimerik Nanokompozit Malzemelerin Üretimi Ve Karakterizasyonu”. Fırat Üniversitesi Fen Bilimleri Dergisi 32, no. 2 (September 2020): 53-60.
EndNote Aksu Canbay C, Ünlü N (September 1, 2020) PVA/GO ve PVA/rGO Polimerik Nanokompozit Malzemelerin Üretimi ve Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi 32 2 53–60.
IEEE C. Aksu Canbay and N. Ünlü, “PVA/GO ve PVA/rGO Polimerik Nanokompozit Malzemelerin Üretimi ve Karakterizasyonu”, Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 32, no. 2, pp. 53–60, 2020.
ISNAD Aksu Canbay, Canan - Ünlü, Nihan. “PVA/GO Ve PVA/RGO Polimerik Nanokompozit Malzemelerin Üretimi Ve Karakterizasyonu”. Fırat Üniversitesi Fen Bilimleri Dergisi 32/2 (September 2020), 53-60.
JAMA Aksu Canbay C, Ünlü N. PVA/GO ve PVA/rGO Polimerik Nanokompozit Malzemelerin Üretimi ve Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi. 2020;32:53–60.
MLA Aksu Canbay, Canan and Nihan Ünlü. “PVA/GO Ve PVA/RGO Polimerik Nanokompozit Malzemelerin Üretimi Ve Karakterizasyonu”. Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 32, no. 2, 2020, pp. 53-60.
Vancouver Aksu Canbay C, Ünlü N. PVA/GO ve PVA/rGO Polimerik Nanokompozit Malzemelerin Üretimi ve Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi. 2020;32(2):53-60.